当前位置:首页 » 美术学科 » 数学科普番

数学科普番

发布时间: 2020-11-25 05:09:51

⑴ 100分求问!哪些数学家不是从小的天才,而是成人之后才对数学感兴趣最后有大成就的

【基本信息】
姓名:陈景润 (1933—1996)
身高:1.71米
国家或地区:中国
身份:数学家
功绩:哥德巴赫猜想第一人
曾系中国科学院院士

【具体信息】
■简历:
1933年5月22日生于福建闽侯。家境贫寒,学习刻苦,他在中、小学读书时,就对数学情有独钟。一有时间就演算习题,在学校里成了个“小数学迷”。他不善言辞,为人真诚和善,从不计较个人得失,把毕生经历都献给了数学事业。高中没毕业就以同等学历考入厦门大学。1953年毕业于厦门大学数学系。1957年进入中国科学院数学研究所并在华罗庚教授指导下从事数论方面的研究。历任中国科学院数学研究所研究员、学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、福建师范大学等校教授,国家科委数学学科组成员,《数学季刊》主编等职。主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国际领先的成果。这一成果国际上誉为“陈氏定理”,受到广泛引用。
■主要成果:
1742年6月7日,德国数学家哥德巴赫提出一个未经证明的数学猜想“任何一个偶数均可表示两个素数之和”简称:“ 1+1”。这一猜想被称为“哥德巴赫猜想”。中国人运用新的方法,打开了“哥德巴赫猜想”的奥秘之门,摘取了此项桂冠,为世人所瞩目。这个人就是世界上攻克“哥德巴赫猜想”的第一个人——陈景润。
陈景润除攻克这一难题外,又把组合数学与现代经济管理、尖端技术和人类密切关系等方面进行了深入的研究和探讨。他先后在国内外报刊上发明了科学论文70余篇,并有《数学趣味谈》、《组合数学》等著作。
陈景润在解析数论的研究领域取得多项重大成果,曾获国家自然科学奖一等奖、何梁何利基金奖、华罗庚数学奖等多项奖励。他是第四、五、六届全国人民代表大会代表。著有《数学趣味谈》、《组合数学》等。
■巨星的陨落 :
1984年4月27日,陈景润在横过马路时,被一辆急驶而来的自行车撞倒,后脑着地,酿成意外的重伤。雪上加霜,身体本来就不大好的陈景润,受到了几乎致命的创伤。他从医院里出来,苍白的脸上,有时泛着让人忧郁的青灰色,不久,终于诱发了帕金森氏综合症。
1996年3月19日,著名数学家陈景润因病长期住院,经抢救无效逝世,终年63岁。

陈景润不爱玩公园,不爱逛马路,就爱学习。学习起来,常常忘记了吃饭睡觉。
由此可以看出,陈景润是多么的勤奋。

所以,我顶你,加油吧,数学不一定要有很好的脑子,恒心与耐心可以完成任何事!

加油哦!

⑵ 大家给我讲几个关于数学故事,通俗点的

1.符号“+”“-”是五百年前一位德国人最先使用的。当时他们并不表示“加上”“减去”。知道三百多年前才正式用来表示“加上”“减去”。

2.“七巧板”是我国古代的一种拼板玩具,有七个块可以拼成一个大正方形的薄板组成,拼出来的图案变化万千。后来传到国外叫做“唐图”。“七巧板”流传到今天,成为人们喜爱的一种智力玩具。

3.传说早在四五千年前,我们的祖先就用一种滴水的器具来计时,名叫刻漏。

4.乘号“×”是三百多年前一位英国数学家最先使用的。因为乘法是一种特殊的加法,所以他把加号斜过来表示。

5.公元前46年,罗马统帅儒略· 恺撒指定历法。由于他出生在7月,为了表示他的伟大,决定将7月改为“儒略月”,连同所有的单月都规定为31天,双月为30天。这样一年多出一天,2月是古罗马处死犯人的月份,为了减少处死的人数,将2月减少1天,为29天。

6.小方是一个木匠,但他很傲慢,有一天,师傅问他:“桌子有4个角,我砍去一个,还剩几个?”小芳说4-1=3,三个。师傅告诉他,有5个

7、数字趣联
宋代大诗人苏东坡年轻时与几个学友进京考试.他们到达试院时为时已晚.考官说:"我出一联,你们若对得上,我就让你们进考场."考官的上联是:一叶孤舟,坐了二三个学子,启用四桨五帆,经过六滩七湾,历尽八颠九簸,可叹十分来迟.
苏东坡对出的下联是:十年寒窗,进了九八家书院,抛却七情六欲,苦读五经四书,考了三番两次,今日一定要中.
考官与苏东坡都将一至十这十个数字嵌入对联中,将读书人的艰辛与刻苦情况描写得淋漓尽致.

8、点错的小数点
学习数学不仅解题思路要正确,具体解题过程也不能出错,差之毫厘,往往失之千里.
美国芝加哥一个靠养老金生活的老太太,在医院施行一次小手术后回家.两星期后,她接到医院寄来的一张帐单,款数是63440美元.她看到偌大的数字,不禁大惊失色,骇得心脏病猝发,倒地身亡.后来,有人向医院一核对,原来是电脑把小数点的位置放错了,实际上只需要付63.44美元.
点错一个小数点,竟要了一条人命.正如牛顿所说:"在数学中,最微小的误差也不能忽略.

9、二十一世纪从哪年开始?
世纪是计算年代的单位,一百年为一个世纪.
第一世纪的起始年和末尾年,分别是公元1年和公元100年.常见的错误是有人把起始年当作是公元零年,这显然不符合逻辑和我们的习惯,因为在一般情况下,序数的计算是从“1”开始的,而不是从“0”开始的。而正是这个理解上的错误,所以才导致了世纪末尾年为公元99年的错误认识,这也是错把1999年当作是二十世纪末尾年,错把2000年当作是二十一世纪起始年的原因.因为公元计数是序数,所以应该从“1”开始,21世纪的第一年是2001年.

10、蒲丰试验
一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲丰说:“请大家把这些小针往这张白纸上随便仍吧!”客人们按他说的做了。
蒲丰的统计结果是:大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈3.142。蒲丰说:“这个数是π的近似值。每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确。”这就是著名的“蒲丰试验”。

11、数学魔术家
1981年的一个夏日,在印度举行了一场心算比赛。表演者是印度的一位37岁的妇女,她的名字叫沙贡塔娜。当天,她要以惊人的心算能力,与一台先进的电子计算机展开竞赛。
工作人员写出一个201位的大数,让求这个数的23次方根。运算结果,沙贡塔娜只用了50秒钟就向观众报出了正确的答案。而计算机为了得出同样的答数,必须输入两万条指令,再进行计算,花费的时间比沙贡塔娜要多得多。
这一奇闻,在国际上引起了轰动,沙贡塔娜被称为“数学魔术家”。

12、工作到最后一天的华罗庚
华罗庚出生于江苏省,从小喜欢数学,而且非常聪明。1930年,19岁的华罗庚到清华大学读书。华罗庚在清华四年中,在熊庆来教授的指导下,刻苦学习,一连发表了十几篇论文,后来又被派到英国留学,获得博士学位。他对数论有很深的研究,得出了著名的华氏定理。他特别注意理论联系实际,走遍了20多个省、市、自治区,动员群众把优选法用于农业生产。
记者在一次采访时问他:“你最大的愿望是什么?”
他不加思索地回答:“工作到最后一天。”他的确为科学辛劳工作的最后一天,实现了自己的诺言

⑶ 关于数学的资料

数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。

而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。

在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”).

数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献.

基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态.

代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支.

直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分.

现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……).

