當前位置:首頁 » 語數英語 » 數學模型思想

數學模型思想

發布時間: 2022-06-02 18:49:55

什麼是模型思想

數學模型思想方法是高中教學中最常見、應用最為廣泛的數學思想方法之一。而高一數學<上>是學生在高中學習階段的起點,教師在本書的教學過程中恰當地滲透數學模型思想方法,不僅可以使本書的數學問題形象化,易於學生理解,還可提高學生獨立分析問題的能動性及思維能力,形成良好的思維習慣。同時作為師范類數學專業本科畢業生,一般即將從事高一數學的教學工作,本文可以起到一定的指導作用。本文參考了多種文獻資料並結合當前相關的數學教學理論,從數學課堂中出現的具體過程及方式出發,主要針對如何在高一數學<上>的教學中滲透數學模型思想方法以及在使用過程中應注意哪些問題等進行了討論。【關 鍵 詞】 數學模型;思維;教學;構造 在中學中,一般地,數學模型是指針對或參照某種客觀事物的主要特徵、主要關系,採用形式化的數學語言,抽象概括地或近似地表達出來的一種數學結構模型。一切數學概念、數學理論體系、各種數學公式、各種方程式、各種函數關系,以及由公式系列構成的演算法系統等等都可以稱為數學模型,這些模型經過教學法的加工和邏輯處理,有機地結合在一起,構成了中學的數學知識體系。在這種意義下,我們可以說中學數學教學實際上是數學系模型的教學,而通過構造數學模型來解決有關問題的方法稱為數學模型思想方法。隨著科學技術的發展,特別是現代計算機的廣泛應用和科學技術的數字化,通過構造數學模型來解決實際問題的方法正廣泛應用於自然科學、工程技術以及社會科學等多個領域。在中學數學教學中恰當地滲透數學模型思想方法,可使抽象的數學知識形象化,對培養學生的觀察分析能力,邏輯思維能力有很大的作用。使學生在學習中更容易理解、加深記憶,能夠靈活地運用所學和數學知識。高一數學<上>是學生在整個高中數學學習階段的起點,學生們由於剛經過初中的學習,已具備一定的初等數學知識和形成了基本的思維方式,但是對數學模型思想方法沒有形成系統的認知和足夠的實踐運用經驗。而且在高一數學<上>的教學中涉及高中階段運用最廣、最多的內容——函數,所以在高中的開始階段滲透數學模型思想方法,有利於學生在以後的學習中逐步形成良好的思維習慣,提高學生的數學知識認識能力和解題能力。當前素質教育提倡的是由重教法到重學法的教學方式的轉變,學生作為學習的主體而教師是引導者。如何發掘教材內容潛在的數學模型思想方法,並在教學中潛移默化地引導學生使用它,這是作為中學數學教師應具備的能力。數學模型思想方法在本教材的教學中可運用於常規的數學問題,也可用於其它實際性的問題。建立一個實際問題的數學模型,需要一定的洞察力和想像力,篩選、拋棄次要因素,突出主要因素,做出適當的抽象和簡化。全過程一般分為表述、求解、解釋、驗證幾個階段,並且通過這些階段完成從現實對象到數學模型,再從數學模型到現實對象的循環,可用流程圖表示如下:圖1 數學模型思想方法應用流程圖當然我們在常規的數學解題過程中,更常見的是把現有的問題反映的數學模型轉化成另一種數學模型以得到最佳的解題途徑。所以在多數情況下,對於不同的題目運用數學模型思想方法時具體的步驟也有所不同,但最關鍵是如何建立一個恰當的模型以使問題更易於解決。

