當前位置:首頁 » 語數英語 » 高等代數學

高等代數學

發布時間: 2021-11-24 03:02:30

⑴ 高等代數怎麼學好

一、將三門基礎課作為一個整體去學,摒棄孤立的學習,提倡綜合的思考
恩格斯曾經說過:「數學是研究數和形的科學。」這位先哲對數學的這一概括,從現代數學的發展來看,已經遠遠不夠准確了,但這一概括卻點明了數學最本質的研究對象,即為「數」與「形」。比如說,從「數」的研究衍生出數論、代數、函數、方程等數學分支;從「形」的研究衍生出幾何、拓撲等數學分支。20世紀以來,這些傳統的數學分支相互滲透、相互交叉,形成了現代數學最前沿的研究方向,比如說,代數數論、解析數論、代數幾何、微分幾何、代數拓撲、微分拓撲等等。可以說,現代數學正朝著各種數學分支相互融合的方向繼續蓬勃地發展下去。
數學分析、高等代數、空間解析幾何這三門基礎課,恰好是數學最重要的三個分支--分析、代數、幾何的最重要的基礎課程。根據課程的特點,每門課程的學習方法當然各不相同,但是如果不能以一種整體的眼光去學習和思考,即使每門課都得了A,也不見得就學的很好。學院的資深教授曾向我們抱怨:「有的問題只要畫個圖,想一想就做出來了,怎麼現在的學生做題,拿來就只知道死算,連個圖也不畫一下。」當然,造成這種不足的原因肯定是多方面的。比如說,從教的角度來看,各門課程的教材或授課在某種程度上過於強調自身的特點,很少以整體的眼光去講授課程或處理問題,課程之間的相互聯系也涉及的較少;從學的角度來看,學生們大都處於孤立學習的狀態,也就是說,孤立在某門課程中學習這門課程,缺乏對多門課程的整體把握和綜合思考。
根據我的經驗,將高等代數和空間解析幾何作為一個整體去學,效果肯定比單獨學好,因為高等代數中最核心的概念是「線性空間」,這是一個幾何對象;而且高等代數中的很多內容都是空間解析幾何自然的延續和推廣。另外,高等代數中還有很多分析方面的技巧,比如說「攝動法」,它是一種分析的方法,可以讓我們把問題從一般矩陣化到非異矩陣的情形。因此,要學好高等代數,首先要跳出高等代數,將三門基礎課作為一個整體去學,摒棄孤立的學習,提倡綜合的思考。
二、正確認識代數學的特點,在抽象和具體之間找到結合點
代數學(包括高等代數和抽象代數)給人的印象就是「抽象」,這與另外兩門基礎課有很大的不同。以「線性空間」的定義為例,集合V上定義了加法和數乘兩種運算,並且這兩種運算滿足八條性質,那麼V就稱為線性空間。我想第一次學高等代數的同學都會認為這個定義太抽象了。其實在高等代數中,這樣抽象的定義比比皆是。不過這樣的抽象是有意義的,因為我們可以驗證三維歐氏空間、連續函數全體、多項式全體、矩陣全體都是線性空間,也就是說,線性空間是從許多具體例子中抽象出來的概念,具有絕對的一般性。代數學的研究方法是,從許多具體的例子中抽象出某個概念;然後通過代數的方法對這一概念進行研究,得到一般的結論;最後再將這些結論返回到具體的例子中,得到各種運用。因此,「具體--抽象--具體」,這便是代數學的特點。
在認識了代數學的特點後,就可以有的放矢地學習高等代數了。我們可以通過具體的例子去理解抽象的定義和證明;我們可以將定理的結論運用到具體的例子中,從而加深對定理的理解和掌握;我們還可以通過具體例子的啟發,去發現和證明一些新的結果。因此,要學好高等代數,就需要正確認識抽象和具體的辯證關系,在抽象和具體之間找到結合點。
三、高等代數不僅要學代數,也要學幾何,更要在代數和幾何之間建立一座橋梁
隨著時代的變遷,高等代數的教學內容和方式也在不斷的發展。大概在90年代之前,國內高校的高等代數教材大多以「矩陣論」作為中心,比較強調矩陣論的相關技巧;90年代之後,國內高校的高等代數教材漸漸地改變為以「線性空間理論」作為中心,比較強調幾何的意義。作為縮影,復旦的高等代數教材也經歷了這樣一個變化過程,1993年之前採用的屠伯塤老師的教材強調「矩陣論」;1993年之後採用的姚慕生老師的教材強調「線性空間理論」。從單純重視「代數」到「代數」與「幾何」並重,這其實是高等代數教學觀念的一種全球性的改變,可能這種改變與現代數學的發展密切相關吧!
學好高等代數的有效方法應該是:
深入理解幾何意義、熟練掌握代數方法。
其次,高等代數中很多問題都是幾何的問題,我們經常將幾何的問題代數化,然後用代數的方法去解決它。當然,對於一些代數的問題,我們有時也將其幾何化,然後用幾何的方法去解決它。
最後,代數和幾何之間存在一座橋梁,這就是代數和幾何之間的轉換語言。有了這座橋梁,我們就可以在代數和幾何之間來去自由、游刃有餘。因此,要學好高等代數,不僅要學代數,也要學幾何,更要在代數和幾何之間建立一座橋梁。
四、學好教材,用好教參,練好基本功
復旦現行的高等代數教材是姚慕生老師、吳泉水老師編著的《高等代數學(第二版)》。這本教材從1993年開始沿用至今,已有近20年的歷史。教材內容翔實、重點突出、表述清晰、習題豐富,即使與全國各高校的高等代數教材相比,也不失為出類拔萃之作。
復旦現行的高等代數教學參考書是姚慕生老師編著的《高等代數學習方法指導(第二版)》(因為封面為白色,俗稱「白皮書」)。這本教參書是數院本科生必備的寶典,基本上人手一冊,風行程度可見一斑。
要學好高等代數,學好教材是最低的要求。另外,如何用好教參書,也是一個重要的環節。很多同學購買教參書,主要是因為教材里的部分作業(包括一些很難的證明題)都可以在教參書上找到答案。當然,這一點無可厚非,畢竟這就是教參書的功能嘛!但是,我還是希望一年級的新生能正確地使用教參書,遇到問題首先自己獨立思考,實在想不出,再去看懂教參書上的解答,這樣才能達到提高能力、鍛煉思維的效果。注意:既不獨立思考,又不看懂教參書上的解答,只是抄襲,這對自己來說是一種極不負責的行為,希望大家努力避免!
最後,我願以華羅庚先生的一句詩「勤能補拙是良訓,一份辛勤一份才」與大家共勉,祝大家不斷進步、學業有成!