(3)数学科普番扩展阅读:

数学分支

一、数学史

二、数理逻辑与数学基础a:演绎逻辑学(亦称符号逻辑学)b:证明论 (亦称元数学) c:递归论 d:模型论 e:公理集合论 f:数学基础 g:数理逻辑与数学基础其他学科

三、数论

a:初等数论 b:解析数论 c:代数数论 d:超越数论 e:丢番图逼近 f:数的几何 g:概率数论 h:计算数论 i:数论其他学科

四、代数学

a:线性代数 b:群论 c:域论 d:李群 e:李代数 f:Kac-Moody代数 g:环论 (包括交换环与交换代数,结合环与结合代数,非结合环与非结 合代数等) h:模论 i:格论 j:泛代数理论 k:范畴论 l:同调代数 m:代数K理论 n:微分代数 o:代数编码理论 p:代数学其他学科

五、代数几何学

六、几何学

a:几何学基础 b:欧氏几何学 c:非欧几何学 (包括黎曼几何学等) d:球面几何学 e:向量和张量分析 f:仿射几何学 g:射影几何学 h:微分几何学 i:分数维几何 j:计算几何学 k:几何学其他学科

七、拓扑学

a:点集拓扑学 b:代数拓扑学 c:同伦论 d:低维拓扑学 e:同调论 f:维数论 g:格上拓扑学 h:纤维丛论 i:几何拓扑学 j:奇点理论 k:微分拓扑学 l:拓扑学其他学科

八、数学分析

a:微分学 b:积分学 c:级数论 d:数学分析其他学科

九、非标准分析

十、函数论

a:实变函数论 b:单复变函数论 c:多复变函数论 d:函数逼近论 e:调和分析 f:复流形 g:特殊函数论 h:函数论其他学科

十一、常微分方程

a:定性理论 b:稳定性理论 c:解析理论 d:常微分方程其他学科

十二、偏微分方程

a:椭圆型偏微分方程 b:双曲型偏微分方程 c:抛物型偏微分方程 d:非线性偏微分方程 e:偏微分方程其他学科

十三、动力系统

a:微分动力系统 b:拓扑动力系统 c:复动力系统 d:动力系统其他学科

十四、积分方程

十五、泛函分析

a:线性算子理论 b:变分法 c:拓扑线性空间 d:希尔伯特空间 e:函数空间 f:巴拿赫空间 g:算子代数 h:测度与积分 i:广义函数论 j:非线性泛函分析 k:泛函分析其他学科

十六、计算数学

a:插值法与逼近论 b:常微分方程数值解 c:偏微分方程数值解 d:积分方程数值解 e:数值代数 f:连续问题离散化方法 g:随机数值实验 h:误差分析 i:计算数学其他学科

十七、概率论

a:几何概率 b:概率分布 c:极限理论 d:随机过程 (包括正态过程与平稳过程、点过程等) e:马尔可夫过程 f:随机分析 g:鞅论 h:应用概率论 (具体应用入有关学科) i:概率论其他学科

十八、数理统计学

a:抽样理论 (包括抽样分布、抽样调查等 )b:假设检验 c:非参数统计 d:方差分析 e:相关回归分析 f:统计推断 g:贝叶斯统计 (包括参数估计等) h:试验设计 i:多元分析 j:统计判决理论 k:时间序列分析 l:数理统计学其他学科

十九、应用统计数学

a:统计质量控制 b:可靠性数学 c:保险数学 d:统计模拟

二十、应用统计数学其他学科

二十一、运筹学

a:线性规划 b:非线性规划 c:动态规划 d:组合最优化 e:参数规划 f:整数规划 g:随机规划 h:排队论 i:对策论 亦称博弈论 j:库存论 k:决策论 l:搜索论 m:图论 n:统筹论 o:最优化 p:运筹学其他学科

二十二、组合数学

二十三、模糊数学

二十四、量子数学

二十五、应用数学 (具体应用入有关学科)

二十六、数学其他学科

⑷ 数学小百科

您好!

1.祖冲之和圆周率

祖冲之不但精通天文、历法,他在数学方面的贡献,特别对“圆周率”研究的杰出成就,更是超越前代,在世界数学史上放射着异彩。
我们都知道圆周率就是圆的周长和同一圆的直径的比,这个比值是一个常数,现在通用希腊字母“π”来表示。圆周率是一个永远除不尽的无穷小数,它不能用分数、有限小数或循环小数完全准确地表示出来。由于现代数学的进步,已计算出了小数点后两千多位数字的圆周率。
圆周率的应用很广泛。尤其是在天文、历法方面,凡牵涉到圆的一切问题,都要使用圆周率来推算。我国古代劳动人民在生产实践中求得的最早的圆周率值是“ 3”,这当然很不精密,但一直被沿用到西汉。后来,随着天文、数学等科学的发展,研究圆周率的人越来越多了。西汉末年的刘歆首先抛弃“3”这个不精确的圆周率值,他曾经采用过的圆周率是3.547。东汉的张衡也算出圆周率为**=3.1622。这些数值比起π=3当然有了很大的进步,但是还远远不够精密。到了三国末年,数学家刘徽创造了用割圆术来求圆周率的方法,圆周率的研究才获得了重大的进展。
用割圆术来求圆周率的方法,大致是这样:先作一个圆,再在圆内作一内接正六边形。假设这圆的直径是2,那末半径就等于1。内接正六边形的一边一定等于半径,所以也等于1;它的周长就等于6。如果把内接正六边形的周长6当作圆的周长,用直径2去除,得到周长与直径的比π=6/2=3,这就是古代π=3的数值。但是这个数值是不正确的,我们可以清楚地看出内接正六边形的周长远远小于圆周的周长。
如果我们把内接正六边形的边数加倍,改为内接正十二边形,再用适当方法求出它的周长,那么我们就可以看出,这个周长比内按正六边形的周长更接近圆的周长,这个内接正十二边形的面积也更接近圆面积。从这里就可以得到这样一个结论:圆内所做的内接正多边形的边数越多,它各边相加的总长度(周长)和圆周周长之间的差额就越小。从理论上来讲,如果内接正多边形的边数增加到无限多时,那时正多边形的周界就会同圆周密切重合在一起,从此计算出来的内接无限正多边形的面积,也就和圆面积相等了。不过事实上,我们不可能把内接正多边形的边数增加到无限多,而使这无限正多边形的周界同圆周重合。只能有限度地增加内接正多边形的边数,使它的周界和圆周接近重合。所以用增加圆的内接正多边形边数的办法求圆周率,得数永远稍小于π的真实数值。刘徽就是根据这个道理,从圆内接正六边形开始,逐次加倍地增加边数,一直计算到内接正九十六边形为止,求得了圆周率是3.141O24。把这个数化为分数,就是157/50
刘徽所求得的圆周率,后来被称为“徽率”。他这种计算方法,实际上已具备了近代数学中的极限概念。这是我国古代关于圆周率的研究的一个光辉成就。
祖冲之在推求圆周率方面又获得了超越前人的重大成就。根据《隋书·律历志》的记载,祖冲之把一丈化为一亿忽,以此为直径求圆周率。他计算的结果共得到两个数:一个是盈数(即过剩的近似值),为3.1415927;一个是朒数(即不足的近似值),为3.1415926。圆周率真值正好在盈朒 两数之间。《隋书》只有这样简单的记载,没有具体说明他是用什么方法计算出来的。不过从当时的数学水平来看,除刘徽的割圆术外,还没有更好的方法。祖冲之很可能就是采用了这种方法。因为采用刘徽的方法,把圆的内接正多边形的边数增多到24576边时,便恰好可以得出祖冲之所求得的结果。
盈朒 两数可以列成不等式,如:3.1415926(*)<π(真实的圆周率)<3.1415927(盈),这表明圆周率应在盈朒 两数之间。按照当时计算都用分数的习惯,祖冲之还采用了两个分数值的圆周率。一个是355/119(约等于3.1415927),这一个数比较精密,所以祖冲之称它为“密率”。另一个是了(约等于3.14),这一个数比较粗疏,所以祖冲之称它为“约率”。在欧洲,直到1573年才由德国数学家渥脱求出了355/119这个数值。因此,日本数学家三上义夫曾建议把355/119这个圆周率数值称为“祖率”,来纪念这位中国的大数学家。