㈡ 如何在教學中滲透數學模型思想10

一、創設情境,感知數學建模思想。數學來源於生活,又服務於生活,因此,要將現實生活中發生的與數學學習有關的素材及時引入課堂,要將教材上的內容通過生活中熟悉的事例,以情境的方式在課堂上展示給學生,描述數學問題產生的背景。情景的創設要與社會生活實際相結合,讓學生感到真實、新奇、有趣、可操作,滿足學生好奇好動的心理要求。這樣很容易激發學生的興趣,並在學生的頭腦中激活已有的生活經驗,也容易使學生用積累的經驗來感受其中隱含的數學問題,從而促使學生將生活問題抽象成數學問題,感知數學模型的存在。
比如,平均數這一抽象的知識隱藏在具體的問題情境中,學生在評判中解讀、整理數據,產生思維沖突,從而推進數學思考的有序進行。學生從具體的問題情境中抽出平均數這一數學問題的過程就是一次建模的過程,
二、參與探究,主動建構數學模型
1、動手實踐、自主探索與合作交流是學生學習數學的重要方式。學生的數學學習活動應當是一個主動、活潑的、生動和富有個性的過程。因此,在教學時我們要善於引導學生自主探索、合作交流,對學習過程、學習材料、學習發現主動歸納、提升,力求建構出人人都能理解的數學模型。
2、動手驗證
比如,在教學圓錐體的計算公式時,教師給學生提供多個圓柱、長方體、正方體和圓錐空盒(其中圓柱和圓錐有等底等高關系的、有不等底不等高關系的,圓錐與其他形體沒有等底或等高關系)、沙子等學具,學生分小組動手實驗。
3、反饋交流動手驗證之後,各小組分別匯報驗證結果。4、歸納總結學生利用手中的的實驗材料,通過不斷地猜測、驗證、修訂實驗方案,再猜測、再驗證這樣的過程,逐步過渡到復雜的、更一般的情景,學生在主動探索嘗試過程中,進行了再創造學習,以抽象概括方式自主總結出圓錐體積計算公式。這一環節的設計,讓學生經歷猜測與驗證、分析與歸納、抽象與概括的數學思維過程。學習過程中學生有時獨立思考,有時小組合作學習,有時是獨立探索和合作學習相結合,學生在新知探索中充分體驗了數學模型的形成過程。
三、解決問題,拓展應用數學模型
用所建立的數學模型來解答生活實際中的問題,讓學生能體會到數學模型的實際應用價值,進一步培養學生應用數學的意識和綜合應用數學知識解決問題的能力,讓學生體驗實際應用帶來的快樂。解決問題具體表現在兩個方面:一是布置數學題作業,如基本題、變式題、拓展題等;二是生活題作業,讓學生在實際生活中應用數學。通過用數學知識去解決實際問題的同時拓展數學問題,培養學生的數學意識,提高學生的數學認知水平,又可以促進學生的探索意識、發現問題意識、創新意識和實踐意識的形成,使學生在實際應用過程中認識新問題,同化新知識,並構建自己的智力系統。
總之,數學建模過程可以使學生在多方面得到培養而不只是知識、技能,更有思想、方法,也有經驗積累,其情感態度的培養也會得以落實,從而進一步將數學理論與實際問題聯系在了一起。

㈢ 小學數學的模型思想有哪些

小學數學的模型思想主要有公式模型,算是模型,還有加減法模型

㈣ 什麼是數學建模思想數學建模思想在數學中有什麼作用

建模思想就是根據題目中的有效信息和限定性條件,利用數學模型求解一個實際問題。建模思想能夠使得復雜的信息以簡潔的模型呈現,方便運算,培養發散性思維。

㈤ 數學建模的思路是什麼

說就是把實際問題用數學語言抽象概括,從數學角度來反映或近似地反映實際問題,得出的關於實際問題的數學描述。其形式是多樣的,可以是方程(組)、不等式、函數、幾何圖形等等。

在數學建模中常用思想和方法:類比法、二分法、量綱分析法、差分法、變分法、圖論法、層次分析法、數據擬合法、回歸分析法、數學規劃、機理分析、排隊方法、對策方法、決策方法、模糊評判方法、時間序列方法、灰色理論方法、現代優化演算法。

模型准備

了解問題的實際背景,明確其實際意義,掌握對象的各種信息。以數學思想來包容問題的精髓,數學思路貫穿問題的全過程,進而用數學語言來描述問題。要求符合數學理論,符合數學習慣,清晰准確。

根據實際對象的特徵和建模的目的,對問題進行必要的簡化,並用精確的語言提出一些恰當的假設。在假設的基礎上,利用適當的數學工具來刻劃各變數常量之間的數學關系,建立相應的數學結構(盡量用簡單的數學工具)。

