當前位置:首頁 » 語數英語 » 高中數學常用公式

高中數學常用公式

發布時間: 2021-11-22 18:09:35

『壹』 高中常用數學公式有哪些

太多了等比等差,二次函數一次函數反比例函數有關排列與組合求值域累加思想1、函數與方程思想。函數與方程是高中數學的重要組成部分,是高中代數的主線,它體系完整、內容豐富、應用廣泛。在歷年高考試題中,對函數與方程及其思想、方法的考查,遍布於代數、三角、幾何以及各類題型(選擇題、填空題、解答題)的題目之中。函數與方程的實質是揭示了客觀世界中量的相互依存又互有制約的關系,因而函數與方程思想的教學,既有著不可替代的重要位置,又有著重要的現實意義。函數思想,是指用函數的概念和性質去分析問題、轉化問題和解決問題。方程思想,是從問題的數量關系入手,運用數學語言將問題中的條件轉化為數學模型(方程、不等式、或方程與不等式的混合組),然後通過解方程(組)或不等式(組)來使問題獲解。有時,還實現函數與方程的互相轉化、接軌,達到解決問題的目的。笛卡爾的方程思想是:實際問題→數學問題→代數問題→方程問題。宇宙世界,充斥著等式和不等式。我們知道,哪裡有等式,哪裡就有方程;哪裡有公式,哪裡就有方程;求值問題是通過解方程來實現的……等等;不等式問題也與方程是近親,密切相關。而函數和多元方程沒有什麼本質的區別,如函數y=f(x),就可以看作關於x、y的二元方程f(x)-y=0。可以說,函數的研究離不開方程。列方程、解方程和研究方程的特性,都是應用方程思想時需要重點考慮的。2、分類討論思想。在解答某些數學問題時,有時會遇到多種情況,需要對各種情況加以分類,並逐類求解,然後綜合得解,這就是分類討論法。分類討論是一種邏輯方法,是一種重要的數學思想,同時也是一種重要的解題策略,它體現了化整為零、積零為整的思想與歸類整理的方法。有關分類討論思想的數學問題具有明顯的邏輯性、綜合性、探索性,能訓練人的思維條理性和概括性,所以在高考試題中佔有重要的位置。引起分類討論的原因主要是以下幾個方面:① 問題所涉及到的數學概念是分類進行定義的。如|a|的定義分a>0、a=0、a<0三種情況。這種分類討論題型可以稱為概念型。② 問題中涉及到的數學定理、公式和運算性質、法則有范圍或者條件限制,或者是分類給出的。如等比數列的前n項和的公式,分q=1和q≠1兩種情況。這種分類討論題型可以稱為性質型。③ 解含有參數的題目時,必須根據參數的不同取值范圍進行討論。如解不等式ax>2時分a>0、a=0和a<0三種情況討論。這稱為含參型。另外,某些不確定的數量、不確定的圖形的形狀或位置、不確定的結論等,都主要通過分類討論,保證其完整性,使之具有確定性。3、數形結合思想。數形結合是一個數學思想方法,包含「以形助數」和「以數輔形」兩個方面,其應用大致可以分為兩種情形:或者是藉助形的生動和直觀性來闡明數之間的聯系,即以形作為手段,數為目的,比如應用函數的圖像來直觀地說明函數的性質;或者是藉助於數的精確性和規范嚴密性來闡明形的某些屬性,即以數作為手段,形作為目的,如應用曲線的方程來精確地闡明曲線的幾何性質。恩格斯曾說過:「數學是研究現實世界的量的關系與空間形式的科學。」數形結合就是根據數學問題的條件和結論之間的內在聯系,既分析其代數意義,又揭示其幾何直觀,使數量關的精確刻劃與空間形式的直觀形象巧妙、和諧地結合在一起,充分利用這種結合,尋找解題思路,使問題化難為易、化繁為簡,從而得到解決。「數」與「形」是一對矛盾,宇宙間萬物無不是「數」和「形」的矛盾的統一。華羅庚先生說過:數缺形時少直觀,形少數時難入微,數形結合百般好,隔裂分家萬事休。4、轉化與化歸思想。轉化與化歸是把未知解的問題轉化到在已有知識范圍內可解的問題的一種重要的思想方法。通過不斷的轉化,把不熟悉、不規范、復雜的問題轉化為熟悉、規范甚至模式法、簡單的問題。歷年高考,轉化與化歸思想無處不見,我們要不斷培養和訓練自覺的轉化意識,將有利於強化解決數學問題中的應變能力,提高思維能力和技能、技巧。著名的數學家,莫斯科大學教授C.A.雅潔卡婭曾在一次向數學奧林匹克參賽者發表《什麼叫解題》的演講時提出:「解題就是把要解題轉化為已經解過的題」。數學的解題過程,就是從未知向已知、從復雜到簡單的化歸轉換過程。
由幾種思想出發可以有很多方法比如:構造法,換元法,正難則反(即補集思想),等價代換,特殊值法等。