2.牛顿和微积分

大多数现代历史学家都相信,牛顿与莱布尼茨独立发展出了微积分学,并为之创造了各自独特的符号。根据牛顿周围的人所述,牛顿要比莱布尼茨早几年得出他的方法,但在1693年以前他几乎没有发表任何内容,并直至1704年他才给出了其完整的叙述。其间,莱布尼茨已在1684年发表了他的方法的完整叙述。此外,莱布尼茨的符号和“微分法”被欧洲大陆全面地采用,在大约1820年以后,英国也采用了该方法。莱布尼茨的笔记本记录了他的思想从初期到成熟的发展过程,而在牛顿已知的记录中只发现了他最终的结果。牛顿声称他一直不愿公布他的微积分学,是因为他怕被人们嘲笑。牛顿与瑞士数学家尼古拉·法蒂奥·丢勒(Nicolas Fatio de Duillier)的联系十分密切,后者一开始便被牛顿的引力定律所吸引。 1691年,丢勒打算编写一个新版本的牛顿《自然哲学的数学原理》,但从未完成它。一些研究牛顿的传记作者认为他们之间的关系可能存在爱情的成分。 不过,在1694年这两个人之间的关系冷却了下来。在那个时候,丢勒还与莱布尼茨交换了几封信件。

在1699年初,皇家学会(牛顿也是其中的一员)的其他成员们指控莱布尼茨剽窃了牛顿的成果,争论在1711年全面爆发了。牛顿所在的英国皇家学会宣布,一项调查表明了牛顿才是真正的发现者,而莱布尼茨被斥为骗子。但在后来,发现该调查评论莱布尼茨的结语是由牛顿本人书写,因此该调查遭到了质疑。这导致了激烈的牛顿与莱布尼茨的微积分学论战,并破坏了牛顿与莱布尼茨的生活,直到后者在1716年逝世。这场争论在英国和欧洲大陆的数学家间划出了一道鸿沟,并可能阻碍了英国数学至少一个世纪的发展。

3.欧几里德与《几何原本》

关于他的生平,现在知道的很少。早年大概就学于雅典,深知柏拉图的学说。公元前300年左右,在托勒密王(公元前364~前283)的邀请下,来到亚历山大,长期在那里工作。他是一位温良敦厚的教育家,对有志数学之士,总是循循善诱。但反对不肯刻苦钻研、投机取巧的作风,也反对狭隘实用观点。据普罗克洛斯(约410~485)记载,托勒密王曾经问欧几里得,除了他的《几何原本》之外,还有没有其他学习几何的捷径。欧几里得回答说: “几何无王者之路。”意思是, 在几何里,没有专为国王铺设的大道。 这句话后来成为传诵千古的学习箴言。斯托贝乌斯(约 500)记述了另一则故事,说一个学生才开始学第一个命题,就问欧几里得学了几何学之后将得到些什么。欧几里得说:给他三个钱币,因为他想在学习中获取实利。
欧几里得生于雅典,是柏拉图的学生。他的科学活动主要是在亚历山大进行的,在这里,他建立了以他为首的数学学派。
欧几里得,以他的主要著作《几何原本》而著称于世,他的工作重大意义在于把前人的数学成果加以系统的整理和总结,以严密的演绎逻辑,把建立在一些公理之上的初等几何学知识构成为一个严整的体系。
欧几里得建立起来的几何学体系之严谨和完整,就连20世纪最杰出的大科学家爱因斯坦也不能对他不另眼相看。
爱因斯坦说:“一个人当他最初接触欧几里得几何学时,如果不曾为它的明晰性和可靠性所感动,那么他是不会成为一个科学家的。”
《几何原本》中的数学内容也许没有多少为他所创,但是关于公理的选择,定理的排列以及一些严密的证明无疑是他的功劳,在这方面,他的工作出色无比。
欧几里得的《几何原本》共有13篇,首先给出的是定义和公理。比如他首先定义了点、线、面的概念。
他整理的5条公理其中包括:
1.从一点到另一任意点作直线是可能的;
2.所有的直角都相等;
3.a=b,b=c,则a=c;
4.若a=b则a+c=b+c等等。
这里面还有一条公理是欧几里得自己提出的,即:整体大于部分。
虽然这条公理不像别的公理那么一望便知,不那么容易为人接受,但这是欧氏几何中必须的,必不可少的。他能提出来,这恰恰显示了他的天才。
《几何原本》第1~4篇主要讲多边形和圆的基本性质,像全等多边形的定理,平行线定理,勾股弦定理等。
第2篇讲几何代数,用几何线段来代替数,这就解决了希腊人不承认无理数的矛盾,因为有些无理数可以用作图的方法,来把它们表示出来。
第3篇讨论圆的性质,如弦、切线、割线,圆心角等。
第4篇讨论圆的内接和外接图形。
第5篇是比例论。这一篇对以后数学发展史有重大关系。
第6篇讲的是相似形。其中有一个命题是:直角三角形斜边上的矩形,其面积等于两直角边上的两个与这相似的矩形面积之和。读者不妨一试。
第7、8、9篇是数论,即讲述整数和整数之比的性质。
第10篇是对无理数进行分类。
第11~13篇讲的是立体几何。
全部13篇共包含有467个命题。《几何原本》的出现说明人类在几何学方面已经达到了科学状态,在经验和直觉的基础上建立了科学的、逻辑的理论。
欧几里得,这位亚历山大大学的数学教授,已经把大地和苍天转化为一幅由错综复杂的图形所构成的庞大图案。
他又运用他的惊人才智,指挥灵巧的手指将这个图案拆开,分成为简单的组成部分:点、线、角、平面、立体——把一幅无边无垠的图,译成初等数学的有限语言。
尽管欧几里得简化了他的几何学,但他坚持对几何学的原则进行透彻的研究,以便他的学生们能充分理解它。
据说,亚历山大国王多禄米曾师从欧几里得学习几何,有一次对于欧几里得一遍又一遍地解释他的原理表示不耐烦。
国王问道:“有没有比你的方法简捷一些的学习几何学的途径?”
欧几里得答道:“陛下,乡下有两种道路,一条是供老百姓走的难走的小路,一条是供皇家走的坦途。但是在几何学里,大家只能走同一条路。走向学问,是没有什么皇家大道的,请陛下明白。”
欧几里得的这番话后来推广为“求知无坦途”,成为传诵千古的箴言。
关于欧几里得的一生的细节,由于资料缺乏,我们知道得很少。有一个故事说的是欧几里得和妻子吵架,妻子很为恼火。
妻子说:“收起你的乱七八糟的儿何图形,它难道为你带来了面包和牛肉。”
欧几里得天生是个憨脾气,只是笑了笑,说道:“妇人之见,你知道吗?我现在所写的,到后世将价值连城!”
妻子嘲笑道:“难道让我们来世再结合在一起吗?你这书呆子。”
欧几里得刚要分辩,只见妻子拿起他写的《几何原本》的一部分投入火炉中。欧几里得连忙来抢,可是已经来不及了。
据说妻子烧掉的是《几何原本》中最后最精彩的一章。但这个遗憾是无法弥补的,她烧的不仅仅是一些有用的书,她烧的是欧几里得血汗和智慧的结晶。
如果上面这个故事是真的,那么他妻子的那场震怒可能并不是欧几里得引起来的。因为古代的作家们告诉我们,他是一个“温和慈祥的老头。”
由于欧几里得知识的渊博,他的学生们简直把他当作偶像来崇拜。欧几里得在教授学生时,像一个真正的父亲那样引导他们,关心他们。
然而有时,他也用辛辣的讽刺来鞭挞学生中比较傲慢的,使他们驯服。有一个学生在学习了第一定理之后,便问道:“学习几何,究竟会有什么好处?”
于是,欧几里得转身吩咐佣人说:“格鲁米阿,拿三个钱币给这位先生,因为他想在学习中获得实利。”
欧几里得主张学习必须循序渐进、刻苦钻研,不赞成投机取巧的作风,更反对狭隘的实用观念。后来者帕波斯就特别赞赏他这谦逊的品德。
像古希腊的大多数学者一样,欧几里德对于他的科学研究的“实际”价值是不大在乎的。他喜爱为研究而研究。
他羞怯谦恭,与世无争,平静地生活在自己的家里。在那个到处充满勾心斗角的世界里,对于人们吵吵闹闹所作出的俗不可耐的表演,则听之任之。
他说:“这些浮光掠影的东西终究会过去,但是,星罗棋布的天体图案,却是永恒地岿然不动。”
欧几里得除了写作重要几何学巨著《几何原本》外,还著有《数据》、《图形分割》、《论数学的伪结论》、《光学》、《反射光学之书》等著作。