㈥ 什麼是數學模型思想

數學建模思想,本質土是要培養學生靈活運用數學知識解決實際中的問題的能力。在這一過程中,我們需要培養學生的抽象思維、簡化思維、批判性思維等數學能力。
1數學建模需要抽象思維
分析上面模型的建立與求解過程,我們可以發現,解決問題時,離不開抽象思維,離不開對高等數學基本概念的深入理解和透徹分析。
當解決問題1時,我們緊密結合「絕對湧出量」與「相對湧出量」的概念,解剖概念所包含的每一點信息,找到了「絕對湧出量」與「相對湧出量」的計算公式,從而建立了數學模型I。
可見,我們要把紛繁蕪雜的實際問題,歸結到高等數學的相關概念和定義之中,利用定義找到計算公式,從而建立數學模型。在這種層層分析的過程中,抽象思維起到了關鍵性作用。正是這種層層分析,才使得復雜問題得以解決。所以說,數學建模需要抽象思維。
2數學建模需要簡化思維
所謂簡化思維,就是把復雜問題進行簡化,進而使本質凸顯。就像進行X光透視一樣,祛除血肉,盡剩骨架。只有迅速抓住主要矛盾,舍棄次要因素,找到問題的本質,才能「看透」問題的本質。
例如,鑒別該礦井屬於「低瓦斯礦井」還是「高瓦斯礦井」的問題,本質上是要我們先求出「絕對湧出量」與「相對湧出量」,然後把它們與標准值比大小;煤礦發生爆炸的可能性,實際上是概率問題;該煤礦所需要的最佳(總)通風量,實質上就是最優問題,即帶約束條件的線性規劃問題。
這種簡化思維具有深刻性的特點。它並不是天生就具有的,可以經過精心培養而形成,經過刻苦鍛煉而強化。在高等數學的教學過程中,需要培養學生的這種深層次的洞察能力。

3數學建模需要批判性思維
在數學模型建立、求解完成後,我們需要對所得的結果進行分析,還需要對所建立的數學模型進行評價,並及時對模型進行改進,以取得最佳結果。同時,我們還要指出所建模型的實際意義,並努力加以推廣。這些環節,都需要良好的批判性思維。
在高等數學的教學過程中,我們需要培養學生的批判性思維。在每道題解完後,我們都要進行這種解後反思的訓練,不斷地提問:結果對嗎?符合實際嗎?該解法的優缺點在哪裡?還有更好的解法嗎?如何改進?能夠推廣嗎?……在這種訓練的過程中,學生的批判性思維將得到強化和提高。

㈦ 數學建模思想方法有哪些

數學建模屬於一門應用數學,學習這門課要求我們學會如何將實際問題經過分析、簡化轉化為一個數學問題,然後用適當的數學方法去解決.數學建模是一種數學的思考方法,是運用數學的語言和方法,通過抽象、簡化建立能近似刻畫並"解決"實際問題的一種強有力的數學手段.為了使描述更具科學性,邏輯性,客觀性和可重復性,人們採用一種普遍認為比較嚴格的語言來描述各種現象,這種語言就是數學.使用數學語言描述的事物就稱為數學模型.
數學建模的過程
1)模型准備:了解問題的實際背景,明確其實際意義,掌握對象的各種信息.用數學語言來描述問題.(2) 模型假設:根據實際對象的特徵和建模的目的,對問題進行必要的簡化,並用精確的語言提出一些恰當的假設.(3) 模型建立:在假設的基礎上,利用適當的數學工具來刻劃各變數之間的數學關系,建立相應的數學結構.(盡量用簡單的數學工具)(4) 利用獲取的數據資料,對模型的所有參數做出計算(估計).(5) 模型分析:對所得的結果進行數學上的分析.(6) 模型檢驗:將模型分析結果與實際情形進行比較,以此來驗證模型的准確性、合理性和適用性.如果模型與實際較吻合,則要對計算結果給出其實際含義,並進行解釋.如果模型與實際吻合較差,則應該修改假設,再次重復建模過程.(7) 模型應用:應用方式因問題的性質和建模的目的而異.
數學建模的意義是:
1、培養創新意識和創造能力
2、訓練快速獲取信息和資料的能力
3、鍛煉快速了解和掌握新知識的技能
4、培養團隊合作意識和團隊合作精神
5、增強寫作技能和排版技術
6、榮獲國家級獎勵有利於保送研究生
7、榮獲國際級獎勵有利於申請出國留學

熱點內容
美術概論考研 發布:2025-04-24 09:51:02 瀏覽:772
英語小學教材 發布:2025-04-24 09:28:47 瀏覽:671
比英語怎麼說 發布:2025-04-24 09:24:35 瀏覽:306
中外教育管理 發布:2025-04-24 09:12:06 瀏覽:748
教師資格證圖 發布:2025-04-24 09:04:13 瀏覽:29
我想對老師說100 發布:2025-04-24 09:03:26 瀏覽:973
o2o老師 發布:2025-04-24 08:09:41 瀏覽:514
三年級下冊數學蘇教版 發布:2025-04-24 07:48:11 瀏覽:862
一節有趣的語文課 發布:2025-04-24 07:30:38 瀏覽:849
快捷的英語 發布:2025-04-24 07:14:09 瀏覽:251