數學符號y
A. 數學符號大全
數學符號(理科符號)——運算符號
1.基本符號:+ - × ÷(/)
2.分數號:/
3.正負號回:±
4.相似全等:答∽ ≌
5.因為所以:∵ ∴
6.判斷類:= ≠ < ≮(不小於) > ≯(不大於)
7.集合類:∈(屬於) ∪(並集) ∩(交集)
8.求和符號:∑
9.n次方符號:¹(一次方) ²(平方) ³(立方) ⁴(4次方) ⁿ(n次方)
10.下角標:₁ ₂ ₃ ₄ (如:A₁B₂C₃D₄)
11.或與非的"非":¬
12.導數符號(備注符號):′ 〃
13.度:° ℃
14.任意:∀
15.推出號:⇒
16.等價號:⇔
17.包含被包含:⊆ ⊇ ⊂ ⊃
18.導數:∫ ∬
19.箭頭類:↗ ↙ ↖ ↘ ↑ ↓ ↔ ↕ ↑ ↓ → ←
20.絕對值:|
21.弧:⌒
22.圓:⊙
23.平均數-,ba拔
運算符號:如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(√ ̄),對數(log,lg,ln,lb),比(:),絕對值符號||,微分(d),積分(∫),閉合曲面(曲線)積分(∮)等。
關系符號:如「=」是等號,「≈」是近似符號(即約等於),「≠」是不等號,「>」是大於符號,「<」是小於符號。
「≥」是大於或等於符號(也可寫作「≮」,即不小於),「≤」是小於或等於符號(也可寫作「≯」,即不大於)。
「→」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「∥」是平行符號,「⊥」是垂直符號,「∝」是正比例符號(表示反比例時可以利用倒數關系),「∈」是屬於符號,「⊆」是包含於符號。
「⊇」是包含符號,「|」表示「能整除」(例如a|b表示「a能整除b」,而||b表示r是a恰能整除b的最大冪次),x,y等任何字母都可以代表未知數。
結合符號:如小括弧「()」,中括弧「[]」,大括弧「{}」,橫線「—」,比如。
性質符號:如正號「+」,負號「-」,正負號「」(以及與之對應使用的負正號「」)。
省略符號:如三角形(△),直角三角形(Rt△),正弦(sin)(見三角函數),雙曲正弦函數(sinh),x的函數(f(x)),極限(lim),角(∠),∵因為∴所以。
總和,連加:∑,求積,連乘:∏,從n個元素中取出r個元素所有不同的組合數(n元素的總個數;r參與選擇的元素個數),冪等。
排列組合符號:C組合數、A(或P)排列數、n元素的總個數、r參與選擇的元素個數、!階乘,如5!=5×4×3×2×1=120,規定0!=1、!!半階乘(又稱雙階乘)。
例如:7!!=7×5×3×1=105,10!!=10×8×6×4×2=3840。
離散數學符號:∀全稱量、∃存在量詞、├斷定符(公式在L中可證)、╞滿足符(公式在E上有效,公式在E上可滿足)、﹁命題的「非」運算。
如命題的否定為﹁p、∧命題的「合取」(「與」)運算、∨命題的「析取」(「或」,「可兼或」)運算、→命題的「條件」運算。
↔命題的「雙條件」運算的、p<=>q命題p與q的等價關系、p=>q命題p與q的蘊涵關系(p是q的充分條件,q是p的必要條件)、A*公式A的對偶公式,或表示A的數論倒數(此時亦可寫為)。
wff合式公式:iff當且僅當、↑命題的「與非」運算(「與非門」)、↓命題的「或非」運算(「或非門」)、□模態詞「必然」、◇模態詞「可能」、∅空集、∈屬於(如"A∈B",即「A屬於B」)、∉不屬於、P(A)集合A的冪集。
|A|集合A的點數、R²=R○R[R、=R、○R]關系R的「復合」、ℵAleph,阿列夫、⊆包含、⊂(或⫋)真包含、另外,還有相應的⊄,⊈,⊉等。
∪集合的並運算:U(P)表示P的領域、∩集合的交運算、-或集合的差運算、⊕集合的對稱差運算、〡限制、集合關於關系R的等價類。