⑸ 有关数学

又找到一些
数学的历史
数学是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。
中国古代数学的萌芽
原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。
西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形的图案,半坡遗址的房屋基址都是圆形和方形。为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具。据《史记·夏本纪》记载,夏禹治水时已使用了这些工具。
商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。
公元前一世纪的《周髀算经》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、股四、弦五以及环矩可以为圆等例子。《礼记·内则》篇提到西周贵族子弟从九岁开始便要学习数目和记数方法,他们要受礼、乐、射、驭、书、数的训练,作为“六艺”之一的数已经开始成为专门的课程。
春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。
战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出“矩不方,规不可以为圆”,把“大一”(无穷大)定义为“至大无外”,“小一”(无穷小)定义为“至小无内”。还提出了“一尺之棰,日取其半,万世不竭”等命题。
而墨家则认为名来源于物,名可以从不同方面和不同深度反映物。墨家给出一些数学定义。例如圆、方、平、直、次(相切)、端(点)等等。
墨家不同意“一尺之棰”的命题,提出一个“非半”的命题来进行反驳:将一线段按一半一半地无限分割下去,就必将出现一个不能再分割的“非半”,这个“非半”就是点。
名家的命题论述了有限长度可分割成一个无穷序列,墨家的命题则指出了这种无限分割的变化和结果。名家和墨家的数学定义和数学命题的讨论,对中国古代数学理论的发展是很有意义的。
中国古代数学体系的形成
秦汉是封建社会的上升时期,经济和文化均得到迅速发展。中国古代数学体系正是形成于这个时期,它的主要标志是算术已成为一个专门的学科,以及以《九章算术》为代表的数学著作的出现。
《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名著。例如分数四则运算、今有术(西方称三率法)、开平方与开立方(包括二次方程数值解法)、盈不足术(西方称双设法)、各种面积和体积公式、线性方程组解法、正负数运算的加减法则、勾股形解法 (特别是勾股定理和求勾股数的方法)等,水平都是很高的。其中方程组解法和正负数加减法则在世界数学发展上是遥遥领先的。就其特点来说,它形成了一个以筹算为中心、与古希腊数学完全不同的独立体系。
《九章算术》有几个显著的特点:采用按类分章的数学问题集的形式;算式都是从筹算记数法发展起来的;以算术、代数为主,很少涉及图形性质;重视应用,缺乏理论阐述等。
这些特点是同当时社会条件与学术思想密切相关的。秦汉时期,一切科学技术都要为当时确立和巩固封建制度,以及发展社会生产服务,强调数学的应用性。最后成书于东汉初年的《九章算术》,排除了战国时期在百家争鸣中出现的名家和墨家重视名词定义与逻辑的讨论,偏重于与当时生产、生活密切相结合的数学问题及其解法,这与当时社会的发展情况是完全一致的。
《九章算术》在隋唐时期曾传到朝鲜、日本,并成为这些国家当时的数学教科书。它的一些成就如十进位值制、今有术、盈不足术等还传到印度和阿拉伯,并通过印度、阿拉伯传到欧洲,促进了世界数学的发展。
中国古代数学的发展
魏、晋时期出现的玄学,不为汉儒经学束缚,思想比较活跃;它诘辩求胜,又能运用逻辑思维,分析义理,这些都有利于数学从理论上加以提高。吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注,魏末晋初刘徽撰《九章算术》注、《九章重差图》都是出现在这个时期。赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。
赵爽是中国古代对数学定理和公式进行证明与推导的最早的数学家之一。他在《周髀算经》书中补充的“勾股圆方图及注”和“日高图及注”是十分重要的数学文献。在“勾股圆方图及注”中他提出用弦图证明勾股定理和解勾股形的五个公式;在“日高图及注”中,他用图形面积证明汉代普遍应用的重差公式,赵爽的工作是带有开创性的,在中国古代数学发展中占有重要地位。
刘徽约与赵爽同时,他继承和发展了战国时期名家和墨家的思想,主张对一些数学名词特别是重要的数学概念给以严格的定义,认为对数学知识必须进行 “析理”,才能使数学著作简明严密,利于读者。他的《九章算术》注不仅是对《九章算术》的方法、公式和定理进行一般的解释和推导,而且在论述的过程中有很大的发展。刘徽创造割圆术,利用极限的思想证明圆的面积公式,并首次用理论的方法算得圆周率为 157/50和 3927/1250。
刘徽用无穷分割的方法证明了直角方锥与直角四面体的体积比恒为2:1,解决了一般立体体积的关键问题。在证明方锥、圆柱、圆锥、圆台的体积时,刘徽为彻底解决球的体积提出了正确途径。
东晋以后,中国长期处于战争和南北分裂的状态。祖冲之父子的工作就是经济文化南移以后,南方数学发展的具有代表性的工作,他们在刘徽注《九章算术》的基础上,把传统数学大大向前推进了一步。他们的数学工作主要有:计算出圆周率在3.1415926~3.1415927之间;提出祖(日恒)原理;提出二次与三次方程的解法等。
据推测,祖冲之在刘徽割圆术的基础上,算出圆内接正6144边形和正12288边形的面积,从而得到了这个结果。他又用新的方法得到圆周率两个分数值,即约率22/7和密率355/113。祖冲之这一工作,使中国在圆周率计算方面,比西方领先约一千年之久;
祖冲之之子祖(日恒)总结了刘徽的有关工作,提出“幂势既同则积不容异”,即等高的两立体,若其任意高处的水平截面积相等,则这两立体体积相等,这就是著名的祖(日恒)公理。祖(日恒)应用这个公理,解决了刘徽尚未解决的球体积公式。
隋炀帝好大喜功,大兴土木,客观上促进了数学的发展。唐初王孝通的《缉古算经》,主要讨论土木工程中计算土方、工程分工、验收以及仓库和地窖的计算问题,反映了这个时期数学的情况。王孝通在不用数学符号的情况下,立出数字三次方程,不仅解决了当时社会的需要,也为后来天元术的建立打下基础。此外,对传统的勾股形解法,王孝通也是用数字三次方程解决的。
唐初封建统治者继承隋制,656年在国子监设立算学馆,设有算学博士和助教,学生30人。由太史令李淳风等编纂注释《算经十书》,作为算学馆学生用的课本,明算科考试亦以这些算书为准。李淳风等编纂的《算经十书》,对保存数学经典著作、为数学研究提供文献资料方面是很有意义的。他们给《周髀算经》、《九章算术》以及《海岛算经》所作的注解,对读者是有帮助的。隋唐时期,由于历法的需要,天算学家创立了二次函数的内插法,丰富了中国古代数学的内容。
算筹是中国古代的主要计算工具,它具有简单、形象、具体等优点,但也存在布筹占用面积大,运筹速度加快时容易摆弄不正而造成错误等缺点,因此很早就开始进行改革。其中太乙算、两仪算、三才算和珠算都是用珠的槽算盘,在技术上是重要的改革。尤其是“珠算”,它继承了筹算五升十进与位值制的优点,又克服了筹算纵横记数与置筹不便的缺点,优越性十分明显。但由于当时乘除算法仍然不能在一个横列中进行。算珠还没有穿档,携带不方便,因此仍没有普遍应用。
唐中期以后,商业繁荣,数字计算增多,迫切要求改革计算方法,从《新唐书》等文献留下来的算书书目,可以看出这次算法改革主要是简化乘、除算法,唐代的算法改革使乘除法可以在一个横列中进行运算,它既适用于筹算,也适用于珠算。
中国古代数学的繁荣
960年,北宋王朝的建立结束了五代十国割据的局面。北宋的农业、手工业、商业空前繁荣,科学技术突飞猛进,火药、指南针、印刷术三大发明就是在这种经济高涨的情况下得到广泛应用。1084年秘书省第一次印刷出版了《算经十书》,1213年鲍擀之又进行翻刻。这些都为数学发展创造了良好的条件。
从11~14世纪约300年期间,出现了一批著名的数学家和数学著作,如贾宪的《黄帝九章算法细草》,刘益的《议古根源》,秦九韶的《数书九章》,李冶的《测圆海镜》和《益古演段》,杨辉的《详解九章算法》《日用算法》和《杨辉算法》,朱世杰的《算学启蒙》《四元玉鉴》等,很多领域都达到古代数学的高峰,其中一些成就也是当时世界数学的高峰。
从开平方、开立方到四次以上的开方,在认识上是一个飞跃,实现这个飞跃的就是贾宪。杨辉在《九章算法纂类》中载有贾宪“增乘开平方法”、“增乘开立方法”;在《详解九章算法》中载有贾宪的“开方作法本源”图、“增乘方法求廉草”和用增乘开方法开四次方的例子。根据这些记录可以确定贾宪已发现二项系数表,创造了增乘开方法。这两项成就对整个宋元数学发生重大的影响,其中贾宪三角比西方的帕斯卡三角形早提出600多年。
把增乘开方法推广到数字高次方程(包括系数为负的情形)解法的是刘益。《杨辉算法》中“田亩比类乘除捷法”卷,介绍了原书中22个二次方程和 1个四次方程,后者是用增乘开方法解三次以上的高次方程的最早例子。