⑵ 如何學習高等代數

<<返回學習交流 同學們,當你們正在《數學分析》課程時,同時又要學《高等代數》課程。覺得高等代數與數學分析不太一樣,比較「另類」。不一樣在於它研究的方法與數學分析相差太大,數學分析是中學數學的延續,其內容主要是中學的內容加極限的思想而已,同學們接受起來比較容易。高等代數則不同,它在中學基本上沒有「根」。其思維方式與以前學的數學迥然不同,概念更加抽象,偏重思辨與證明。尤其是下學期,證明是主要部分,雖然學時不少,但是理解起來仍困難。 它分兩個學期。我們上學期學的內容,可以歸結為「一個問題」和「兩個工具」。一個問題是指解線性方程組的問題,兩個工具指的是矩陣和向量。 你可能會想:線性方程組我們學過,而且解它用得著講一門課嗎?大家一定要明白,首先我們的方程組不像中學所學僅含2到3個方程,它只要用消元法即可容易地求出,這里的研究的是所有方程組的規律,也就是所必須找到4個以上方程組成的方程組的解的規律,這樣就比較難了,需要對方程組有個整體的認識;再者,數學的宗旨是將看似不同的事物或問題將它們聯系起來,抽象出它們在數學上的本質,然後用數學的工具來解決問題。實際上,向量、矩陣、線性方程組都是基本數學工具。三者之間有著密切的聯系!它們可以互為工具,在今後的學習中,你們只要緊緊抓住三者之間的聯系,學習就有了主線了。 向量我們在中學學過一些,物理課也講。中學學的是三維向量,在幾何中用有向線段表示,代數上用三個數的有序數組表示。那麼我們線性代數中的向量呢,是將中學所學的向量進行推廣,由三維到n維(n是任意正整數),由三個數的有序數組推廣到n維有序數組,中學的向量的性質盡可能推廣到n維,這樣,可以解決更多的問題;矩陣呢?就是一個方形的數表,有若干行、列構成,這樣看起來,概念上很好理解啊。可是研究起來可不那麼簡單,我們以前的運算是兩個數的運算,而現在的運算涉及的可是整個數表的運算!可以想像,整個數表的運算必然比兩個數的運算難。但是我們不必怕,先記住並掌握運算,運算再難,多練幾遍必然就會了。關鍵是要理解概念與概念間的聯系。 再進一步說吧:中學解方程組,有一個原則,就是一個方程解一個未知量。對於線性代數的線性方程組,方程的個數不一定等於未知量的個數。比如4個方程5個未知量,這樣就不可能有唯一的解,需要將一個未知量提出來作為「自由未知量」,也就是將之當做參數(可以任意取值的常數);還有,即使是方程個數與未知量個數相同,也未必有唯一的解,因為有可能出現方程「多餘」的情況。(比如第三個方程是前兩個方程相加,那麼第三個方程可以視為「多餘」)總之,解方程可以先歸納出以下三大問題:第一, 有無多餘方程;第二, 解決了這三大問題,方程組的解迎刃而解。我們結合矩陣、向量可以提出完全對應的問題。剛才講了,三者聯系緊密,比如一個方程將運算符號和等號除去,就是一個向量;方程組將等號和運算除去,就是一個矩陣!你們說它們是不是聯系緊密?大家可不要小看這三問,我認為它們可以作為學習上學期高代的提綱挈領。 下學期主要講「線性空間」和「線性變換」。所謂線性空間,就是將上學期所學的數域上的向量空間加以推廣,很玄是吧?首先數域上的向量空間,是將向量作為整體來研究,這就是我們大學所學的第一個「代數結構」。