數學必修五
『壹』 數學必修五重點內容
《必修》:《解三角形》、《數列》、《不等式》,都屬於比較重點的內容。《解三角形》是解答第一個(會結合向量等知識),《數列》則是解答中的必考題,且有難度,《不等式》主要在如何充當工具解決具體問題的使用上。
『貳』 數學必修五
這個是餘弦定理啊,是個重點知識點證明如下
:具體的你畫一個圖就知道了,在△ABC中
由向量的加減法則可知:向量BC=向量AC-向量AB
兩邊同時平方得到BC平方=AC平方+AB平方-2AB·AC·cosA
所以得到a平方=b平方+c平方-2bccosA,
你之所以得到加號是因為你算的那個COSA是本來的COSA的互補角,所以cosA應該是前面負號
『叄』 請問數學 必修五 是高幾的!!謝謝
高二的 下學期的
有疑問請追問,我一定盡快回復你~無疑問請點擊【採納】,同時預祝學習進步~\(^o^)/~我不是學霸,叫我賭神~\(^o^)/~~\(^o^)/~~\(^o^)/~~\(^o^)/~
『肆』 高中數學必修五
(1)三角形的形狀,分為銳角(三個角)、直角(一個角)、鈍角(一個角)三種形狀。
(2)已知角A、邊a。
(3)假設是直角三角形,則a或為直角邊,或為斜邊;分別計算出b和c。
(4)當b+c小於2時,說明要拉長,就是鈍角;反之就是銳角。
『伍』 數學必修五公式
(1)等差中項:acosC,bcosB,ccosA.成等差數列,2bcosB=acosC+ccosA,比如,4,5,6成等差數列一樣有:2*5=4+6
(2)等比回中項:a、b、c成等比數列,答b^2=ac,比如2,4,8成等比數列一樣有,4^2=2*8
建議你,把等差數列和等比數列好好復習一下,教材不難的,不要脫離教材了!滿意給最佳,不懂請追問!
『陸』 數學,必修五
圖
『柒』 數學必修五所有公式
等差數列的基本性質
⑴公差為d的等差數列,各項同加一數所得數列仍是等差數列,其公差仍為d.
⑵公差為d的等差數列,各項同乘以常數k所得數列仍是等差數列,其公差為kd.
⑶若{ a }、{ b }為等差數列,則{ a ±b }與{ka +b}(k、b為非零常數)也是等差數列.
⑷對任何m、n ,在等差數列{ a }中有:a = a + (n-m)d,特別地,當m = 1時,便得等差數列的通項公式,此式較等差數列的通項公式更具有一般性.
⑸、一般地,如果l,k,p,…,m,n,r,…皆為自然數,且l + k + p + … = m + n + r + … (兩邊的自然數個數相等),那麼當{a }為等差數列時,有:a + a + a + … = a + a + a + … .
⑹公差為d的等差數列,從中取出等距離的項,構成一個新數列,此數列仍是等差數列,其公差為kd( k為取出項數之差).
⑺如果{ a }是等差數列,公差為d,那麼,a ,a ,…,a 、a 也是等差數列,其公差為-d;在等差數列{ a }中,a -a = a -a = md .(其中m、k、 )
⑻在等差數列中,從第一項起,每一項(有窮數列末項除外)都是它前後兩項的等差中項.
⑼當公差d>0時,等差數列中的數隨項數的增大而增大;當d<0時,等差數列中的數隨項數的減少而減小;d=0時,等差數列中的數等於一個常數.
⑽設a ,a ,a 為等差數列中的三項,且a 與a ,a 與a 的項距差之比 = ( ≠-1),則a = .
5.等差數列前n項和公式S 的基本性質
⑴數列{ a }為等差數列的充要條件是:數列{ a }的前n項和S 可以寫成S = an + bn的形式(其中a、b為常數).
⑵在等差數列{ a }中,當項數為2n (n N )時,S -S = nd, = ;當項數為(2n-1) (n )時,S -S = a , = .
⑶若數列{ a }為等差數列,則S ,S -S ,S -S ,…仍然成等差數列,公差為 .
⑷若兩個等差數列{ a }、{ b }的前n項和分別是S 、T (n為奇數),則 = .
⑸在等差數列{ a }中,S = a,S = b (n>m),則S = (a-b).
⑹等差數列{a }中, 是n的一次函數,且點(n, )均在直線y = x + (a - )上.
⑺記等差數列{a }的前n項和為S .①若a >0,公差d<0,則當a ≥0且a ≤0時,S 最大;②若a <0 ,公差d>0,則當a ≤0且a ≥0時,S 最小.
2.等比數列的基本性質
⑴公比為q的等比數列,從中取出等距離的項,構成一個新數列,此數列仍是等比數列,其公比為q ( m為等距離的項數之差).
⑵對任何m、n ,在等比數列{ a }中有:a = a · q ,特別地,當m = 1時,便得等比數列的通項公式,此式較等比數列的通項公式更具有普遍性.
⑶一般地,如果t ,k,p,…,m,n,r,…皆為自然數,且t + k,p,…,m + … = m + n + r + … (兩邊的自然數個數相等),那麼當{a }為等比數列時,有:a .a .a .… = a .a .a .… ..
⑷若{ a }是公比為q的等比數列,則{| a |}、{a }、{ka }、{ }也是等比數列,其公比分別為| q |}、{q }、{q}、{ }.