『貳』 高中數學常用公式匯總 有哪些

高中數學基本公式
拋物線:y = ax *+ bx + c
a > 0時開口向上a < 0時開口向下
c = 0時拋物線經過原點 b = 0時拋物線對稱軸為y軸
還有頂點式y = a(x+h)* + k
-h是頂點坐標的x k是頂點坐標的y一般用於求最大值與最小值
拋物線標准方程:y^2=2px
它表示拋物線的焦點在x的正半軸上,焦點坐標為(p/2,0) 准線方程為x=-p/2
由於拋物線的焦點可在任意半軸,故共有標准方程y^2=2px y^2=-2px x^2=2py x^2=-2py
圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0
三角函數:兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+…+cos[α+2π*(n-1)/n]=0 以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

『叄』 高中數學公式大全

1、集合與常用邏輯用語


『肆』 高中數學的所有公式!!!!要全哦

高中的數學公式定理大集中
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等 
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 �
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關於某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形
48定理 四邊形的內角和等於360°
49四邊形的外角和等於360°
50多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51推論 任意多邊的外角和等於360°
52平行四邊形性質定理1 平行四邊形的對角相等
53平行四邊形性質定理2 平行四邊形的對邊相等
54推論 夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3 平行四邊形的對角線互相平分
56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1 矩形的四個角都是直角
61矩形性質定理2 矩形的對角線相等
62矩形判定定理1 有三個角是直角的四邊形是矩形
63矩形判定定理2 對角線相等的平行四邊形是矩形
64菱形性質定理1 菱形的四條邊都相等
65菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即S=(a×b)÷2
67菱形判定定理1 四邊都相等的四邊形是菱形
68菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71定理1 關於中心對稱的兩個圖形是全等的
72定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一 點平分,那麼這兩個圖形關於這一點對稱
74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
77對角線相等的梯形是等腰梯形
78平行線等分線段定理 如果一組平行線在一條直線上截得的線段
相等,那麼在其他直線上截得的線段也相等
79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第 三邊
81 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它 的一半
82 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的 一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc
如果ad=bc,那麼a:b=c:d wc呁/S∕?
84 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼
(a+c+…+m)/(b+d+…+n)=a/b
86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應 線段成比例
87 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94 判定定理3 三邊對應成比例,兩三角形相似(SSS)
95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三 角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96 性質定理1 相似三角形對應高的比,對應中線的比與對應角平 分線的比都等於相似比
97 性質定理2 相似三角形周長的比等於相似比
98 性質定理3 相似三角形面積的比等於相似比的平方
99 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等 於它的餘角的正弦值
100任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等 於它的餘角的正切值
乘法與因式分解
a^2-b^2=(a+b)(a-b)
a^3+b^3=(a+b)(a^2-ab+b^2) 
a^3-b^3=(a-b(a^2+ab+b^2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b=-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a
根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理
判別式
b^2-4ac=0 註:方程有兩個相等的實根
b^2-4ac0 註:方程有兩個不等的實根 �
b^2-4ac0 註:方程沒有實根,有共軛復數根
三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA �
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA) �
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2
半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) �
和差化積
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B) )
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2 
2+4+6+8+10+12+14+…+(2n)=n(n+1) 5
1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑
餘弦定理 b^2=a^2+c^2-2accosB 註:角B是邊a和邊c的夾角
圓的標准方程 (x-a)^2+(y-b)^2=^r2 註:(a,b)是圓心坐標 
圓的一般方程 x^2+y^2+Dx+Ey+F=0 註:D^2+E^2-4F0
拋物線標准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py
直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h
正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h'
圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l
弧長公式 l=a*r a是圓心角的弧度數r 0 扇形面積公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h �
斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s*h 圓柱體 V=pi*r2h
101圓是定點的距離等於定長的點的集合
102圓的內部可以看作是圓心的距離小於半徑的點的集合
103圓的外部可以看作是圓心的距離大於半徑的點的集合
104同圓或等圓的半徑相等
105到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半 徑的圓
106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直 平分線
107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距 離相等的一條直線
109定理 不在同一直線上的三點確定一個圓。
110垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111推論1 ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112推論2 圓的兩條平行弦所夾的弧相等
113圓是以圓心為對稱中心的中心對稱圖形
114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等
115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116定理 一條弧所對的圓周角等於它所對的圓心角的一半
117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑
119推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它 的內對角
121①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r �
122切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123切線的性質定理 圓的切線垂直於經過切點的半徑
124推論1 經過圓心且垂直於切線的直線必經過切點
125推論2 經過切點且垂直於切線的直線必經過圓心
126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對邊的和相等
128弦切角定理 弦切角等於它所夾的弧對的圓周角
129推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積 相等
131推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的 兩條線段的比例中項
132切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割 線與圓交點的兩條線段長的比例中項
133推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
134如果兩個圓相切,那麼切點一定在連心線上
135①兩圓外離 d>R+r ②兩圓外切 d=R+r
③兩圓相交 R-r<d<R+r(R>r) �
④兩圓內切 d=R-r(R>r) ⑤兩圓內含d<R-r(R>r)
136定理 相交兩圓的連心線垂直平分兩圓的公*弦
137定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139正n邊形的每個內角都等於(n-2)×180°/n
140定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142正三角形面積√3a/4 a表示邊長
143如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144弧長計算公式:L=n兀R/180
145扇形面積公式:S扇形=n兀R^2/360=LR/2
146內公切線長= d-(R-r) 外公切線長= d-(R+r)