所謂代數結構,就是由一個集合、若干種運算構成的數學的「大廈」,運算使得集合中的元素有了聯系。中學有沒有涉及代數結構啊?有的,比如實數域、復數域中的「域」就是含有四則運算的代數結構。而向量空間的集合是向量,運算就兩個:加法和數乘。起初向量及其運算和上學期學的一樣。可是,它的形式有局限啊,數學家就想到,將其概念的本質抽取出來,他們發現,向量空間的本質就是八條運算律,因此將它作為線性空間(也稱向量空間)的公理化定義,作為原始的向量、加法、數乘未必再有原來的形式了。比如上學期學的數域上的多項式構成的線性空間。 繼而,我們將數學中的「映射」用在線性空間上,於是有了「線性變換」的概念。說到底,線性變換就是線性空間保持線性運算關系不變的自身到自身的「映射」。正因為保持線性關系不變,所以線性空間的許多性質在映射後得以保持。研究線性空間與線性變換的關鍵就是找到線性空間的「基」,只要通過基,可以將無數個向量的運算通過基線性表示,也可以將線性變換通過基的變換線性表示!於是,線性空間的元素真正可以用上學期的「向量」表示了!線性變換可以用上學期的「矩陣」表示了!這是代數中著名的「同構」的思想!通過這樣,將抽象的問題具體化了,這也就是我們前邊說的「矩陣」和「向量」是兩大工具的原因。同學們要記住,做線性空間與線性變換的題時這樣的轉化是主方向! 進一步:既然線性變換可以通過取基用矩陣表示,不同的基呢,對應不同的矩陣。我們自然想到,能否適當的取基,使得矩陣的表示盡可能簡單。簡單到極致,就是對角型。經研究,發現若能轉成對角型的話,那麼對角型上的元素是這樣變換(稱相似變換)的不變數,這個不變數很重要,稱為變換的「特徵值」。矩陣相似變換成對角型是個很實用的問題,結果,不是所有都能化對角,那麼退一步,於是有了「若當標准型「的概念,只要特徵多項式能夠完全分解,就可以化若當標准型,有一章的內容專門研究它。這樣的對角型與若當標准型有什麼用呢?我們利用它是同一個變換在不同基下的矩陣表示,可以通過改變基使得研究線性變換變得簡單。 最後的「歐氏空間」許多人不理解,一句話,就是仿照我們可見的三維空間,對線性空間引進度量,向量有長度、有夾角、有內積。歐氏空間有了度量後,線性空間的許多性質變得很直觀且奇妙。我們要比較兩者的聯系與差別。此章主要講了兩種變換:對稱變換與正交變換,正交變換是保持度量關系不變,對稱變換在正交基下為對稱陣。相似變換對角化問題到了這里變成正交變換對角化問題,在涉及對角化問題時,能用正交變換的盡量用正交變換,可以使得問題更加的容易解決。 說到這里,大家對高代有了宏觀的認識了。最後總結出高代的特點,一是結構緊密,整個課程的知識點互相之間有著千絲萬縷的聯系,無論從哪一個角度切入,都可以牽一發而動全身,整個課程就是鐵板一塊。二是它解決問題的方法不再是像中學那樣的重視技巧,以「點」為主,而是從代數的「結構」上,從宏觀上把握解決問題的方案。這對大家是比較抽象,但是,沒有宏觀的理解,對此課程必然學不透徹!建議同學們邊比較變學習,上學期的向量用中學的向量比較,下學期的向量用上學期的比較。在計算上理解概念,證明時注重整體結構。關於證明,這里一時無法盡言,請看我的《證明題的證法之高代篇》,那裡有詳細敘述。忠傑