秦九韶是高次方程解法的集大成者,他在《数书九章》中收集了21个用增乘开方法解高次方程(最高次数为10)的问题。为了适应增乘开方法的计算程序,奏九韶把常数项规定为负数,把高次方程解法分成各种类型。当方程的根为非整数时,秦九韶采取继续求根的小数,或用减根变换方程各次幂的系数之和为分母,常数为分子来表示根的非整数部分,这是《九章算术》和刘徽注处理无理数方法的发展。在求根的第二位数时,秦九韶还提出以一次项系数除常数项为根的第二位数的试除法,这比西方最早的霍纳方法早500多年。
元代天文学家王恂、郭守敬等在《授时历》中解决了三次函数的内插值问题。秦九韶在“缀术推星”题、朱世杰在《四元玉鉴》“如象招数”题都提到内插法(他们称为招差术),朱世杰得到一个四次函数的内插公式。
用天元(相当于x)作为未知数符号,立出高次方程,古代称为天元术,这是中国数学史上首次引入符号,并用符号运算来解决建立高次方程的问题。现存最早的天元术著作是李冶的《测圆海镜》。
从天元术推广到二元、三元和四元的高次联立方程组,是宋元数学家的又一项杰出的创造。留传至今,并对这一杰出创造进行系统论述的是朱世杰的《四元玉鉴》。
朱世杰的四元高次联立方程组表示法是在天元术的基础上发展起来的,他把常数放在中央,四元的各次幂放在上、下、左、右四个方向上,其他各项放在四个象限中。朱世杰的最大贡献是提出四元消元法,其方法是先择一元为未知数,其他元组成的多项式作为这未知数的系数,列成若干个一元高次方程式,然后应用互乘相消法逐步消去这一未知数。重复这一步骤便可消去其他未知数,最后用增乘开方法求解。这是线性方法组解法的重大发展,比西方同类方法早400多年。
勾股形解法在宋元时期有新的发展,朱世杰在《算学启蒙》卷下提出已知勾弦和、股弦和求解勾股形的方法,补充了《九章算术》的不足。李冶在《测圆海镜》对勾股容圆问题进行了详细的研究,得到九个容圆公式,大大丰富了中国古代几何学的内容。
已知黄道与赤道的夹角和太阳从冬至点向春分点运行的黄经余弧,求赤经余弧和赤纬度数,是一个解球面直角三角形的问题,传统历法都是用内插法进行计算。元代王恂、郭守敬等则用传统的勾股形解法、沈括用会圆术和天元术解决了这个问题。不过他们得到的是一个近似公式,结果不够精确。但他们的整个推算步骤是正确无误的,从数学意义上讲,这个方法开辟了通往球面三角法的途径。
中国古代计算技术改革的高潮也是出现在宋元时期。宋元明的历史文献中载有大量这个时期的实用算术书目,其数量远比唐代为多,改革的主要内容仍是乘除法。与算法改革的同时,穿珠算盘在北宋可能已出现。但如果把现代珠算看成是既有穿珠算盘,又有一套完善的算法和口诀,那么应该说它最后完成于元代。
宋元数学的繁荣,是社会经济发展和科学技术发展的必然结果,是传统数学发展的必然结果。此外,数学家们的科学思想与数学思想也是十分重要的。宋元数学家都在不同程度上反对理学家的象数神秘主义。秦九韶虽曾主张数学与道学同出一源,但他后来认识到,“通神明”的数学是不存在的,只有“经世务类万物”的数学;莫若在《四元玉鉴》序文中提出的“用假象真,以虚问实”则代表了高度抽象思维的思想方法;杨辉对纵横图结构进行研究,揭示出洛书的本质,有力地批判了象数神秘主义。所有这些,无疑是促进数学发展的重要因素。
中西方数学的融合
中国从明代开始进入了封建社会的晚期,封建统治者实行极权统治,宣传唯心主义哲学,施行八股考试制度。在这种情况下,除珠算外,数学发展逐渐衰落。
16世纪末以后,西方初等数学陆续传入中国,使中国数学研究出现一个中西融合贯通的局面;鸦片战争以后,近代数学开始传入中国,中国数学便转入一个以学习西方数学为主的时期;到19世纪末20世纪初,近代数学研究才真正开始。
从明初到明中叶,商品经济有所发展,和这种商业发展相适应的是珠算的普及。明初《魁本对相四言杂字》和《鲁班木经》的出现,说明珠算已十分流行。前者是儿童看图识字的课本,后者把算盘作为家庭必需用品列入一般的木器家具手册中。
随着珠算的普及,珠算算法和口诀也逐渐趋于完善。例如王文素和程大位增加并改善撞归、起一口诀;徐心鲁和程大位增添加、减口诀并在除法中广泛应用归除,从而实现了珠算四则运算的全部口诀化;朱载墒和程大位把筹算开平方和开立方的方法应用到珠算,程大位用珠算解数字二次、三次方程等等。程大位的著作在国内外流传很广,影响很大。
1582年,意大利传教士利玛窦到中国,1607年以后,他先后与徐光启翻译了《几何原本》前六卷、《测量法义》一卷,与李之藻编译《圜容较义》和《同文算指》。1629年,徐光启被礼部任命督修历法,在他主持下,编译《崇祯历书》137卷。《崇祯历书》主要是介绍欧洲天文学家第谷的地心学说。作为这一学说的数学基础,希腊的几何学,欧洲玉山若干的三角学,以及纳皮尔算筹、伽利略比例规等计算工具也同时介绍进来。
在传入的数学中,影响最大的是《几何原本》。《几何原本》是中国第一部数学翻译著作,绝大部分数学名词都是首创,其中许多至今仍在沿用。徐光启认为对它“不必疑”、“不必改”,“举世无一人不当学”。《几何原本》是明清两代数学家必读的数学书,对他们的研究工作颇有影响。
其次应用最广的是三角学,介绍西方三角学的著作有《大测》《割圆八线表》和《测量全义》。《大测》主要说明三角八线(正弦、余弦、正切、余切、正割、余割、正矢、余矢)的性质,造表方法和用表方法。《测量全义》除增加一些《大测》所缺的平面三角外,比较重要的是积化和差公式和球面三角。所有这些,在当时历法工作中都是随译随用的。
1646年,波兰传教士穆尼阁来华,跟随他学习西方科学的有薛凤柞、方中通等。穆尼阁去世后,薛凤柞据其所学,编成《历学会通》,想把中法西法融会贯通起来。《历学会通》中的数学内容主要有比例对数表》《比例四线新表》和《三角算法》。前两书是介绍英国数学家纳皮尔和布里格斯发明增修的对数。后一书除《崇祯历书》介绍的球面三角外,尚有半角公式、半弧公式、德氏比例式、纳氏比例式等。方中通所著《数度衍》对对数理论进行解释。对数的传入是十分重要,它在历法计算中立即就得到应用。
清初学者研究中西数学有心得而著书传世的很多,影响较大的有王锡阐《图解》、梅文鼎《梅氏丛书辑要》(其中数学著作13种共40卷)、年希尧《视学》等。梅文鼎是集中西数学之大成者。他对传统数学中的线性方程组解法、勾股形解法和高次幂求正根方法等方面进行整理和研究,使濒于枯萎的明代数学出现了生机。年希尧的《视学》是中国第一部介绍西方透视学的著作。
清康熙皇帝十分重视西方科学,他除了亲自学习天文数学外,还培养了一些人才和翻译了一些著作。1712年康熙皇帝命梅彀成任蒙养斋汇编官,会同陈厚耀、何国宗、明安图、杨道声等编纂天文算法书。1721年完成《律历渊源》100卷,以康熙“御定”的名义于1723年出版。其中《数理精蕴》主要由梅彀成负责,分上下两编,上编包括《几何原本》、《算法原本》,均译自法文著作;下编包括算术、代数、平面几何平面三角、立体几何等初等数学,附有素数表、对数表和三角函数表。由于它是一部比较全面的初等数学网络全书,并有康熙“御定”的名义,因此对当时数学研究有一定影响。
综上述可以看到,清代数学家对西方数学做了大量的会通工作,并取得许多独创性的成果。这些成果,如和传统数学比较,是有进步的,但和同时代的西方比较则明显落后了。
雍正即位以后,对外闭关自守,导致西方科学停止输入中国,对内实行高压政策,致使一般学者既不能接触西方数学,又不敢过问经世致用之学,因而埋头于究治古籍。乾嘉年间逐渐形成一个以考据学为主的乾嘉学派。
随着《算经十书》与宋元数学著作的收集与注释,出现了一个研究传统数学的高潮。其中能突破旧有框框并有发明创造的有焦循、汪莱、李锐、李善兰等。他们的工作,和宋元时代的代数学比较是青出于蓝而胜于蓝的;和西方代数学比较,在时间上晚了一些,但这些成果是在没有受到西方近代数学的影响下独立得到的。
与传统数学研究出现高潮的同时,阮元与李锐等编写了一部天文数学家传记—《畴人传》,收集了从黄帝时期到嘉庆四年已故的天文学家和数学家270 余人(其中有数学著作传世的不足50人),和明末以来介绍西方天文数学的传教士41人。这部著作全由“掇拾史书,荃萃群籍,甄而录之”而成,收集的完全是第一手的原始资料,在学术界颇有影响。
1840年鸦片战争以后,西方近代数学开始传入中国。首先是英人在上海设立墨海书馆,介绍西方数学。第二次鸦片战争后,曾国藩、李鸿章等官僚集团开展“洋务运动”,也主张介绍和学习西方数学,组织翻译了一批近代数学著作。
其中较重要的有李善兰与伟烈亚力翻译的《代数学》《代微积拾级》;华蘅芳与英人傅兰雅合译的《代数术》《微积溯源》《决疑数学》;邹立文与狄考文编译的《形学备旨》《代数备旨》《笔算数学》;谢洪赉与潘慎文合译的《代形合参》《八线备旨》等等。
《代微积拾级》是中国第一部微积分学译本;《代数学》是英国数学家德·摩根所著的符号代数学译本;《决疑数学》是第一部概率论译本。在这些译著中,创造了许多数学名词和术语,至今还在应用,但所用数学符号一般已被淘汰了。戊戌变法以后,各地兴办新法学校,上述一些著作便成为主要教科书。
在翻译西方数学著作的同时,中国学者也进行一些研究,写出一些著作,较重要的有李善兰的《《尖锥变法解》《考数根法》;夏弯翔的《洞方术图解》《致曲术》《致曲图解》等等,都是会通中西学术思想的研究成果。
由于输入的近代数学需要一个消化吸收的过程,加上清末统治者十分腐败,在太平天国运动的冲击下,在帝国主义列强的掠夺下,焦头烂额,无暇顾及数学研究。直到1919年五四运动以后,中国近代数学的研究才真正开始。

