當前位置:首頁 » 語數英語 » 七大數學猜想

七大數學猜想

發布時間: 2022-04-26 08:46:54

1. 千禧年七大數學難題是什麼

千禧年七大數學難題如下:

1、P與NP問題:一個問題稱為是P的,如果它可以通過運行多項式次(即運行時間至多是輸入量大小的多項式函數)的一種演算法獲得解決。一個問題成為是NP的,如果所提出的解答可以用多項式次演算法來檢驗。

2、黎曼假設/黎曼猜想:黎曼ζ函數的每一個非平凡零點都有等於1/2的實部。

3、龐加萊猜想:任何單連通閉3維流形同胚於3維球。

4、Hodge猜想:任何Hodge類關於一個非奇異復射影代數簇都是某些代數閉鏈類的有理線形組合。

5、Birch及Swinnerton-Dyer猜想:對於建立在有理數域上的每一條橢圓曲線,它在一處的L函數變為零的階都等於該曲線上有理點的阿貝爾群的秩。

6、Navier-Stokers方程組:(在適當的邊界及初始條件下)對3維Navier-Stokers方程組證明或反證其光滑解的存在性。

7、Yang-Mills理論:證明量子Yang-Mills場存在,並存在一個質量間隙。

1847年,庫默爾創立「代數數論」這一現代重要學科。他還證明了當n﹤100時,除卻n=37、59、67這些不規則質數的情況,費爾馬大定理都成立,是一次大飛躍。

歷史上費爾馬大定理高潮迭起,傳奇不斷。其驚人的魅力,曾在最後時刻挽救自殺青年於不死。他就是德國的沃爾夫斯克勒,他於1908年為費爾馬大定理設懸賞10萬馬克(相當於現時的160萬美元多),期限1908-2007年。

無數人耗盡心力,空留浩嘆。最現代的電腦加數學技巧,驗證了400萬以內的n,但這對最終證明無濟於事。1983年德國的法爾廷斯證明了:對任一固定的n,最多隻有有限多個x,y,z,振動了世界,獲得菲爾茲獎(數學界最高獎)。

2. 介紹幾個數學著名的猜想

法國數學家亨利·龐加萊1904年提出一個猜想:在一閉三維空間,假如每條封閉的曲線都能收縮成一點,這個空間一定是一個圓球。通俗的理解就是:如果我們伸縮圍繞一個蘋果表面的橡皮帶,那麽我們可以既不扯斷它,也不讓它離開表面,使它慢慢移動收縮為一個點;另一方面,如果我們想像同樣的橡皮帶以適當的方向被伸縮在一個輪胎面上,那麽不扯斷橡皮帶或者輪胎面,是沒有辦法把它收縮到一點的。我們說,蘋果表面是「單連通的」,而輪胎面不是。該猜想被列為21世紀七大數學難題之一。2000年5月,美國克萊數學研究所曾為每道題懸賞100萬美元求解。

【黎曼假設內容介紹】
有些數具有不能表示為兩個更小的數的乘積的特殊性質,例如,2,3,5,7,等等。這樣的數稱為素數;它們在純數學及其應用中都起著重要作用。在所有自然數中,這種素數的分布並不遵循任何有規則的模式;然而,德國數學家黎曼(1826~1866)觀察到,素數的頻率緊密相關於一個精心構造的所謂黎曼蔡塔函數z(s$的性態。著名的黎曼假設斷言,方程z(s)=0的所有有意義的解都在一條直線上。這點已經對於開始的1,500,000,000個解驗證過。證明它對於每一個有意義的解都成立將為圍繞素數分布的許多奧秘帶來光明。
還有很多可以自己去網路哦

3. 數學界七大迷題

由世界知名數學家組成的「克萊數學學院」(Clay Mathematics Institute),在巴黎舉行的年度會議中宣布舉辦一項「千禧難題大競賽」(Millennium Prize Problem)。七個問題,一題100萬美金,沒有時間限制,歡迎有志之士踴躍加入。

七大謎題一旦解出,將造成人類在密碼工程與航空領域的大躍進。1900年,德國數學家希爾伯特(David Hilbert)同樣在巴黎舉行的第二屆國際數學家協會中公布了他的23個數學難題,100年來,人類已經解出了20個問題,這些結果間接促成了文明史上醫學、科技、與安全問題的重大突破。

身為「克萊數學院」成員,在1995年因修補「費馬最後定理(Fermat's Last Theorem)」的邏輯漏洞而名噪一時的懷爾斯(Andrew Wiles)說:「這是二十世紀最難解的七大數學問題。我們希望透過獎金,能吸引並發掘新一代的數學家。」