⑶ 你認為如何學好高等代數

學高代和學數學任何一部分都一樣,一定要理解,而不是背,重在證明,而不是計算。有很多人做簡單計算沒問題,做難度高的題就沒有了思路,這實際上是背公式而沒理解的表現,每一個公式都要深挖證明,直到完整的理解。人的想像力是最偉大的工具,任何代數式都是可以通過想像去找到一個對應的幾何圖形的(數形在大腦中轉換的速度往往代表了一個人的天賦),數形結合也是極其重要的一方面。

⑷ 如何學好高等代數

高等代數和數學分析、空間解析幾何一起,並稱為數學系本科生的三大基礎課。所謂基礎課,顧名思義,就是本科四年學習的所有數學課程,都是以上述三門課作為基礎的。因此對一年級新生而言,學好這三門基礎課,其重要性不言而喻。另一方面,從高中階段的「初等數學」過渡到大學階段的「高等數學」,中間需要一個思維轉變和理解進階的過程。這個過程延續的時間可長可短,完全取決於個人的能力和努力。因此,如何通過學好這三門基礎課,盡快跨越這個轉變過程,對一年級新生而言,其意思更加重大。
一、將三門基礎課作為一個整體去學,摒棄孤立的學習,提倡綜合的思考
恩格斯曾經說過:「數學是研究數和形的科學。」這位先哲對數學的這一概括,從現代數學的發展來看,已經遠遠不夠准確了,但這一概括卻點明了數學最本質的研究對象,即為「數」與「形」。比如說,從「數」的研究衍生出數論、代數、函數、方程等數學分支;從「形」的研究衍生出幾何、拓撲等數學分支。20世紀以來,這些傳統的數學分支相互滲透、相互交叉,形成了現代數學最前沿的研究方向,比如說,代數數論、解析數論、代數幾何、微分幾何、代數拓撲、微分拓撲等等。可以說,現代數學正朝著各種數學分支相互融合的方向繼續蓬勃地發展下去。
數學分析、高等代數、空間解析幾何這三門基礎課,恰好是數學最重要的三個分支--分析、代數、幾何的最重要的基礎課程。根據課程的特點,每門課程的學習方法當然各不相同,但是如果不能以一種整體的眼光去學習和思考,即使每門課都得了A,也不見得就學的很好。學院的資深教授曾向我們抱怨:「有的問題只要畫個圖,想一想就做出來了,怎麼現在的學生做題,拿來就只知道死算,連個圖也不畫一下。」當然,造成這種不足的原因肯定是多方面的。比如說,從教的角度來看,各門課程的教材或授課在某種程度上過於強調自身的特點,很少以整體的眼光去講授課程或處理問題,課程之間的相互聯系也涉及的較少;從學的角度來看,學生們大都處於孤立學習的狀態,也就是說,孤立在某門課程中學習這門課程,缺乏對多門課程的整體把握和綜合思考。
根據我的經驗,將高等代數和空間解析幾何作為一個整體去學,效果肯定比單獨學好,因為高等代數中最核心的概念是「線性空間」,這是一個幾何對象;而且高等代數中的很多內容都是空間解析幾何自然的延續和推廣。另外,高等代數中還有很多分析方面的技巧,比如說「攝動法」,它是一種分析的方法,可以讓我們把問題從一般矩陣化到非異矩陣的情形。因此,要學好高等代數,首先要跳出高等代數,將三門基礎課作為一個整體去學,摒棄孤立的學習,提倡綜合的思考。
二、正確認識代數學的特點,在抽象和具體之間找到結合點