『伍』 高中數學常用公式

高中數學的所有公式總結

1.三角函數公式表

同角三角函數的基本關系式
倒數關系: 商的關系: 平方關系:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1 sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα sin2α+cos2α=1
1+tan2α=sec2α
1+cot2α=csc2α
(六邊形記憶法:圖形結構「上弦中切下割,左正右余中間1」;記憶方法「對角線上兩個函數的積為1;陰影三角形上兩頂點的三角函數值的平方和等於下頂點的三角函數值的平方;任意一頂點的三角函數值等於相鄰兩個頂點的三角函數值的乘積。」)

誘導公式(口訣:奇變偶不變,符號看象限。)
sin(-α)=-sinα
cos(-α)=cosα tan(-α)=-tanα
cot(-α)=-cotα

sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα

sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα

sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα

sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα

sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα

sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα

sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα

sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
(其中k∈Z)

兩角和與差的三角函數公式 萬能公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ

tanα+tanβ
tan(α+β)=——————
1-tanα ·tanβ

tanα-tanβ
tan(α-β)=——————
1+tanα ·tanβ
2tan(α/2)
sinα=——————
1+tan2(α/2)

1-tan2(α/2)
cosα=——————
1+tan2(α/2)

2tan(α/2)
tanα=——————
1-tan2(α/2)

半形的正弦、餘弦和正切公式 三角函數的降冪公式

二倍角的正弦、餘弦和正切公式 三倍角的正弦、餘弦和正切公式
sin2α=2sinαcosα

cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α

2tanα
tan2α=—————
1-tan2α

sin3α=3sinα-4sin3α

cos3α=4cos3α-3cosα

3tanα-tan3α
tan3α=——————
1-3tan2α

三角函數的和差化積公式 三角函數的積化和差公式
α+β α-β
sinα+sinβ=2sin———·cos———
2 2
α+β α-β
sinα-sinβ=2cos———·sin———
2 2
α+β α-β
cosα+cosβ=2cos———·cos———
2 2
α+β α-β
cosα-cosβ=-2sin———·sin———
2 2 1
sinα ·cosβ=-[sin(α+β)+sin(α-β)]
2
1
cosα ·sinβ=-[sin(α+β)-sin(α-β)]
2
1
cosα ·cosβ=-[cos(α+β)+cos(α-β)]
2
1
sinα ·sinβ=— -[cos(α+β)-cos(α-β)]
2

化asinα ±bcosα為一個角的一個三角函數的形式(輔助角的三角函數的公式

集合、函數

集合 簡單邏輯
任一x∈A x∈B,記作A B
A B,B A A=B
A B={x|x∈A,且x∈B}
A B={x|x∈A,或x∈B}

card(A B)=card(A)+card(B)-card(A B)
(1)命題
原命題 若p則q
逆命題 若q則p
否命題 若 p則 q
逆否命題 若 q,則 p
(2)四種命題的關系
(3)A B,A是B成立的充分條件
B A,A是B成立的必要條件
A B,A是B成立的充要條件