A/R集合A上關於R的商集、[a]元素a產生的循環群、I環,理想、Z/(n)模n的同餘類集合、r(R)關系R的自反閉包。
s(R)關系R的對稱閉包、CP命題演繹的定理(CP規則)、EG存在推廣規則(存在量詞引入規則)、ES存在量詞特指規則(存在量詞消去規則)、UG全稱推廣規則(全稱量詞引入規則)、US全稱特指規則(全稱量詞消去規則)。
(2)數學符號y擴展閱讀:
更多數學表達符號:
∞無窮大、π圓周率、|x|絕對值、∪並集、∩交集、≥大於等於、≤小於等於、≡恆等於或同餘、ln(x)以e為底的對數、lg(x)以10為底的對數、floor(x)上取整函數、ceil(x)下取整函數。
xmody求余數、x-floor(x)小數部分、∫f(x)dx不定積分、∫[a:b]f(x)dxa到b的定積分、f(x)函數f在自變數x處的值、sin(x)在自變數x處的正弦函數值、exp(x)在自變數x處的指數函數值,常被寫作ex、logba以b為底a的對數。
cosx在自變數x處餘弦函數的值、tanx其值等於sinx/cosx、cotx餘切函數的值或cosx/sinx、secx正割含數的值,其值等於1/cosx、cscx餘割函數的值,其值等於1/sinx、asinxy正弦函數反函數在x處的值,即x=siny。
acosxy餘弦函數反函數在x處的值,即x=cosy、atanxy正切函數反函數在x處的值,即x=tany、acotxy餘切函數反函數在x處的值,即x=coty、asecxy正割函數反函數在x處的值,即x=secy、acscxy餘割函數反函數在x處的值,即x=cscy。
C. 數學符號都有哪些
正號,符號,加好,減號,乘號,除號,等號,大於號,小於號,大於等於號,小於等於號,絕對值號,根號,等等。
數學符號的定義,概念B是概念A的種屬性,具有這種關系的概念之間稱作具有屬種關系的概念。在具有屬種關系的兩個概念中,概念B具有而概念A不具有的本質屬性稱作種差。
學習數學的重要性,數學是研究數量、結構、變化以及空間模型等概念的一門學科。透過抽象化和邏輯推理的使用,用記課堂筆記的方法集中上課注意力.學習要安排一個簡單可行的計劃, 改善學習方法.同時也要適當參加學校的活動。
D. 數學符號大全
數學符號有:≈ ≡ ≠ = ≤≥ < > ≮ ≯ ∷ ± + - × ÷ / ∫ ∮ ∝ ∞ ∧ ∨ ∑ ∏ ∪內 ∩ ∈ ∵ ∴ ≱ ‖ ∠ ≲ ≌ ∽ √ ()容 【】{} Ⅰ Ⅱ ⊕ ≰∥α β γ δ ε δ ε ζ Γ。
E. 數學符號有哪些呢
內容如下:
1、幾何學符號:⊥∥∠⌒⊙≡(恆等於或同餘)≌△(三角形)∽(相似)。
2、代數符號:∝∧∨~∫∮≠≤(小於等於)≥(大於等於)≈∞(無窮大)。
3、集合符號:∪(集合並)∩(集合交)∈。
4、特殊符號:∑π(圓周率)。
5、推理符號:↑→←↓↖↗↘↙。
符號的作用
一個符號不僅是普遍的,而且是極其多變。可以用不同的語言表達同樣的意思,也可以在同一種語言內,用不同的詞表達某種思想和觀念。「真正的人類符號並不體現在它的一律性上,而是體現在它的多面性上,而是靈活多變的」。卡西爾認為,正是符號的這三大特性使符號超越於信號。
人的「符號」不是「事實性的」而是「理想性的」,人類意義世界的一部分。信號是「操作者」,而符號是「指稱者」,信號有著某種物理或實體性的存在,而符號是觀念性的,意義性的存在,具有功能性的價值。
F. 全部數學符號
