高一數學重難點
❶ 高一數學知識點總結
一
集合與簡易邏輯
集合具有四個性質
廣泛性
集合的元素什麼都可以
確定性
集合中的元素必須是確定的,比如說是好學生就不具有這種性質,因為它的概念是模糊不清的
互異性
集合中的元素必須是互不相等的,一個元素不能重復出現
無序性
集合中的元素與順序無關
二
函數
這是個重點,但是說起來也不好說,要作專題訓練,比如說二次函數,指數對數函數等等做這一類型題的時候,要掌握幾個函數思想如
構造函數
函數與方程結合
對稱思想,換元等等
三
數列
這也是個比較重要的題型,做體的時候要有整體思想,整體代換,等比等差要分開來,也要注意聯系,這樣才能做好,注意觀察數列的形式判斷是什麼數列,還要掌握求數列通向公式的幾種方法,和求和公式,求和方法,比如裂項相消,錯位相減,公式法,分組求和法等等
四
三角函數
三角函數不是考試題型,只是個應用的知識點,所以只要記熟特殊角的三角函數值和一些重要的定理就行
五
平面向量
這是個比較抽象的把幾何與代數結合起來的重難點,結體的時候要有技巧,主要就是把基本知識掌握到位,注意拓展,另外要多做題,見的題型多,結體的時候就有思路,能夠把問題簡單化,有利於提高做題效率
常用導數公式
1.y=c(c為常數)
y'=0
2.y=x^n
y'=nx^(n-1)
3.y=a^x
y'=a^xlna
y=e^x
y'=e^x
4.y=logax
y'=logae/x
y=lnx
y'=1/x
5.y=sinx
y'=cosx
6.y=cosx
y'=-sinx
7.y=tanx
y'=1/cos^2x
8.y=cotx
y'=-1/sin^2x
9.y=arcsinx
y'=1/√1-x^2
10.y=arccosx
y'=-1/√1-x^2
11.y=arctanx
y'=1/1+x^2
12.y=arccotx
y'=-1/1+x^2
❷ 高一數學的重點和難點是什麼
高中數學學習方法談 進入高中以後,往往有不少同學不能適應數學學習,進而影響到學習的積極性,甚至成績一落千丈。出現這樣的情況,原因很多。但主要是由於學生不了解高中數學教學內容特點與自身學習方法有問題等因素所造成的。在此結合高中數學教學內容的特點,談一下高中數學學習方法,供同學參考。 一、 高中數學與初中數學特點的變化 1、數學語言在抽象程度上突變 初、高中的數學語言有著顯著的區別。初中的數學主要是以形象、通俗的語言方式進行表達。而高一數學一下子就觸及非常抽象的集合語言、邏輯運算語言、函數語言、圖象語言等。 2、思維方法向理性層次躍遷 高一學生產生數學學習障礙的另一個原因是高中數學思維方法與初中階段大不相同。初中階段,很多老師為學生將各種題建立了統一的思維模式,如解分式方程分幾步,因式分解先看什麼,再看什麼等。因此,初中學習中習慣於這種機械的,便於操作的定勢方式,而高中數學在思維形式上產生了很大的變化,數學語言的抽象化對思維能力提出了高要求。這種能力要求的突變使很多高一新生感到不適應,故而導致成績下降。 3、知識內容的整體數量劇增 高中數學與初中數學又一個明顯的不同是知識內容的「量」上急劇增加了,單位時間內接受知識信息的量與初中相比增加了許多,輔助練習、消化的課時相應地減少了。 4、知識的獨立性大 初中知識的系統性是較嚴謹的,給我們學習帶來了很大的方便。因為它便於記憶,又適合於知識的提取和使用。但高中的數學卻不同了,它是由幾塊相對獨立的知識拼合而成(如高一有集合,命題、不等式、函數的性質、指數和對數函數、指數和對數方程、三角比、三角函數、數列等),經常是一個知識點剛學得有點入門,馬上又有新的知識出現。因此,注意它們內部的小系統和各系統之間的聯系成了學習時必須花力氣的著力點。 二、如何學好高中數學 1、養成良好的學習數學習慣。 