⑸如果{ a }是等比數列,公比為q,那麼,a ,a ,a ,…,a ,…是以q 為公比的等比數列.
⑹如果{ a }是等比數列,那麼對任意在n ,都有a ·a = a ·q >0.
⑺兩個等比數列各對應項的積組成的數列仍是等比數列,且公比等於這兩個數列的公比的積.
⑻當q>1且a >0或0<q<1且a <0時,等比數列為遞增數列;當a >0且0<q<1或a <0且q>1時,等比數列為遞減數列;當q = 1時,等比數列為常數列;當q<0時,等比數列為擺動數列.
等比數列前n項和公式S 的基本性質
⑴如果數列{a }是公比為q 的等比數列,那麼,它的前n項和公式是S =
也就是說,公比為q的等比數列的前n項和公式是q的分段函數的一系列函數值,分段的界限是在q = 1處.因此,使用等比數列的前n項和公式,必須要弄清公比q是可能等於1還是必不等於1,如果q可能等於1,則需分q = 1和q≠1進行討論.
⑵當已知a ,q,n時,用公式S = ;當已知a ,q,a 時,用公式S = .
⑶若S 是以q為公比的等比數列,則有S = S +qS .⑵
⑷若數列{ a }為等比數列,則S ,S -S ,S -S ,…仍然成等比數列.
⑸若項數為3n的等比數列(q≠-1)前n項和與前n項積分別為S 與T ,次n項和與次n項積分別為S 與T ,最後n項和與n項積分別為S 與T ,則S ,S ,S 成等比數列,T ,T ,T 亦成等比數列- 萬能公式:sin2α=2tanα/(1+tan^2α)(註:tan^2α是指tan平方α)
cos2α=(1-tan^2α)/(1+tan^2α) tan2α=2tanα/(1-tan^2α)
升冪公式:1+cosα=2cos^2(α/2) 1-cosα=2sin^2(α/2) 1±sinα=(sin(α/2)±cos(α/2))^2
降冪公式:cos^2α=(1+cos2α)/2 sin^2α=(1-cos2α)/2 - 1)sin(2kπ+α)=sinα,cos(2kπ+α)=cosα, tan(2kπ+α)=tanα,cot(2kπ+α)=cotα,其中k∈Z;
(2) sin(-α)= -sinα,cos(-α)=cosα, tan(-α)= -tanα,cot(-α)= -cotα
(3)sin(π+α)= -sinα,cos(π+α)= -cosα, tan(π+α)=tanα,cot(π+α)=cotα
(4)sin(π-α)=sinα,cos(π-α)= -cosα, tan(π-α)= -tanα,cot(π-α)= -cotα
(5)sin(π/2-α)=cosα,cos(π/2-α)=sinα, tan(π/2-α)=cotα,cot(π/2-α)=tanα
(6) sin(π/2+α)= cosα,cos(π/2+α)= -sinα,
tan(π/2+α)= -cotα,cot(π/2+α)= -tanα
(7)sin(3π/2+α)= -cosα,cos(3π/2+α)=sinα,
tan(3π/2+α)= -cotα,cot(3π/2+α)= -tanα
(8)sin(3π/2-α)= -cosα,cos(3π/2-α)= -sinα,
tan(3π/2-α)= cotα,cot(3π/2-α)= tanα (k·π/2±α) ,其中k∈Z
注意:為方便做題,習慣我們把α看成是一個位於第一象限且小於90°的角;
當k是奇數的時候,等式右邊的三角函數發生變化,如sin變成cos。偶數則不變;
用角(k·π/2±α)所在的象限確定等式右邊三角函數的正負。 例:tan(3π/2 +α)= -cotα
∵在這個式子中k=3,是奇數,因此等式右邊應變為cot
又,∵角(3π/2 +α)在第四象限,tan在第四象限為負值,因此為使等式成立,等式右邊應為-cotα。 三角函數在各象限中的正負分布
sin:第一第二象限中為正;第三第四象限中為負 cos:第一第四象限中為正;第二第三象限中為負 cot、tan:第一第三象限中為正;第二第四象限中為負
『捌』 高一數學必修五章節目錄!
第一章 解三角形
1.1 正弦來定自理和餘弦定理
1.2 應用舉例
1.3實習作業
第二章 數列
2.1 數列的概念與簡單表示法
2.2等差數列
2.3等差數列的前n項和
2.4等比數列
2.5等比數列的前n項和
第三章 不等式
3.1不等關系與不等式
3.2一元二次不等式及其解法
3.3二元一次不等式(組)與簡單的線性規劃
3.4基本不等式:根下ab<=(a+b)/2
『玖』 高中數學必修五全部重點是什麼
必修一、集合,函數。必修二、幾何,還有幾個方程公式,必修三、程序框圖,這些可較簡單,必修四、三角函數,平面向量、三角恆等變換,必修五、解三角形,數列,不等式。
『拾』 數學必修一到必修五分別學的都是什麼內容
必修1——集合、函數基本性質、指數函數、對數函數、冪函數、函數的應用
必修2——立體幾何、平面解析幾何(直線和圓)
必修3——統計、概率、演算法
必修4——三角函數、平面向量、三角恆等互換
必修5——正弦定理、餘弦定理、數列、不等式