數學符號一般有以下幾種: (1)數量符號:如 :i,2+ i,a,x,自然對數底e,圓周率 ∏。 (2)運算符號:如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號( ),對數(log,lg,ln),比(∶),微分(d),積分(∫)等。 (3)關系符號:如「=」是等號,「≈」或「 」是近似符號,「≠」是不等號,「>」是大於符號,「<」是小於符號,「 」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「‖」是平行符號,「⊥」是垂直符號,「∝」是正比例符號,「∈」是屬於符號等。 (4)結合符號:如圓括弧「()」方括弧「[]」,花括弧「{}」括線「—」 (5)性質符號:如正號「+」,負號「-」,絕對值符號「‖」 (6)省略符號:如三角形(△),正弦(sin),X的函數(f(x)),極限(lim),因為(∵),所以(∴),總和(∑),連乘(∏),從N個元素中每次取出R個元素所有不同的組合數(C ),冪(aM),階乘(!)等。 符號 意義 ∞ 無窮大 PI 圓周率 |x| 函數的絕對值 ∪ 集合並 ∩ 集合交 ≥ 大於等於 ≤ 小於等於 ≡ 恆等於或同餘 ln(x) 以e為底的對數 lg(x) 以10為底的對數 floor(x) 上取整函數 ceil(x) 下取整函數 x mod y 求余數 {x} 小數部分 x - floor(x) ∫f(x)δx 不定積分 ∫[a:b]f(x)δx a到b的定積分 P為真等於1否則等於0 ∑[1≤k≤n]f(k) 對n進行求和,可以拓廣至很多情況 如:∑[n is prime][n < 10]f(n) ∑∑[1≤i≤j≤n]n^2 lim f(x) (x->?) 求極限 f(z) f關於z的m階導函數 C(n:m) 組合數,n中取m P(n:m) 排列數 m|n m整除n m⊥n m與n互質 a∈ A a屬於集合A #A 集合A中的元素個數
G. 數學中⊂是什麼符號
數學中⊂是集合符號包含於。
包含關系(inclusionr relotion)是概念外延間關系的一種,通常即指屬種關系。有時也僅僅作為真包含關系和真包含於關系的統稱。一說包含關系還包括溉念外延問(或類與類間)的全同關系。
在一個隨機現象中有兩個事件A與B。若事件A中任一個樣本點必在B中,則稱A被包含在B中,或B包含A,記為「A包含於B」:A⊂B或「B包含A」:B⊃A,這時事件A的發生必導致事件B發生。
(7)數學符號y擴展閱讀:
常見的數學符號:
1、大於號
表示左邊的數量大於右邊數量的符號。記作「>」,讀作「大於」。例如9>8,表示9大於8。
2、小於號
表示左邊的數量小於右邊的數量的符號。記作「<」,讀作「小於」。例如:8<9,表示8小於9。
3、運算符號
表示屬於某一種運算的符號。例如:加號「+」,減號「一」,乘號「×」,除號「÷」。,
4、運算順序符號
表示運算順序的符號。例如:小括弧「( )」,中括弧「[ ],大括弧「{ }」。運用這些符號能改變正常的運算順序,還能表示幾個數或幾種運算結合在一起,所以也叫做結合符號。
5、元素與集合的關系
元素與集合的關系是屬於(∈)不屬於(∉)的關系。
集合與集合的關系是包含(⊂,=,⊃)不包含(⊄,⊅)。
H. 數學符號都有哪些
數學符號的發明及使用比數字要晚,但其數量卻超過了數字。現在常用的數學符號已超過了200個,其中,每一個符號都有一段有趣的經歷。
數學符號有太多比一一例舉,比如有:
1、運算符號
如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(√ ̄),對數(log,lg,ln,lb),比(:),絕對值符號| |,微分(d),積分(∫),閉合曲面(曲線)積分(∮)等。
2、關系符號
如「=」是等號,「≈」是近似符號(即約等於),「≠」是不等號,「>」是大於符號,「<」是小於符號,「≥」是大於或等於符號(也可寫作「≮」,即不小於),「≤」是小於或等於符號(也可寫作「≯」,即不大於),「→ 」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「∥」是平行符號,「⊥」是垂直符號,「∝」是正比例符號(表示反比例時可以利用倒數關系),「∈」是屬於符號,「⊆」是包含於符號,「⊇」是包含符號,「|」表示「能整除」(例如a|b 表示「a能整除b」,而||b表示r是a恰能整除b的最大冪次),x,y等任何字母都可以代表未知數。