代數學(包括高等代數和抽象代數)給人的印象就是「抽象」,這與另外兩門基礎課有很大的不同。以「線性空間」的定義為例,集合V上定義了加法和數乘兩種運算,並且這兩種運算滿足八條性質,那麼V就稱為線性空間。我想第一次學高等代數的同學都會認為這個定義太抽象了。其實在高等代數中,這樣抽象的定義比比皆是。不過這樣的抽象是有意義的,因為我們可以驗證三維歐氏空間、連續函數全體、多項式全體、矩陣全體都是線性空間,也就是說,線性空間是從許多具體例子中抽象出來的概念,具有絕對的一般性。代數學的研究方法是,從許多具體的例子中抽象出某個概念;然後通過代數的方法對這一概念進行研究,得到一般的結論;最後再將這些結論返回到具體的例子中,得到各種運用。因此,「具體--抽象--具體」,這便是代數學的特點。
在認識了代數學的特點後,就可以有的放矢地學習高等代數了。我們可以通過具體的例子去理解抽象的定義和證明;我們可以將定理的結論運用到具體的例子中,從而加深對定理的理解和掌握;我們還可以通過具體例子的啟發,去發現和證明一些新的結果。因此,要學好高等代數,就需要正確認識抽象和具體的辯證關系,在抽象和具體之間找到結合點。
三、高等代數不僅要學代數,也要學幾何,更要在代數和幾何之間建立一座橋梁
隨著時代的變遷,高等代數的教學內容和方式也在不斷的發展。大概在90年代之前,國內高校的高等代數教材大多以「矩陣論」作為中心,比較強調矩陣論的相關技巧;90年代之後,國內高校的高等代數教材漸漸地改變為以「線性空間理論」作為中心,比較強調幾何的意義。作為縮影,復旦的高等代數教材也經歷了這樣一個變化過程,1993年之前採用的屠伯塤老師的教材強調「矩陣論」;1993年之後採用的姚慕生老師的教材強調「線性空間理論」。從單純重視「代數」到「代數」與「幾何」並重,這其實是高等代數教學觀念的一種全球性的改變,可能這種改變與現代數學的發展密切相關吧!
學好高等代數的有效方法應該是:
深入理解幾何意義、熟練掌握代數方法。
其次,高等代數中很多問題都是幾何的問題,我們經常將幾何的問題代數化,然後用代數的方法去解決它。當然,對於一些代數的問題,我們有時也將其幾何化,然後用幾何的方法去解決它。
最後,代數和幾何之間存在一座橋梁,這就是代數和幾何之間的轉換語言。有了這座橋梁,我們就可以在代數和幾何之間來去自由、游刃有餘。因此,要學好高等代數,不僅要學代數,也要學幾何,更要在代數和幾何之間建立一座橋梁。
四、學好教材,用好教參,練好基本功
復旦現行的高等代數教材是姚慕生老師、吳泉水老師編著的《高等代數學(第二版)》。這本教材從1993年開始沿用至今,已有近20年的歷史。教材內容翔實、重點突出、表述清晰、習題豐富,即使與全國各高校的高等代數教材相比,也不失為出類拔萃之作。
復旦現行的高等代數教學參考書是姚慕生老師編著的《高等代數學習方法指導(第二版)》(因為封面為白色,俗稱「白皮書」)。這本教參書是數院本科生必備的寶典,基本上人手一冊,風行程度可見一斑。
要學好高等代數,學好教材是最低的要求。另外,如何用好教參書,也是一個重要的環節。很多同學購買教參書,主要是因為教材里的部分作業(包括一些很難的證明題)都可以在教參書上找到答案。當然,這一點無可厚非,畢竟這就是教參書的功能嘛!但是,我還是希望一年級的新生能正確地使用教參書,遇到問題首先自己獨立思考,實在想不出,再去看懂教參書上的解答,這樣才能達到提高能力、鍛煉思維的效果。注意:既不獨立思考,又不看懂教參書上的解答,只是抄襲,這對自己來說是一種極不負責的行為,希望大家努力避免!
最後,我願以華羅庚先生的一句詩「勤能補拙是良訓,一份辛勤一份才」與大家共勉,祝大家不斷進步、學業有成!