⑹ 数学发展史时间轴

一般分为:1.数学的萌芽时期;2.常量数学时期;3.变量数学时期;4.现代数学时期。

数学起源于人类早期的生产活动,为古中国六艺之一,亦被古希腊学者视为哲学之起点。数学最早用于人们计数、天文、度量甚至是贸易的需要。这些需要可以简单地被概括为数学对结构、空间以及时间的研究;对结构的研究是从数字开始的。

数学发展史的分期,一般来说,可以按照数学本身由低级到高级分阶段进行,也就是分成四个本质不同的发展时期,每一新时期的开始都以卓越的科学成就作标志,这些成就确定了数学向本质上崭新的状态过渡。

(6)数学科普番扩展阅读:

数学史对数学教育意义的意义

数学史在数学教育中有非常重要的地位和价值,是数学教育的重要内容,也是培养数学能力和实施数学素质教育的关键所在,是对数学教育来说十分有意义甚至是不可或缺的工具。

它可以活跃课堂气氛并激起学生学习数学的兴趣,可以培养学生的创新精神以及能让学生了解数学的应用价值和文化价值,还可以通过数学史教育提高学生的综合文化素质,还能帮助学生树立科学品质,培养良好的科学精神。

在数学史教育中我们可以通过在教材中穿插相关的数学故事,来发挥激励和榜样作用,可以揭示数学发展的曲折历程,培养学生的探索精神,可以在教学中追忆数学家的成败历程,吸取有益的教训,还可以考察历史上的数学思想方法,强化数学素质教育。