建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,並永久記憶在自己的腦海中。良好的學習數學習慣包括課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。 2、及時了解、掌握常用的數學思想和方法 學好高中數學,需要我們從數學思想與方法高度來掌握它。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化思想,變換思想。有了數學思想以後,還要掌握具體的方法,比如:換元、待定系數、數學歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。 解數學題時,也要注意解題思維策略問題,經常要思考:選擇什麼角度來進入,應遵循什麼原則性的東西。高中數學中經常用到的數學思維策略有:以簡馭繁、數形結合、進退互用、化生為熟、正難則反、倒順相還、動靜轉換、分合相輔等。 3、逐步形成 「以我為主」的學習模式 數學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數學就要積極主動地參與學習過程,養成實事求是的科學態度,獨立思考、勇於探索的創新精神;正確對待學習中的困難和挫折,敗不餒,勝不驕,養成積極進取,不屈不撓,耐挫折的優良心理品質;在學習過程中,要遵循認識規律,善於開動腦筋,積極主動去發現問題,注重新舊知識間的內在聯系,不滿足於現成的思路和結論,經常進行一題多解,一題多變,從多側面、多角度思考問題,挖掘問題的實質。學習數學一定要講究「活」,只看書不做題不行,只埋頭做題不總結積累也不行。對課本知識既要能鑽進去,又要能跳出來,結合自身特點,尋找最佳學習方法。 4、針對自己的學習情況,採取一些具體的措施 2 記數學筆記,特別是對概念理解的不同側面和數學規律,教師在課堂中 拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今後將其補上。 2 建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再 犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對症下葯;解答問題完整、推理嚴密。 2 熟記一些數學規律和數學小結論,使自己平時的運算技能達到了自動化 或半自動化的熟練程度。 2 經常對知識結構進行梳理,形成板塊結構,實行「整體集裝」,如表格化, 使知識結構一目瞭然;經常對習題進行類化,由一例到一類,由一類到多類,由多類到統一;使幾類問題歸納於同一知識方法。 2 閱讀數學課外書籍與報刊,參加數學學科課外活動與講座,多做數學課 外題,加大自學力度,拓展自己的知識面。 2 及時復習,強化對基本概念知識體系的理解與記憶,進行適當的反復鞏 固,消滅前學後忘。 2 學會從多角度、多層次地進行總結歸類。如:①從數學思想分類②從解 題方法歸類③從知識應用上分類等,使所學的知識系統化、條理化、專題化、網路化。 2 經常在做題後進行一定的「反思」,思考一下本題所用的基礎知識,數學 思想方法是什麼,為什麼要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時,是否也用到過。 2 無論是作業還是測驗,都應把准確性放在第一位,通法放在第一位,而 不是一味地去追求速度或技巧,這是學好數學的重要問題。 對新初三學生來說,學好數學,首先要抱著濃厚的興趣去學習數學,積極展開思維的翅膀,主動地參與教育全過程,充分發揮自己的主觀能動性,愉快有效地學數學。 其次要掌握正確的學習方法。鍛煉自己學數學的能力,轉變學習方式,要改變單純接受的學習方式,要學會採用接受學習與探究學習、合作學習、體驗學習等多樣化的方式進行學習,要在教師的指導下逐步學會「提出問題—實驗探究—開展討論—形成新知—應用反思」的學習方法。