⑸ 高等代數學習方法

我倒是有些心得
一、如果時間充足可以這樣:
1、扎扎實實的學習概念,通過例題加深理解
2、通過練習循序漸進
3、遇到不會的先苦想,實在不行再請教別人,但千萬別繞過它
4、綜合階段做套題,查漏補缺
二、時間不夠可以直接從例題出發,在簡單的理解概念的基礎上,通過例題學別人的方法,這樣是捷徑,但不可能拿高分
總之,勤能補拙,希望你能成功!

⑹ 只學過高等數學,沒學過數學分析,能不能直接去學習高等代數

可以直接學,高等代數和數學分析是兩門獨立的學科,不影響的

⑺ 數學類專業高等代數大學要學幾個學期

現在大學都必須學習數學,一般文科類學校和專業學習的是大學數學理科班的學生學習高等數學線性代數樣的學科,根據所學的科目不同,所分配到每一個學期的課本也是不一樣的。

⑻ 怎樣才能學好高等代數

高等代數和數學分析、空間解析幾何一起,並稱為數學系本科生的三大基礎課。所謂基礎課,顧名思義,就是本科四年學習的所有數學課程,都是以上述三門課作為基礎的。因此對一年級新生而言,學好這三門基礎課,其重要性不言而喻。另一方面,從高中階段的「初等數學」過渡到大學階段的「高等數學」,中間需要一個思維轉變和理解進階的過程。這個過程延續的時間可長可短,完全取決於個人的能力和努力。因此,如何通過學好這三門基礎課,盡快跨越這個轉變過程,對一年級新生而言,其意思更加重大。

本人從2009年2月至2010年1月擔任高等代數習題課教師,2010年2月開始擔任高等代數主講教師,至今已有2年半的時間。在本文中,我將通過自己在教學中的切身體會,與大家分享學好高等代數的一些經驗和方法。

一、將三門基礎課作為一個整體去學,摒棄孤立的學習,提倡綜合的思考

恩格斯曾經說過:「數學是研究數和形的科學。」這位先哲對數學的這一概括,從現代數學的發展來看,已經遠遠不夠准確了,但這一概括卻點明了數學最本質的研究對象,即為「數」與「形」。比如說,從「數」的研究衍生出數論、代數、函數、方程等數學分支;從「形」的研究衍生出幾何、拓撲等數學分支。20世紀以來,這些傳統的數學分支相互滲透、相互交叉,形成了現代數學最前沿的研究方向,比如說,代數數論、解析數論、代數幾何、微分幾何、代數拓撲、微分拓撲等等。可以說,現代數學正朝著各種數學分支相互融合的方向繼續蓬勃地發展下去。

數學分析、高等代數、空間解析幾何這三門基礎課,恰好是數學最重要的三個分支--分析、代數、幾何的最重要的基礎課程。根據課程的特點,每門課程的學習方法當然各不相同,但是如果不能以一種整體的眼光去學習和思考,即使每門課都得了A,也不見得就學的很好。學院的資深教授曾向我們抱怨:「有的問題只要畫個圖,想一想就做出來了,怎麼現在的學生做題,拿來就只知道死算,連個圖也不畫一下。」當然,造成這種不足的原因肯定是多方面的。比如說,從教的角度來看,各門課程的教材或授課在某種程度上過於強調自身的特點,很少以整體的眼光去講授課程或處理問題,課程之間的相互聯系也涉及的較少;從學的角度來看,學生們大都處於孤立學習的狀態,也就是說,孤立在某門課程中學習這門課程,缺乏對多門課程的整體把握和綜合思考。

根據我的經驗,將高等代數和空間解析幾何作為一個整體去學,效果肯定比單獨學好,因為高等代數中最核心的概念是「線性空間」,這是一個幾何對象;而且高等代數中的很多內容都是空間解析幾何自然的延續和推廣。另外,高等代數中還有很多分析方面的技巧,比如說「攝動法」,它是一種分析的方法,可以讓我們把問題從一般矩陣化到非異矩陣的情形。因此,要學好高等代數,首先要跳出高等代數,將三門基礎課作為一個整體去學,摒棄孤立的學習,提倡綜合的思考。