⑺ 求浙江初中科学和数学教材目录表

注:内容较多,建议复制到word查看。浙教版初中科学总目录 第1章 科学入门
第1节 科学在我们身边
第2节 实验和观察
第3节 长度和体积的测量
第4节 温度的测量
第5节 质量的测量
第6节 时间的测量
第7节 科学探究
第2章 观察生物
第1节 生物与非生物
第2节 常见的动物
第3节 常见的植物
第4节 细胞
第5节 显微镜下的各种生物
第6节 生物体的结构层次
第7节 生物的适应性和多样性
第3章 地球与宇宙
第二节 地球的形状和大小
第2节 地球仪和地图
第3节 太阳和月球
第4节 观测太空
第5节 月相
第6节 日食和月食
第7节 探索宇宙
第4章 物质的构成和特性
第1节 物质的构成
第2节 熔化与凝固
第3节 汽化与液化
第4节 升华与凝华
第5节 物质的溶解性
第6节 物理性质与化学性质
实验与制作
第1章 科学入门
实验一 测量物体的长度和体积
实验二 温度计的使用
实验三 用天平称物体的质量
第2章 观察生物
实验一 观察蚯蚓
实验二 认识显微镜结构 练习使用显微镜
实验三 观察动物细胞和植物细胞
实验四 食物上滋生微生物的条件
第3章 地球与宇宙
制作一 制作小型地球仪
制作二 活动星图的制作
第4章 物质的构成和特性
实 验 观察水的沸腾现象
科学第二册
第1章 对环境的察觉
第1节 感觉世界
第2节 声音的发生和传播
第3节 耳和听觉
第4节 光和颜色
第5节 光的反射和折射
第6节 眼和视觉
第7节 信息的获取和利用
第二章 运动和力
第1节 运动和能的形式
第2节 机械运动
第3节 力的存在
第4节 力的图示
第5节 物体为什么会下落
第6节 磨擦的利和弊
第7节 牛顿第一定律
第8节 二力平衡的条件
第3章 代代相传的生命
第1节 动物的生命周期
第2节 新生命的诞生
第3节 走向成熟
第4节 动物新老个体的更替
第5节 植物一生
第6节 植物生殖方式的多样性
第4章 不断运动的地球
第1节 地球的自转
第2节 北京的时间和“北京时间”
第3节 地球的绕日运动
第4节 日历上的科学
第5节 地壳变动和火山地震
第6节 地球表面的七巧板一板块
第7节 地形和表示地形的地图
实验与制作
第1章 对环境的察觉
实 验 研究凸透镜成像规律
第2章 运动和力
制 作 制作水火箭
实 验 测量平均速度
第3章 代代相传的生命
实 验 嫁接
第4章 不断运动的地球
实 验 观察当阳光照射下物影长度变化
制 作 制作简单等高线地形模型
科学第三册
第1章 生活中的水
第1节 水在哪里
第2节 水的组成
第3节 水的密度
第4节 水的压强
第5节 水的浮力
第6节 物质在水中的分散状况
第7节 物质在水中的溶解
第8节 物质在水中的结晶
第9节 水的利用和保护
第2章 地球的“外衣”——大气
第1节 大气层
第2节 天气和气温
第3节 大气的压强
第4节 大气压与人类生活
第5节 风
第6节 为什么会降水
第7节 明天的天气怎么
第8节 气候和影响气候的因素
第9节 中国东部的季风和西部的干旱气息
第3章 生命活动的调节
第1节 环境对生物行为的影响
第2节 神奇的激素
第3节 神经调节
第4节 运动的行为
第5节 体温的控制 第4章 电路探秘 实验一 测量固体和液体的密度
实验二 硫酸铜晶体的生长
第2章 地球的“外衣”——大气
制 作 制作飞机机翼模型
第3章 生命活动的调节
实 验 植物的向性
第4章 电路探秘
实验一 用电流表测电流
实验二 用龟压表测电压
实验三 用电压表和电流表测导体的电阻
科学第四册
第1章 粒子的模型与符号
第1节 模型与符号的建立与作用
第2节 物质与微观粒子模型
第3节 原子结构的模型
第4节 组成物质的元素
第5节 表示元素的符号
第6节 表示物质的符号
第2章 空气与生命
第1节 空气
第2节 氧化
第3节 化学反应与质量守恒
第4节 生物是怎样呼吸的
第5节 光合作用
第6节 自然界的氧和碳的循环
第7节 空气污染与保护
第3章 植物土壤
第1节 土壤中有什么
第2节 各种各样的土壤
第3节 无机盐和水分的吸收
第4节 植物体中物质的运输
第5节 叶的结构和蒸腾作用
第6节 保护土壤
第4章 电和磁
第1节 指南针为什么能指方向
第2节 电生磁
第3节 影响电磁铁磁性强弱的因素
第4节 电动机
第5节 磁生电
第6节 家庭用电
第7节 电的安全使用
实验与制作
①粒子的模型与符号
②氧气的制取和氧气性质研究
③验证绿叶在阳光下制造淀粉
④观察木质茎的结构
⑤装备直流电动机模型
⑤安装和研究楼梯灯线路
科学第五册
第1章 探索物质的变化
第1节 物质的变化
第2节 探索酸的本质
第3节 探索碱的本质
第4节 几种重要的盐
第5节 金属的性能
第6节 有机物的存在和变化
第2章 物质转化与材料利用
第1节 物质的分类和利用
第2节 物质转化的规律
第3节 常见的材料
第4节 材料的发展 第3章 能量的转化和守恒
第1节 能量的相互转化
第2节 能量转化的量变
第3节 认识简单机械
第4节 动能和势能
第5节 内能和热量
第6节 电能的利用
第7节 电热器
第8节 核能的利用
第9节 能量的转化和守恒
第4章 代谢与平衡
第1节 食物与摄食
第2节 食物的消化与吸收
第3节 体内物质的运输
第4节 能量的获得
第5节 体内物质的动态平衡
第6节 代谢的多样性
实验与制作
土壤酸碱性测定
碱和盐的性质
杠杆的工作原理
测定小灯泡的功率
解剖猪的心脏
科学第六册
第1章 演化的自然
第1节 地球的诞生
第2节 地球的演化和生命的诞生
第3节 生物的进化
第4节 进化与遗传
第5节 恒星的一生
第6节 宇宙的起源
第2章 生物与环境
第1节 种群和生物群落
第2节 生态系统
第3节 生态系统的稳定性
第3章 人的健康与环境
第1节 健康
第2节 来自微生物的威胁
第3节 身体的防卫
第4节 非传染性疾病
第5节 照顾好你的身体
第4章 环境与可持续发展
第1节 人类发展与环境问题
第2节 能源的开发和利用
第3节 实现可持续发展
实验与制作
①制作DNA双螺旋结构模型
②观察酵母种群
③制作血管栓塞模型
④制作生态球
⑤设计制作有关利用能源的模型与方案 【七年级上册】第一章 从自然数到有理数1.1从自然数到分数1.2有理数●阅读材料 中国古代在数的发展方面的贡献1.3数轴1.4绝对值1.5有理数的大小比较●小结●目标与评定 第二章 有理数的运算2.1有理数的加法2.2有理数的减法2.3有理数的乘法2.4有理数的除法2.5有理数的乘方2.6有理数的混合运算2.7准确数和近似数2.8计算器的使用●小结●目标与评定 第三章 实数3.1平方根3.2实数●阅读材料 神奇的π3.3立方根3.4用计算器进行数的开方3.5实数的运算●小结●目标与评定 第四章 代数式4.1用字母表示数4.2代数式4.3代数式的值●阅读材料 数学中的符号4.4整式4.5合并同类项4.6整式的加减●小结●目标与评定 第五章 一元一次方程5.1一元——次方程5.2解一元一次方程的方法和步骤●阅读材料 丢番图5.3一元一次方程的应用5.4问题解决的基本步骤●小结●目标与评定 第六章 数据与图表6.1数据的收集与整理6.2统计表6.3条形统计图和统计图6.4扇形统计图●课题学习 关于“初中生最爱看的电视节目”的调查●小结●目标与评定 第七章 图形的初步知识7.1几何图形7.2线段、射线和直线7.3线段的长短比较7.4角与角的度量7.5角的大小比较7.6余角和补角7.7相交线7.8平行线●阅读材料 初识《几何画板》●小结●目标与评定 【七年级下册】第一章 三角形的初步知识1.1认识三角形.1.2三角形的角平分线和中线.1.3三角形的高1.4全等三角形1.5三角形全等的条件●阅读材料 拼图游戏1.6作三角形●小结●目标与评定 第二章 图形和变换2.1轴对称图形2.2轴对称变换●阅读材料 现实中的轴对称现象2.3平移变换2.4旋转变换2.5相似变换2.6图形变换的简单应用●课题学习 美妙的镶嵌●小结●目标与评定 第三章 事件的可能性3.1认识事件的可能性3.2可能性的大小●阅读材料 机会均等3.3可能性和概率●小结●目标与评定 第四章 二元一次方程组4.1二元一次方程4.2二元一次方程组4.3解二元一次方程组●阅读材料 《九章算术》中的“方程”4.4一元一次方程组的应用●小结●目标与评定 第五章 整式的乘除5.1同底数幂的乘法5.2单项式的乘法5.3多项式的乘法5.4乘法公式5.5整式的化简5.6同底数幂的除法5.7整式的除法阅读材料 杨辉与三角两数和的乘方●小结●目标与评定 第六章 因式分解6.1因式分解6.2提取公因式法6.3用乘法公式分解因式6.4因式分解的简单应用●小结●目标与评定 第七章 分式7.1分式7.2分式的乘除7.3分式的加减7.4分式方程●阅读材料 王冠疑案与浮力定律●小结●目标与评定 【八年级上册】第一章 平行线1.1同位角、内错角:同旁内角1.2平行线的判定1.3平行线的性质1.4平行线之间的距离●小结●目标与评定 第二章 特殊三角形2.1等腰三角形2.2等腰三角形的性质2.3等腰三角形的判定2.4等边三角形2.5直角三角形2.6探索勾股定理●阅读材料 从勾股定理到图形面积关系的拓展2.7直角三角形全等的判定●小结●目标与评定 第三章 直棱柱3.1认识直棱柱●阅读材料 立体图的一种画法3.2直棱柱的表面展开图3.3三视图3.4由三视图描述几何体●小结●目标与评定 第四章 样本与数据分析初步4.1抽样4.2平均数4.3中位数和众数●阅读材料 利用计算机求平均数、中位数和众数4.4方差和标准差4.5统计量的选择与应用●小结●目标与评定 第五章 一元一次不等式5.1认识不等式5.2不等式的基本性质5.3一元一次不等式5.4一元一次不等式组●小结●目标与评定 第六章 图形与坐标6.1探索确定位置的方法6.2平面直角坐标系●阅读材料 笛卡尔6.3坐标平面内的图形变换●小结●目标与评定 第七章 一次函数7.1常量与变量7.2认识函数7.3一次函数7.4一次函数的图象7.5一次函数的简单应用●课题学习 怎样选择较优方案●小结●目标与评定 【八年级下册】第一章 二次根式1.1二次根式1.2二次根式的性质1.3节二次根式的运算●小结●目标与评定 第二章 一元二次方程2.1一元二次方程2.2一元二次方程的解法2.3一元二次方程的应用●阅读材料 一元二次方程的发展小记●小结●目标与评定 第三章 频数分布及其图形3.1频数和频率3.2频数分布3.3频数的应用●小结●目标与评定 第四章 图形与证明4.1定义与命题4.2证明●阅读材料 费马和他的猜想4.3反例与证明4.4反证法●小结●目标与评定 第五章 平行四边形5.1多边形5.2平行四边形5.3平行四边形的性质5.4中心对称5.5平行四边形的判定5.6三角形的中位线5.7逆命题与逆定理●小结●目标与评定 第六章 特殊平行四边形与梯形6.1矩形6.2菱形6.3正方形6.4梯形●课题学习 简单平面图形的重心●小结●目标与评定 【九年级上册】第一章 反比例函数1.1 反比例函数1.2 反比例函数的图象和性质1.3 反比例函数的应用●小结●目标与评定 第二章 二次函数2.1节 二次函数2.2节 二次函数的图象●阅读材料 用计算机画二次函数的图象2.3节 二次函数的性质2.4节 二次函数的应用●小结●目标与评定 第三章 圆的基本性质3.1 圆3.2 圆的轴对称性3.3 圆心角3.4 圆周角●阅读材料 生活离不开圆3.5 弧长及扇形的面积3.6圆锥的侧面积和全面积●小结●目标与评定 第四章 相似三角形4.1 比例线段4.2 相似三角形4.3 两个三角形相似的条件4.4 相似三角形的性质及应用4.5 相似多边形4.6 图形的位似●课题学习 精彩的分形●小结●目标与评定 【九年级下册】第一章 解直角三角形1.1 锐角三角函数1.2 有关三角函数的计算1.3 解直角三角形●课题学习 会徽中的数学●小结●目标与评定 第二章 简单事件的概率2.1 简单事件的概率2.2 估计概率2.3 概率的简单应用●小结●目标与评定 第三章 直线与圆、圆与圆的位置关系3.1 直线和圆的位置关系3.2 三角形的内切圆3.3 圆与圆的位置关系●小结●目标与评定 第四章 投影与三视图4.1 视图与盲区4.2 投影4.3 简单的物体的三视图●小结●目标与评定