根據規定,解答必須公布在知名的數學期刊上,而且保留2年的辯證期。一旦通過考驗,數學界都滿意這樣的解釋,「克萊數學院」會在頒發獎金前公開所有的審核過程。主辦單位認為,第一筆獎金最快也要到4年後才會發出。

雖然外界認為「克萊數學學院」或許可以永遠保有那700萬美金,他們對研究過程中可能產生的「重要副作用」卻十分感興趣。聖瑪麗學院的科學院院長戴夫林(Keith Devlin)就認為,七大難題是數學界的艾佛勒斯峰,「只有少數人真的想去征服世界最高峰,但以此發展的求生裝備卻為商人賺進數百萬利潤。七大難題,同理可證。」

這七大數學難題分別是:

「The Riemann Hypothesis」(黎曼假設)
「The Poincare Conjecture」(龐加萊推測)
「The Hodge Conjecture」
「The Birch and Swinnerton-Dyer Conjecture」
「Navier-Stokes Equations」(流體力學的N-S方程式)
「The Yang-Mills Theory」(楊密規范場論)
「The P vs NP Problem」

4. 世界七大數學難題之一,霍奇猜想究竟講的啥

古希臘時期,畢達哥拉斯用演繹法證明了直角三角形斜邊平方等於兩直角邊平方之和,即畢達哥拉斯定理。自此,人類便開始將形狀與數學聯系在一起。

惲之瑋,張偉

希望中國數學家可以在這個千年未決的難題上取得一點小的突破,這樣數學家才知道霍奇猜想通往的方向究竟會是哪裡

5. 千禧年七大數學難題是什麼

是NP完全問題、霍奇猜想、龐加萊猜想、黎曼假設、楊-米爾斯存在性和質量缺口、納衛爾-斯托可方程、BSD猜想。其中龐加萊猜想已被解決。

數學難題可以是指那些歷經長時間而仍未有解答/完全解答的數學問題。

古今以來,一些特意提出的數學難題有:平面幾何三大難題、希爾伯特的23個問題、世界三大數學猜想、千禧年大獎難題等。

費爾馬大定理起源於三百多年前,挑戰人類3個世紀,多次震驚全世界,耗盡人類眾多最傑出大腦的精力,也讓千千萬萬業余者痴迷。終於在1994年被安德魯·懷爾斯攻克。

古希臘數學家丟番圖寫過一本著名的《算術》(Arithmetica),經歷中世紀的愚昧黑暗到文藝復興的時候,《算術》的殘本重新被發現研究。

1637年,法國業余大數學家費爾馬(Pierre de Fremat)在《算術》的關於勾股數問題的頁邊上,寫下猜想:xn+ yn=zn是不可能的(這里n大於2;x,y,z,n都是非零整數)。

此猜想後來就稱為費爾馬大定理。費爾馬還寫道「我對此有絕妙的證明,但此頁邊太窄寫不下」。一般公認,他當時不可能有正確的證明。猜想提出後,經歐拉等數代天才努力,200年間只解決了n=3,4,5,7四種情形。

1847年,庫默爾創立「代數數論」這一現代重要學科。他還證明了當n﹤100時,除卻n=37、59、67這些不規則質數的情況,費爾馬大定理都成立,是一次大飛躍。

歷史上費爾馬大定理高潮迭起,傳奇不斷。其驚人的魅力,曾在最後時刻挽救自殺青年於不死。他就是德國的沃爾夫斯克勒,他於1908年為費爾馬大定理設懸賞10萬馬克(相當於現時的160萬美元多),期限1908-2007年。

無數人耗盡心力,空留浩嘆。最現代的電腦加數學技巧,驗證了400萬以內的n,但這對最終證明無濟於事。1983年德國的法爾廷斯證明了:對任一固定的n,最多隻有有限多個x,y,z,振動了世界,獲得菲爾茲獎(數學界最高獎)。

6. 數學上總共有幾個學術猜想簡單的描述下

一、哥德巴赫猜想(一、任何不小於6的偶數,都是兩個奇質數之和; 二、任何不小於9的奇數,都是三個奇質數之和。) 二、 四色問題( 四色問題的內容是:「任何一張地圖只用四種顏色就能使具有共同邊界的國家著上不同的顏色。」用數學語言表示,即「將平面任意地細分為不相重疊的區域,每一個區域總可以用1,2,3,4這四個數字之一來標記,而不會使相鄰的兩個區域得到相同的數字。」)三、 費爾瑪猜想(任何一個數的立方不能分解為兩個立方之和,任何一個有選舉權的四次方不能分解為兩個四次方之和;更一般的,除二次冪外,兩個數的任何次冪的和都不可能等於第三人矍有同次冪的數。)四、 孿生素數猜想(1849年,波林那克提出孿生素數猜想(the conjecture of twin primes),即猜測存在無窮多對孿生素數。)五、卡拉比猜想(在封閉的空間,有無可能存在沒有物質分布的引力場。)