函數的性質 指數和對數
(1)定義域、值域、對應法則
(2)單調性
對於任意x1,x2∈D
若x1<x2 f(x1)<f(x2),稱f(x)在D上是增函數
若x1<x2 f(x1)>f(x2),稱f(x)在D上是減函數
(3)奇偶性
對於函數f(x)的定義域內的任一x,若f(-x)=f(x),稱f(x)是偶函數
若f(-x)=-f(x),稱f(x)是奇函數
(4)周期性
對於函數f(x)的定義域內的任一x,若存在常數T,使得f(x+T)=f(x),則稱f(x)是周期函數 (1)分數指數冪
正分數指數冪的意義是

負分數指數冪的意義是

(2)對數的性質和運演算法則

loga(MN)=logaM+logaN

logaMn=nlogaM(n∈R)

指數函數 對數函數
(1)y=ax(a>0,a≠1)叫指數函數
(2)x∈R,y>0
圖象經過(0,1)
a>1時,x>0,y>1;x<0,0<y<1
0<a<1時,x>0,0<y<1;x<0,y>1
a> 1時,y=ax是增函數
0<a<1時,y=ax是減函數 (1)y=logax(a>0,a≠1)叫對數函數
(2)x>0,y∈R
圖象經過(1,0)
a>1時,x>1,y>0;0<x<1,y<0
0<a<1時,x>1,y<0;0<x<1,y>0
a>1時,y=logax是增函數
0<a<1時,y=logax是減函數
指數方程和對數方程
基本型
logaf(x)=b f(x)=ab(a>0,a≠1)
同底型
logaf(x)=logag(x) f(x)=g(x)>0(a>0,a≠1)
換元型 f(ax)=0或f (logax)=0

數列

數列的基本概念 等差數列
(1)數列的通項公式an=f(n)
(2)數列的遞推公式
(3)數列的通項公式與前n項和的關系

an+1-an=d
an=a1+(n-1)d
a,A,b成等差 2A=a+b
m+n=k+l am+an=ak+al

等比數列 常用求和公式
an=a1qn_1
a,G,b成等比 G2=ab
m+n=k+l aman=akal

不等式

不等式的基本性質 重要不等式
a>b b<a
a>b,b>c a>c
a>b a+c>b+c
a+b>c a>c-b
a>b,c>d a+c>b+d
a>b,c>0 ac>bc
a>b,c<0 ac<bc
a>b>0,c>d>0 ac<bd
a>b>0 dn>bn(n∈Z,n>1)
a>b>0 > (n∈Z,n>1)
(a-b)2≥0
a,b∈R a2+b2≥2ab

|a|-|b|≤|a±b|≤|a|+|b|
證明不等式的基本方法
比較法
(1)要證明不等式a>b(或a<b),只需證明
a-b>0(或a-b<0=即可
(2)若b>0,要證a>b,只需證明 ,
要證a<b,只需證明
綜合法 綜合法就是從已知或已證明過的不等式出發,根據不等式的性質推導出欲證的不等式(由因導果)的方法。
分析法 分析法是從尋求結論成立的充分條件入手,逐步尋求所需條件成立的充分條件,直至所需的條件已知正確時為止,明顯地表現出「持果索因」

復數

代數形式 三角形式
a+bi=c+di a=c,b=d

(a+bi)+(c+di)=(a+c)+(b+d)i
(a+bi)-(c+di)=(a-c)+(b-d)i
(a+bi)(c+di )=(ac-bd)+(bc+ad)i

a+bi=r(cosθ+isinθ)
r1=(cosθ1+isinθ1)•r2(cosθ2+isinθ2)
=r1•r2〔cos(θ1+θ2)+isin(θ1+θ2)〕
〔r(cosθ+sinθ)〕n=rn(cosnθ+isinnθ)

k=0,1,……,n-1

解析幾何

1、直線
兩點距離、定比分點 直線方程
|AB|=| |
|P1P2|=

y-y1=k(x-x1)
y=kx+b

兩直線的位置關系 夾角和距離

或k1=k2,且b1≠b2
l1與l2重合
或k1=k2且b1=b2
l1與l2相交
或k1≠k2
l2⊥l2
或k1k2=-1 l1到l2的角

l1與l2的夾角

點到直線的距離

2.圓錐曲線
圓 橢 圓
標准方程(x-a)2+(y-b)2=r2
圓心為(a,b),半徑為R
一般方程x2+y2+Dx+Ey+F=0
其中圓心為( ),
半徑r
(1)用圓心到直線的距離d和圓的半徑r判斷或用判別式判斷直線與圓的位置關系
(2)兩圓的位置關系用圓心距d與半徑和與差判斷 橢圓
焦點F1(-c,0),F2(c,0)
(b2=a2-c2)
離心率
准線方程
焦半徑|MF1|=a+ex0,|MF2|=a-ex0
雙曲線 拋物線
雙曲線
焦點F1(-c,0),F2(c,0)
(a,b>0,b2=c2-a2)
離心率
准線方程
焦半徑|MF1|=ex0+a,|MF2|=ex0-a 拋物線y2=2px(p>0)
焦點F
准線方程