3、結合符號
如小括弧「()」,中括弧「[ ]」,大括弧「{ }」,橫線「—」
4、性質符號
如正號「+」,負號「-」,正負號等。
5、省略符號
如三角形(△),直角三角形(Rt△),正弦(sin)(見三角函數),雙曲正弦函數(sinh),x的函數(f(x)),極限(lim),角(∠),∵ 因為,∴ 所以等等。
6、排列組合符號
C 組合數,A (或P) 排列數,n 元素的總個數,r 參與選擇的元素個數,! 階乘等。
7、離散數學符號
如∀ 全稱量詞,∃存在量詞,├ 斷定符(公式在L中可證),╞ 滿足符(公式在E上有效,公式在E上可滿足),﹁ 命題的「非」運算,如命題的否定為﹁p,∧ 命題的「合取」(「與」)運算,∨ 命題的「析取」(「或」,「可兼或」)運算,→ 命題的「條件」運算,↔ 命題的「雙條件」運算的等。
I. 數學符號大全
1
幾何符號
⊥
‖
∠
⌒
⊙
≡
≌
△
2
代數符號
∝
∧
∨
~
∫
≠
≤
≥
≈
∞
∶
3運算符號
×
÷
√
±
4集合符號
∪
∩
∈
5特殊符號
∑
π(圓周率)
6推理符號
|a|
⊥
∽
△
∠
∩
∪
≠
≡
±
≥
≤
∈
←
↑
→
↓
↖
↗
↘
↙
‖
∧
∨
&;
§
①
②
③
④
⑤
⑥
⑦
⑧
⑨
⑩
Γ
Δ
Θ
∧
Ξ
Ο
∏
∑
Φ
Χ
Ψ
Ω
α
β
γ
δ
ε
ζ
η
θ
ι
κ
λ
μ
ν
ξ
ο
π
ρ
σ
τ
υ
φ
χ
ψ
ω
Ⅰ
Ⅱ
Ⅲ
Ⅳ
Ⅴ
Ⅵ
Ⅶ
Ⅷ
Ⅸ
Ⅹ
Ⅺ
Ⅻ
ⅰ
ⅱ
ⅲ
ⅳ
ⅴ
ⅵ
ⅶ
ⅷ
ⅸ
ⅹ
∈
∏
∑
∕
√
∝
∞
∟
∠
∣
‖
∧
∨
∩
∪
∫
∮
∴
∵
∶
∷
∽
≈
≌
≈
≠
≡
≤
≥
≤
≥
≮
≯
⊕
⊙
⊥
⊿
⌒
℃
指數0123:o123
上述符號所表示的意義和讀法(中英文參照)
+
plus
加號;正號
-
minus
減號;負號
±
plus
or
minus
正負號
×
is
multiplied
by
乘號
÷
is
divided
by
除號
=
is
equal
to
等於號
≠
is
not
equal
to
不等於號
≡
is
equivalent
to
全等於號
≌
is
approximately
equal
to
約等於
≈
is
approximately
equal
to
約等於號
<
is
less
than
小於號
>
is
more
than
大於號
≤
is
less
than
or
equal
to
小於或等於
≥
is
more
than
or
equal
to
大於或等於
%
per
cent
百分之…
∞
infinity
無限大號
√
(square)
root
平方根
X
squared
X的平方
X
cubed
X的立方
∵
since;
because
因為
∴
hence
所以
∠
angle
角
⌒
semicircle
半圓
⊙
circle
圓
○
circumference
圓周
△
triangle
三角形
⊥
perpendicular
to
垂直於
∪
intersection
of
並,合集
∩
union
of
交,通集
∫
the
integral
of
…的積分
∑
(sigma)
summation
of
總和
°
degree
度
′
minute
分
〃
second
秒
#
number
…號
@
at
單價
J. ∀是什麼數學符號
數學命題里常用的:
「任意」:∀;
「存在」:∃,