這樣,通過學習方式由單一到多樣的轉變,我們在學習活動中的自主性、探索性、合作性就能夠得到加強,成為學習的主人。 在新學期要上好每一節課,數學課有知識的發生和形成的概念課,有解題思路探索和規律總結的習題課,有數學思想方法提煉和聯系實際的復習課。要上好這些課來學會數學知識,掌握學習數學的方法。 概念課 要重視教學過程,要積極體驗知識產生、發展的過程,要把知識的來龍去脈搞清楚,認識知識發生的過程,理解公式、定理、法則的推導過程,改變死記硬背的方法,這樣我們就能從知識形成、發展過程當中,理解到學會它的樂趣;在解決問題的過程中,體會到成功的喜悅。 習題課 要掌握「聽一遍不如看一遍,看一遍不如做一遍,做一遍不如講一遍,講一遍不如辯一辯」的訣竅。除了聽老師講,看老師做以外,要自己多做習題,而且要把自己的體會主動、大膽地講給大家聽,遇到問題要和同學、老師辯一辯,堅持真理,改正錯誤。在聽課時要注意老師展示的解題思維過程,要多思考、多探究、多嘗試,發現創造性的證法及解法,學會「小題大做」和「大題小做」的解題方法,即對選擇題、填空題一類的客觀題要認真對待絕不粗心大意,就像對待大題目一樣,做到下筆如有神;對綜合題這樣的大題目不妨把「大」拆「小」,以「退」為「進」,也就是把一個比較復雜的問題,拆成或退為最簡單、最原始的問題,把這些小題、簡單問題想通、想透,找出規律,然後再來一個飛躍,進一步升華,就能湊成一個大題,即退中求進了。如果有了這種分解、綜合的能力,加上有扎實的基本功還有什麼題目難得倒我們。 復習課 在數學學習過程中,要有一個清醒的復習意識,逐漸養成良好的復習習慣,從而逐步學會學習。數學復習應是一個反思性學習過程。要反思對所學習的知識、技能有沒有達到課程所要求的程度;要反思學習中涉及到了哪些數學思想方法,這些數學思想方法是如何運用的,運用過程中有什麼特點;要反思基本問題(包括基本圖形、圖像等),典型問題有沒有真正弄懂弄通了,平時碰到的問題中有哪些問題可歸結為這些基本問題;要反思自己的錯誤,找出產生錯誤的原因,訂出改正的措施。在新學期大家准備一本數學學習「病例卡」,把平時犯的錯誤記下來,找出「病因」開出「處方」,並且經常拿出來看看、想想錯在哪裡,為什麼會錯,怎麼改正,通過你的努力,到中考時你的數學就沒有什麼「病例」了。並且數學復習應在數學知識的運用過程中進行,通過運用,達到深化理解、發展能力的目的,因此在新的一年要在教師的指導下做一定數量的數學習題,做到舉一反三、熟練應用,避免以「練」代「復」的題海戰術。 最後,要有意識地培養好自己個人的心理素質,全面系統地進行心理訓練,要有決心、信心、恆心,更要有一顆平常心。
❸ 高一數學重點題型及解析是什麼
必修一重點、難點問題分析:集合的基本概念和運算,例:設U為全集,集合A={0,2,3,4},B={-1,0,2}寫出A∩B 和A∪B,的所有子集。
題型:具體函數的定義域幾類函數的定義域
(1)如果f(x)是整式,函數的定義域是實數集R。
(2)如果f(x)是分式,函數的定義域是使分母不等於零的實數的集合。
(3)如果f(x)是二次根式,函數的定義域是使根號內的式子大於或等於零的實數的集合。
(3)高一數學重難點擴展閱讀:
整體把握是很重要的,高中數學的重要性不是誰能想像的,剛進入高一,有些學生還不是很適應,如果直接學習高考技巧彷彿是「沒學好走就想跑」。任何的技巧都是建立在牢牢的基礎知識之上,因此建議高一的學生多抓基礎,多看課本。
在應試教育中,只有多記公式定理,掌握解題技巧,熟悉各種題型,才能在考試中取得最好的成績。在高考中只會做題是不行的,一定要在會的基礎上加個「熟練」才行,小題一般要控制在每個兩分鍾左右。
❹ 高中數學必修一重難點是哪幾塊
高中數學重點有什麼?該怎樣攻克?