二、正確認識代數學的特點,在抽象和具體之間找到結合點

代數學(包括高等代數和抽象代數)給人的印象就是「抽象」,這與另外兩門基礎課有很大的不同。以「線性空間」的定義為例,集合V上定義了加法和數乘兩種運算,並且這兩種運算滿足八條性質,那麼V就稱為線性空間。我想第一次學高等代數的同學都會認為這個定義太抽象了。其實在高等代數中,這樣抽象的定義比比皆是。不過這樣的抽象是有意義的,因為我們可以驗證三維歐氏空間、連續函數全體、多項式全體、矩陣全體都是線性空間,也就是說,線性空間是從許多具體例子中抽象出來的概念,具有絕對的一般性。代數學的研究方法是,從許多具體的例子中抽象出某個概念;然後通過代數的方法對這一概念進行研究,得到一般的結論;最後再將這些結論返回到具體的例子中,得到各種運用。因此,「具體-->抽象-->具體」,這便是代數學的特點。

在認識了代數學的特點後,就可以有的放矢地學習高等代數了。我們可以通過具體的例子去理解抽象的定義和證明;我們可以將定理的結論運用到具體的例子中,從而加深對定理的理解和掌握;我們還可以通過具體例子的啟發,去發現和證明一些新的結果。因此,要學好高等代數,就需要正確認識抽象和具體的辯證關系,在抽象和具體之間找到結合點。

三、高等代數不僅要學代數,也要學幾何,更要在代數和幾何之間建立一座橋梁

隨著時代的變遷,高等代數的教學內容和方式也在不斷的發展。大概在90年代之前,國內高校的高等代數教材大多以「矩陣論」作為中心,比較強調矩陣論的相關技巧;90年代之後,國內高校的高等代數教材漸漸地改變為以「線性空間理論」作為中心,比較強調幾何的意義。作為縮影,復旦的高等代數教材也經歷了這樣一個變化過程,1993年之前採用的屠伯塤老師的教材強調「矩陣論」;1993年之後採用的姚慕生老師的教材強調「線性空間理論」。從單純重視「代數」到「代數」與「幾何」並重,這其實是高等代數教學觀念的一種全球性的改變,可能這種改變與現代數學的發展密切相關吧!

學好高等代數的有效方法應該是:深入理解幾何意義、熟練掌握代數方法。

首先,高等代數中許多抽象的概念都有具體的幾何背景。因此,理解幾何意義、利用幾何直觀,將有助於我們更好的理解高等代數中抽象的定義和定理。比如說,當面對「行列式」、「矩陣」和「線性方程組的解」等代數概念的時候,我們應該好好想一想,它們的幾何意義究竟是什麼呢?

其次,高等代數中很多問題都是幾何的問題,我們經常將幾何的問題代數化,然後用代數的方法去解決它。當然,對於一些代數的問題,我們有時也將其幾何化,然後用幾何的方法去解決它。

最後,代數和幾何之間存在一座橋梁,這就是代數和幾何之間的轉換語言。有了這座橋梁,我們就可以在代數和幾何之間來去自由、游刃有餘。因此,要學好高等代數,不僅要學代數,也要學幾何,更要在代數和幾何之間建立一座橋梁。

四、學好教材,用好教參,練好基本功

復旦現行的高等代數教材是姚慕生老師、吳泉水老師編著的《高等代數學(第二版)》。這本教材從1993年開始沿用至今,已有近20年的歷史。教材內容翔實、重點突出、表述清晰、習題豐富,即使與全國各高校的高等代數教材相比,也不失為出類拔萃之作。

⑼ 學習高等代數需不需要有高等數學為基礎

高等代數和高等數學之間沒有直接的關系。高等代數是數學專業的必修課,非數學專業相對的課程則是線性代數。而高等數學則是非數學專業的一門完全不同的數學課,相對於高等數學的數學系專業課則是數學分析。以上四門課均無需以其他課程為基礎,可以直接學習,即使偶有涉及,也只需要在必要時簡單補充相關背景即可。

熱點內容
英語讀音教學 發布:2025-04-28 23:18:07 瀏覽:447
電腦如何設置輸入法 發布:2025-04-28 23:09:36 瀏覽:508
埠在哪裡 發布:2025-04-28 23:04:19 瀏覽:251
數學英文 發布:2025-04-28 22:21:12 瀏覽:387
成年人學英語 發布:2025-04-28 22:21:11 瀏覽:436
雨說教學設計 發布:2025-04-28 21:57:48 瀏覽:959
書譜教學視頻 發布:2025-04-28 21:55:16 瀏覽:520
長沙數學中考 發布:2025-04-28 21:19:26 瀏覽:802
普洱市中小學繼續教育 發布:2025-04-28 20:21:47 瀏覽:98
哪裡有按摩的 發布:2025-04-28 19:51:29 瀏覽:586