7. 世界數學7大猜想都是什麼

"千僖難題"之一:P(多項式演算法)問題對NP(非多項式演算法)問題 在一個周六的晚上,你參加了一個盛大的晚會。由於感到局促不安,你想知道這一大廳中是否有你已經認識的人。你的主人向你提議說,你一定認識那位正在甜點盤附近角落的女士羅絲。不費一秒鍾,你就能向那裡掃視,並且發現你的主人是正確的。然而,如果沒有這樣的暗示,你就必須環顧整個大廳,一個個地審視每一個人,看是否有你認識的人。生成問題的一個解通常比驗證一個給定的解時間花費要多得多。這是這種一般現象的一個例子。與此類似的是,如果某人告訴你,數13,717,421可以寫成兩個較小的數的乘積,你可能不知道是否應該相信他,但是如果他告訴你它可以因子分解為3607乘上3803,那麼你就可以用一個袖珍計算器容易驗證這是對的。不管我們編寫程序是否靈巧,判定一個答案是可以很快利用內部知識來驗證,還是沒有這樣的提示而需要花費大量時間來求解,被看作邏輯和計算機科學中最突出的問題之一。它是斯蒂文·考克(StephenCook)於1971年陳述的。 "千僖難題"之二:霍奇(Hodge)猜想 二十世紀的數學家們發現了研究復雜對象的形狀的強有力的辦法。基本想法是問在怎樣的程度上,我們可以把給定對象的形狀通過把維數不斷增加的簡單幾何營造塊粘合在一起來形成。這種技巧是變得如此有用,使得它可以用許多不同的方式來推廣;最終導至一些強有力的工具,使數學家在對他們研究中所遇到的形形色色的對象進行分類時取得巨大的進展。不幸的是,在這一推廣中,程序的幾何出發點變得模糊起來。在某種意義下,必須加上某些沒有任何幾何解釋的部件。霍奇猜想斷言,對於所謂射影代數簇這種特別完美的空間類型來說,稱作霍奇閉鏈的部件實際上是稱作代數閉鏈的幾何部件的(有理線性)組合。 "千僖難題"之三:龐加萊(Poincare)猜想 如果我們伸縮圍繞一個蘋果表面的橡皮帶,那麼我們可以既不扯斷它,也不讓它離開表面,使它慢慢移動收縮為一個點。另一方面,如果我們想像同樣的橡皮帶以適當的方向被伸縮在一個輪胎面上,那麼不扯斷橡皮帶或者輪胎面,是沒有辦法把它收縮到一點的。我們說,蘋果表面是"單連通的",而輪胎面不是。大約在一百年以前,龐加萊已經知道,二維球面本質上可由單連通性來刻畫,他提出三維球面(四維空間中與原點有單位距離的點的全體)的對應問題。這個問題立即變得無比困難,從那時起,數學家們就在為此奮斗。 "千僖難題"之四:黎曼(Riemann)假設 有些數具有不能表示為兩個更小的數的乘積的特殊性質,例如,2,3,5,7,等等。這樣的數稱為素數;它們在純數學及其應用中都起著重要作用。在所有自然數中,這種素數的分布並不遵循任何有規則的模式;然而,德國數學家黎曼(1826~1866)觀察到,素數的頻率緊密相關於一個精心構造的所謂黎曼蔡塔函數z(s$的性態。著名的黎曼假設斷言,方程z(s)=0的所有有意義的解都在一條直線上。這點已經對於開始的1,500,000,000個解驗證過。證明它對於每一個有意義的解都成立將為圍繞素數分布的許多奧秘帶來光明。 "千僖難題"之五:楊-米爾斯(Yang-Mills)存在性和質量缺口 量子物理的定律是以經典力學的牛頓定律對宏觀世界的方式對基本粒子世界成立的。大約半個世紀以前,楊振寧和米爾斯發現,量子物理揭示了在基本粒子物理與幾何對象的數學之間的令人注目的關系。基於楊-米爾斯方程的預言已經在如下的全世界范圍內的實驗室中所履行的高能實驗中得到證實:布羅克哈文、斯坦福、歐洲粒子物理研究所和築波。盡管如此,他們的既描述重粒子、又在數學上嚴格的方程沒有已知的解。特別是,被大多數物理學家所確認、並且在他們的對於"誇克"的不可見性的解釋中應用的"質量缺口"假設,從來沒有得到一個數學上令人滿意的證實。在這一問題上的進展需要在物理上和數學上兩方面引進根本上的新觀念。 "千僖難題"之六:納維葉-斯托克斯(Navier-Stokes)方程的存在性與光滑性 起伏的波浪跟隨著我們的正在湖中蜿蜒穿梭的小船,湍急的氣流跟隨著我們的現代噴氣式飛機的飛行。數學家和物理學家深信,無論是微風還是湍流,都可以通過理解納維葉-斯托克斯方程的解,來對它們進行解釋和預言。雖然這些方程是19世紀寫下的,我們對它們的理解仍然極少。挑戰在於對數學理論作出實質性的進展,使我們能解開隱藏在納維葉-斯托克斯方程中的奧秘。 "千僖難題"之七:貝赫(Birch)和斯維訥通-戴爾(Swinnerton-Dyer)猜想 數學家總是被諸如x2+y2=z2那樣的代數方程的所有整數解的刻畫問題著迷。歐幾里德曾經對這一方程給出完全的解答,但是對於更為復雜的方程,這就變得極為困難。事實上,正如馬蒂雅謝維奇(Yu.V.Matiyasevich)指出,希爾伯特第十問題是不可解的,