高中數學重點內容還有很多.這些重點都是保持多年來的經驗,他們分析過高考數學的題型,高中數學重點分為以下幾個部分.
向量講解
其實高中數學重點就是在必修的裡面.必修是每個高中生都必須學習的,不管是分不分文理科,他們都是會學習的.很多重點都是在必修裡面,然而在選秀當中就是講一些統計之類的問題,這都是我們在生活當中就會學到的,所以這些都不是重點,重中之重就是在必修的課本當中.
❺ 高一數學的重點是什麼
高一是必修一、二、四、五
必修一:A,集合與函數(弄清楚集合的概念、關系,類型,表示方法等;函數部分要掌握概念、單調性、奇偶性、最值等,還有映射的概念)
B,基本初等函數(指數函數,對數函數,反函數,冪函數的概念和相關運算)
C,函數的應用(函數與方程結合,求零點是一個重點!什麼二分法之類的,書上不夠詳細,多是老師上課補充的)
必修二:A,空間幾何體(認識並了解空間幾何體的結構,掌握三視圖直視圖的做法,牢記運算表面積與體積的公式)
B,點,直線,平面的位置關系(熟記點、直線、平面之間的判定定理,線線平行/垂直,線面平行/垂直,面面平行/垂直,二面角的找法等等)
C,直線與方程(直線的傾斜角與斜率,直線的方程:兩點式,斜截式,截距式,一般式,點斜式...直線的交點與距離公式,都要牢記!!)
D,圓與方程(圓的方程形式,直線與圓的位置關系:相離相切相交,圓與圓的位置關系:相交,外切,內切,外離,內含;圓心距的關系也是重點,空間直角坐標系,很重要!)
必修四:A,三角函數(角度制與弧度制;三角函數及其圖象、性質、誘導公式等等,正弦餘弦正切...非常非常重要,高考必考,其中有一些轉化挺暈的,但是理解透了很簡單!)
B,平面向量(熟練其線性運算,基本定理及坐標表示,向量的模長、數量積等等,這為高二的空間向量、空間直角坐標、點線面位置關系的證明打基礎)
C,三角恆等變換(都是記公式的了,不過不要死背,兩角和 兩角差 降冪 升冪 萬能公式、二倍角等等……還有與實際相結合的題)
必修五:A,解三角形(正弦定理,餘弦定理的運用,三角形中邊角關系轉化)
B,數列,超級超級重要,往往是高考最後一題的難點,否則就是幾何了(等差數列和等比數列的公式、特殊定理、數列的前N項和,除此之外會有復合數列等,通常用到公式法,累加法,累乘法,裂項相減法、倒序相加法、構造法……)
C,不等式(基本不等式非常重要,在高二的數列證明和數學歸納法題中常常用到,此外線性規劃是選擇題中常見題型啊~與直線圖像相結合,一般分幾類:找截距,到原點或某點的距離,到原點或某點的斜率……)
完完全全是自己根據書本的目錄寫的~~進入高三了,順便復習一下高一,希望對你有幫助啊~~
❻ 高一數學指數函數重點難點 越詳細加分越多~
高一數學,首先要明確函數的定義。因為函數在整個高中都是難點,而且在高考里的地位也是舉足輕重的。整個高一的時間差不多都在學習函數。學習函數首先要明白函數的三要素:定義域,值域,對應法則。還有函數是可以多個自變數對應一個因變數,而反過來再則不行。另外,函數的學習中,還要明白函數的圖像怎麼畫,因為圖解法解決問題在實際應用中也是很重要的。這就要熟悉每個函數的性質,包括:增減性,單調性,值域,定義域,對應法則,奇偶性。有了這些,基本就可以畫出函數的圖像了。
❼ 高一數學重點知識總結