⑻ 数学是怎么产生的,它的发展历史是什么

产生:数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题

数学的发展史大致可以分为四个时期。

1、第一时期

数学形成时期,这是人类建立最基本的数学概念的时期。人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本最简单的几何形式,算术与几何还没有分开。

2、第二时期

初等数学,即常量数学时期。这个时期的基本的、最简单的成果构成中学数学的主要内容。这个时期从公元前5世纪开始,也许更早一些,直到17世纪,大约持续了两千年。这个时期逐渐形成了初等数学的主要分支:算数、几何、代数。

3、第三时期

变量数学时期。变量数学产生于17世纪,经历了两个决定性的重大步骤:第一步是解析几何的产生;第二步是微积分(Calculus),即高等数学中研究函数的微分。

4、第四时期

现代数学。现代数学时期,大致从19世纪初开始。数学发展的现代阶段的开端,以其所有的基础--------代数、几何、分析中的深刻变化为特征。

(8)数学科普番扩展阅读:

发展过程中研究出的数学成果:

1、李氏恒定式

数学家李善兰在级数求和方面的研究成果,在国际上被命名为李氏恒定式。

2、华氏定理

华氏定理是我国著名数学家华罗庚的研究成果。华氏定理为:体的半自同构必是自同构自同体或反同体。数学家华罗庚关于完整三角和的研究成果被国际数学界称为“华氏定理”;另外他与数学家王元提出多重积分近似计算的方法被国际上誉为“华—王方法”。

热点内容
小学语文下册五年级 发布:2024-11-01 21:50:37 浏览:197
幼儿园教学活动观察记录 发布:2024-11-01 20:40:44 浏览:651
百词斩英语 发布:2024-11-01 19:54:50 浏览:275
e75历史 发布:2024-11-01 19:53:23 浏览:632
班主任队伍建设是坚持 发布:2024-11-01 18:42:32 浏览:81
学案导学教学模式 发布:2024-11-01 18:41:25 浏览:380
雪儿老师 发布:2024-11-01 17:17:47 浏览:310
有什么歌好听的 发布:2024-11-01 15:59:51 浏览:20
高中班主任工作交流 发布:2024-11-01 15:04:02 浏览:68
顶层美术学校 发布:2024-11-01 14:45:05 浏览:442