8. 世界數學七大難題是什麼

世界數學七大難題:NP完全問題、霍奇猜想、龐加萊猜想、黎曼假設、楊.米爾斯存在性和質量缺口、納衛爾.斯托可方程、BSD猜想。

1、NP完全問題

例:在一個周六的晚上,參加了一個盛大的晚會。由於感到局促不安想知道這一大廳中是否有你已經認識的人。宴會的主人提議說,你一定認識那位正在甜點盤附近角落的女士羅絲。不費一秒鍾你就能向那裡掃視,並且發現宴會的主人是正確的。

如果沒有這樣的暗示你就必須環顧整個大廳,一個個地審視每一個人,看是否有你認識的人。生成問題的一個解通常比驗證一個給定的解時間花費要多得多。

2、霍奇猜想

二十世紀的數學家們發現了,研究復雜對象的形狀的強有力的辦法。基本想法是問在怎樣的程度上,可以把給定對象的形狀通過把維數,不斷增加簡單幾何營造塊粘合在一起來形成。這種技巧是變得如此有用,使得它可以用許多不同的方式來推廣。

最終導致一些強有力的工具,使數學家在對他們研究中所遇到的形形色色的對象進行分類時取得巨大的進展。不幸的是在這一推廣中,程序的幾何出發點變得模糊起來。在某種意義下必須加上某些沒有任何幾何解釋的部件。

霍奇猜想斷言,對於所謂射影代數簇這種特別完好的空間類型來說,稱作霍奇閉鏈的部件實際上是稱作代數閉鏈的幾何部件的(有理線性)組合。

3、龐加萊猜想

如果我們伸縮圍繞一個蘋果表面的橡皮帶,那麼我們可以既不扯斷它,也不讓它離開表面,使它慢慢移動收縮為一個點。另一方面如果想像同樣的橡皮帶,以適當的方向被伸縮在一個輪胎面上,那麼不扯斷橡皮帶或者輪胎面,是沒有辦法把它收縮到一點的。

蘋果表面是「單連通的」而輪胎面不是。大約在一百年以前龐加萊已經知道,二維球面本質上可由單連通性來刻畫,他提出三維球面(四維空間中與原點有單位距離的點的全體)的對應問題。這個問題立即變得無比困難,從那時起數學家們就在為此奮斗。

4、黎曼假設

有些數具有不能表示為兩個更小的數的乘積的特殊性質,例如,2、3、5、7等等。這樣的數稱為素數;它們在純數學及其應用中都起著重要作用。在所有自然數中這種素數的分布並不遵循任何有規則的模式;然而德國數學家黎曼(1826~1866)觀察到。

素數的頻率緊密相關於一個精心構造的所謂黎曼zeta函數ζ(s)的性態。著名的黎曼假設斷言,方程ζ(s)=0的所有有意義的解都在一條直線上。這點已經對於開始的1,500,000,000個解驗證過。證明它對於每一個有意義的解都成立將為圍繞素數分布的許多奧秘帶來光明。