高一的數學內容並不多,但是難度不低。難度並不在於知識點的深度和綜合能力,而在於從初中相對具體形象的數學學習一下進入高中抽象的,與生活似乎關系不大的學習,很多同學表現出非常大不適應。因此,如果覺得高一數學「難」,復習的重點,應當放在分析為什麼自己覺得學習過的知識點「難」上。
難點一:抽象函數
F規則的含義雖然看起來簡單,但如果理解不深刻,對於後面的解題有很大的影響。解決抽象函數難點的思路主要有這樣兩條:
(1) 將抽象函數的內容與具體函數的性質結合起來。抽象函數作為理解函數的一個上位的要求,對於所有的具體函數都具有指導意義。高一學習的指數,對數和冪三種函數的具體性質,都是抽象函數性質在具體函數中的表現。函數的定義域,值域,單調性,奇偶性,這些內容既是抽象函數的核心內容,又是具體函數具體性質的表現。結合起來記憶,效果更好。
(2) 所有和抽象函數相關的綜合問題,一定首先想辦法將抽象函數的條件化為具體條件,轉化的方法,就是利用抽象函數的性質。很多綜合題中都會出現抽象函數的條件,對於這種題目,首先要解決的就是將這些條件中的f去掉。比如f(a)<f(b),保留f,無論a與b如何簡單,不利用單調性條件去掉f,問題都解決不了。
難點二:三角函數
這一部分的重點是一定要從初中銳角三角函數的定義中跳出來。在教學中,我注意到有些學生仍然在遇到三角函數題目的時候畫直角三角形協助理解,這是十分危險的,也是我們所不提倡的。三角函數的定義在引入了實數角和弧度制之後,已經發生了革命性的變化,sinA中的A不一定是一個銳角,也不一定是一個鈍角,而是一個實數——弧度制的角。有了這樣一個思維上的飛躍,三角函數就不再是三角形的一個附屬產品(初中三角函數很多時候依附於相似三角形),而是一個具有獨立意義的函數表現形式。
既然三角函數作為一種函數意義的理解,那麼,它的知識結構就可以完全和函數一章聯系起來,函數的精髓,就在於圖象,有了圖象,就有了所有的性質。對於三角函數,除了圖象,單位圓作為輔助手段,也是非常有效——就好像配方在二次函數中應用廣泛是一個道理。
三角恆等變形部分,並無太多訣竅,從教學中可以看出,學生聽懂公式都不難,應用起來比較熟練的都是那些做題比較多的同學。題目做到一定程度,其實很容易發現,高一考察的三角恆等只有不多的幾種題型,在課程與復習中,我們也會注重給學生總結三角恆等變形的「統一論」,把握住降次,輔助角和萬能公式這些關鍵方法,一般的三角恆等迎刃而解。關鍵是,一定要多做題。
難點三:向量部分
這部分其實是這學期最簡單的部分。簡單的原因是,以前從來沒有學過,初次接觸,考試不會太難。這部分的復習也最為輕松——圍繞向量的幾何表示,代數表示和坐標表示理解向量的各種運演算法則。
難點四:綜合題型
壓軸題基本上,都是以函數一章作為最核心的知識載體,中間摻雜向量和三角的運算。解決這樣的題目,方法幾乎是固定的,那就是首先利用抽象函數性質,將帶有f的條件化為不帶有f的條件,然後利用三角與向量的運算化簡或證明。非壓軸題出題方法可能更自由,但是綜合性往往沒有太強,仍然屬於各個板塊內的綜合
❽ 高一數學的重點內容有哪些
一是集合,弄懂概念就明白了
二
函數
這是個重點,但是說起來也不好說,要內作專題訓練,比如說二次函數容,指數對數函數等等做這一類型題的時候,要掌握幾個函數思想如
構造函數
函數與方程結合
對稱思想,換元等等
三
數列
這也是個比較重要的題型,做體的時候要有整體思想,整體代換,等比等差要分開來,也要注意聯系,這樣才能做好,注意觀察數列的形式判斷是什麼數列,還要掌握求數列通向公式的幾種方法,和求和公式,求和方法,比如裂項相消,錯位相減,公式法,分組求和法等等