坐標軸的平移

這里(h,k)是新坐標系的原點在原坐標系中的坐標

『陸』 高中數學常用公式有哪些

高中數學基本公式
拋物線:y = ax *+ bx + c
a > 0時開口向上a < 0時開口向下
c = 0時拋物線經過原點 b = 0時拋物線對稱軸為y軸
還有頂點式y = a(x+h)* + k
-h是頂點坐標的x k是頂點坐標的y一般用於求最大值與最小值
拋物線標准方程:y^2=2px
它表示拋物線的焦點在x的正半軸上,焦點坐標為(p/2,0) 准線方程為x=-p/2
由於拋物線的焦點可在任意半軸,故共有標准方程y^2=2px y^2=-2px x^2=2py x^2=-2py
圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0
三角函數:兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+…+cos[α+2π*(n-1)/n]=0 以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
•萬能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數的關系 x1+x2=-b/a x1*x2=c/a 註:韋達定理
公式分類 公式表達式
圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0
拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py
直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h
正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h'
圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l
弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s*h 圓柱體 V=pi*r2h
已知三角形三邊a,b,c,半周長p,則S= √[p(p - a)(p - b)(p - c)] (海倫公式)(p=(a+b+c)/2)
和:(a+b+c)*(a+b-c)*1/4
已知三角形兩邊a,b,這兩邊夾角C,則S=absinC/2
設三角形三邊分別為a、b、c,內切圓半徑為r 則三角形面積=(a+b+c)r/2
設三角形三邊分別為a、b、c,外接圓半徑為r則三角形面積=abc/4r
001任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
002任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
003到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
004和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
005到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
006到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
007定理 不在同一直線上的三點確定一個圓。
008垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
009①直線l和⊙o相交 d<r ②直線l和⊙o相切 d=r ③直線l和⊙o相離 d>r
010①兩圓外離 d>r+r ②兩圓外切 d=r+r
③兩圓相交 r-r<d<r+r(r>r)
④兩圓內切 d=r-r(r>r) ⑤兩圓內含d<r-r(r>r)
011正n邊形的面積sn=pnrn/2 p表示正n邊形的周長
012正三角形面積√3a/4 a表示邊長
013弧長計算公式:l=nπr/180
014扇形面積公式:s扇形=nπr2/360=lr/2

『柒』 高中數學所有公式(人教版)

樓主我剛剛高中畢業,數學的話我推薦平時磨題,不要怕浪費時間,用下去的時間全會回報的,像我高中雖然在一個很好的學校,但是平時都不怎麼學習,但我比較喜歡數學,所以每次數學作業都會去做,高考考了134,滿分150的,數學的話不推薦背公式,不能像學英語那樣學數學,買本教材完全解讀,先看前面的知識概念,然後例題,這個很重要,看不懂問老師,不要怕丟面子,到時候考的不好才丟面子
最後再說一遍,公式背了也會忘,只記最基礎的公式,舉個最簡單的例子,三角形面積底乘高除以2,梯形上底加下底乘高除以2,三角形是梯形的一個特殊存在,上底為0,那麼你只要記梯形的公式就可以了
當然,這是個不太恰當的例子,只是想說這么一個學習方法,最本質的才是最真是的,記公式還會混淆
純手打,望採納,謝謝
祝樓主成績越來越好

熱點內容
英語讀音教學 發布:2025-04-28 23:18:07 瀏覽:447
電腦如何設置輸入法 發布:2025-04-28 23:09:36 瀏覽:508
埠在哪裡 發布:2025-04-28 23:04:19 瀏覽:251
數學英文 發布:2025-04-28 22:21:12 瀏覽:387
成年人學英語 發布:2025-04-28 22:21:11 瀏覽:436
雨說教學設計 發布:2025-04-28 21:57:48 瀏覽:959
書譜教學視頻 發布:2025-04-28 21:55:16 瀏覽:520
長沙數學中考 發布:2025-04-28 21:19:26 瀏覽:802
普洱市中小學繼續教育 發布:2025-04-28 20:21:47 瀏覽:98
哪裡有按摩的 發布:2025-04-28 19:51:29 瀏覽:586