5、楊.米爾斯存在性和質量缺口

量子物理的定律是以經典力學的牛頓定律對宏觀世界的方式對基本粒子世界成立的。大約半個世紀以前,楊振寧和米爾斯發現,量子物理揭示了在基本粒子物理與幾何對象的數學之間的令人注目的關系。基於楊.米爾斯方程的預言,已經在全世界范圍內的實驗室中所履行的高能實驗中得到證實。

布羅克哈文、斯坦福、歐洲粒子物理研究所和駐波。描述重粒子、又在數學上嚴格的方程沒有已知的解。被大多數物理學家所確認、並且在他們的對於「誇克」的不可見性的解釋中應用的「質量缺口」假設,從來沒有得到一個數學上令人滿意的證實。問題上的進展需要在物理上和數學上兩方面引進根本上的新觀念。

6、納衛爾.斯托可方程的存在性與光滑性

起伏的波浪跟隨著我們的正在湖中蜿蜒穿梭的小船,湍急的氣流跟隨著我們的現代噴氣式飛機的飛行。數學家和物理學家深信,無論是微風還是湍流,都可以通過理解納維葉.斯托克斯方程的解,來對它們進行解釋和預言。

雖然這些方程是19世紀寫下的,我們對它們的理解仍然極少。挑戰在於對數學理論作出實質性的進展,使我們能解開隱藏在納維葉.斯托克斯方程中的奧秘。

7、BSD猜想

數學家總是被諸如x2+y2=z2那樣的代數方程的所有整數解的刻畫問題著迷。歐幾里德曾經對這一方程給出完全的解答,但是對於更為復雜的方程,這就變得極為困難。事實上正如馬蒂雅謝維奇指出,希爾伯特第十問題是不可解的。

不存在一般的方法來確定這樣的方程是否有一個整數解。當解是一個阿貝爾簇的點時,貝赫和斯維訥通.戴爾猜想認為,有理點的群的大小與一個有關的蔡塔函數z(s)在點s=1附近的性態。這個有趣的猜想認為,如果z(1)等於0,那麼存在無限多個有理點(解)。如果z(1)不等於0,那麼只存在著有限多個這樣的點。

9. 千禧年七大數學猜想是神馬

NP完全問題、霍奇猜想、龐加萊猜想、黎曼假設、楊-米爾斯理論、納衛爾-斯托可方程、BSD猜想

10. 世界十大數學猜想都是什麼

世界十大數學猜想:NP完全問題、霍奇猜想、龐加萊猜想、黎曼假設、楊-米爾斯理專論、納衛爾-屬斯托可方程、BSD猜想 費爾馬大定 四色問題 哥德巴赫猜想

世界近代三大數學難題
1、費爾馬大定理
2、四色問題
3、哥德巴赫猜想
世界七大數學難題
一、P(多項式時間)問題對NP(nondeterministic polynomial time,非確定多項式時間)問題
二、霍奇(Hodge)猜想
三、龐加萊(Poincare)猜想
四、黎曼(Riemann)假設
五、楊-米爾斯(Yang-Mills)存在性和質量缺口
六、納維葉-斯托克斯(Navier-Stokes)方程的存在性與光滑性
七、貝赫(Birch)和斯維訥通-戴爾(Swinnerton-Dyer)猜想
有待破解的數學難題
除了上述著名數學難題外,還有以下著名數學難題有待破解。
Abc猜想
考拉茲猜想
周氏猜測(梅森素數分布猜測)
阿廷猜想(新梅森猜想)
哥德巴赫猜想
孿素數猜想
克拉梅爾猜想
哈代-李特爾伍德第二猜想
六空間理論

熱點內容
歪脖子什麼意思 發布:2025-04-24 23:39:37 瀏覽:298
1912到1949年的歷史 發布:2025-04-24 23:39:29 瀏覽:531
小學一年級語文下冊教學視頻 發布:2025-04-24 23:06:13 瀏覽:675
五音不全的人適合唱什麼歌 發布:2025-04-24 23:04:38 瀏覽:225
班主任女子 發布:2025-04-24 22:46:38 瀏覽:273
教育教學中師德修養案例研究教案 發布:2025-04-24 21:07:02 瀏覽:771
師德主要先進事跡 發布:2025-04-24 21:06:56 瀏覽:151
量產是什麼意思 發布:2025-04-24 21:00:55 瀏覽:93
幼兒園老師責任書 發布:2025-04-24 20:55:50 瀏覽:726
教師節小報二年級 發布:2025-04-24 20:02:44 瀏覽:91