四
三角函數
三角函數不是考試題型,只是個應用的知識點,所以只要記熟特殊角的三角函數值和一些重要的定理就行
五
平面向量
這是個比較抽象的把幾何與代數結合起來的重難點,結體的時候要有技巧,主要就是把基本知識掌握到位,注意拓展,另外要多做題,見的題型多,結體的時候就有思路,能夠把問題簡單化,有利於提高做題效率兩角和公式
希望能幫助您~
❾ 高一數學該怎麼學
第一,提前預習。
在難度上,高中數學比初中數學要難一些;在課堂容量上,高中數學比初中數學要大一些;在講課進度上,高中數學比初中數學要緊一些。
基於高中數學的這些不同於初中數學的特點,決定了剛初中畢業的高一新生接受新課的效果往往不如人意。
第二,課後復習。
俗話說得好,「好記性不如爛筆頭」。這就是說很多知識不記下來復習是容易遺忘的。重點、難點知識的理解和掌握自然也離不開課後復習。
為了在每天大容量的新知識學習中鞏固好所學的重難點知識,高一新生一定要在課下抽出一定的時間來對當天甚至近幾天所學的重難點知識進行有效的復習和鞏固。課後復習的具體方式主要包括:復習課本、復習筆記、復習自己積累的典型例題的解題方法和解題技巧。
第三,查漏補缺。
初中數學的重點和高中數學的重點有些時候是不一樣的,這就導致高一新生在初中學的沒掌握好的非重點知識到了高中數學課程里卻成了重點。而且高中數學的學習不可避免地要經常用到這些初中數學的非重點知識。
這個時候,對自己數學知識在初高中階段的縱向上的查漏補缺就成了必不可少的手段了。建議高一新生在必要時隨時備著相關初中數學課本或是初中知識總結大全之類的輔導書。
每當在高一數學課上遇到初中數學的知識而自己又恰恰沒掌握住的時候,就要及時的復習、理解並掌握好。通過這樣縱向地、有針對性地對數學知識的查漏補缺,就能快速補足學好高中數學所必需的重點知識。
第四,尋求幫助。
高中數學跟初中數學比起來,還有一個很明顯的特點就是更加註重對學生的思維能力的培養,對學生各個數學能力的要求也更高。再加上高中數學的難度大、課程緊,不是總有富餘的時間去及時補上新知識的漏洞的。
高一新生在課下積極思考的同時,如果時間實在不夠用時就要學會積極地向同學和老師尋求幫助。這樣能讓自己盡快補足知識上的短板,從而避免知識上的掉隊。
第五,盡早開始對數學能力和數學素養的培養。
在新高考體制的改革下,要學好高中數學就必然離不開數學素養的培養。而數學素養的培養不是一朝一夕的事。高考要求的數學素養等到高三再去培養就太晚了,也是很難培養出效果的。
很多教育專家告誡我們,高中生數學思維和數學素養的培養一定要在高一剛入學的那天起就開始有規劃、有目的地去著手培養。
❿ 高一數學必修一有哪些難點
函數是描述客觀世界變化規律的重要數學模型。高中階段不僅把函數看成變數之間的依賴關系,同時還用集合與對應的語言來刻畫函數,函數的思想方法將貫穿於高中數學課程的始終。
一、內容和課程學習目標
本章中,學生將學習集合與函數概念。通過本章的學習,應當使學生:
1.了解集合的含義與表示,理解集合間的關系和運算,感受集合語言的意義和作用。
2.進一步體會函數是描述變數之間的依賴關系的重要數學模型,會用集合與對應的語言描述函數,體會對應關系在刻畫函數概念中的作用。
3.了解函數的構成要素,會求簡單函數定義域和值域,會根據實際情境的不同需要選擇恰當的方法表示函數。
4.通過已學過的具體函數,理解函數的單調性、最大(小)值及其幾何意義,了解奇偶性的含義,會用函數圖象理解和研究函數的性質。
5.根據某個主題,收集17世紀前後發生的一些對數學發展起重大作用的歷史事件和人物(開普勒、伽利略、笛卡兒、牛頓、萊布尼茲、歐拉等)的有關資料,了解函數概念的發展歷程。
二、內容安排
本章共安排了3個小節,1個實習作業和3個選學內容,教學時間約需13課時,大體分配如下(僅供參考):
1.1 集合約4課時
閱讀與思考 集合中元素的個數
1.2 函數及其表示 約4課時
閱讀與思考 函數概念的發展歷程
1.3 函數的基本性質約3課時
信息技術應用 用計算機畫函數圖象
實習作業約1課時
小結約1課時
本章知識結構如下:1.集合語言是現代數學的基本語言。在高中數學課程中,它也是學習、掌握和使用數學語言的基礎,因此把它安排在了高中數學的起始章.教科書從學生熟悉的集合(有理數的集合、直線或圓上的點集等)出發,結合學生身邊的實例引出元素、集合的概念,介紹了表示集合的列舉法和描述法及Veen圖;類比實數間的相等、大小關系,通過對具體實例共性的分析、概括出了集合間的相等、包含關系;針對具體實例,通過類比實數間的加法運算引出了集合間「並」的運算,並在此基礎上進一步擴展,介紹了「交」的運算和「補」的運算。這里採用類比方式處理集合間的關系和運算的目的在於體現知識之間的聯系,滲透數學學習的方法。
與以往相比,教科書對函數概念的處理方式發生了很大的變化。改變了以往先映射後函數的順序,直接通過三個背景實例,在問題的引導下分析概括出運用集合與對應語言描述的函數定義。這樣,既銜接了初中階段將函數看成變數之間的依賴關系的認識,又進一步提升到用集合與對應的語言來刻畫函數。為了理解函數概念的本質,教科書從函數的三要素、函數的符號、函數表示法三個角度對函數概念進行細化,最後將函數概念推廣到了映射。這樣處理的目的是將重點放在對函數概念本質的理解上。教科書在不同的時機為學生提供了進行判斷、練習、比較、討論交流的機會,以便使學生通過主動思考與動手操作更好地理解函數概念。
在函數的表示法中,教科書選取了兩個貼近學生生活的實例(高一學年三位同學的數學成績問題,汽車票價問題),展示了如何在實際情境中根據不同的需要選擇恰當的表示方法,並結合相關內容介紹了分段函數及其應用。
在討論函數性質時,教科書通過問題,引導學生經歷了「三步曲」:
第一步,觀察具體函數的圖象,描述圖象特徵;
第二步,結合相應的數值表,用日常描述性語言描述函數特徵;
第三步,引進數學符號,用形式化語言描述函數性質。
希望通過這樣的安排,幫助學生更好地認識函數的性質,並體會從直觀到抽象的過程。在這個過程中,教科書為學生提供了實際操作、自我探究的機會,例如由學生親自給出函數最小值的定義等。
函數概念是數學中的基本概念之一,它的發展成熟經歷了漫長的歲月,融入了眾多數學家的智慧。教科書在本章末安排了關注於函數概念的發展及在此過程中起重大作用的歷史事件和人物的實習作業,讓學生通過自己的實踐和與他人的合作共同了解函數概念的發展歷程,感受數學文化。
三、編寫本章時考慮的幾個問題
1.利用豐富的背景實例創設問題情境,引導學生理解抽象的數學概念。
本章學習的數學知識都是基礎性知識,它們的使用貫穿了整個高中數學的學習,而它們又具有較高的抽象性,如函數、函數的單調性等概念。每一個抽象概念的產生與發展總有它的現實或數學理論發展的需要,強調概念產生發展的背景,聯系學生原有的認知基礎,有利於學生理解抽象概念的內涵。因此,教科書就本章數學概念的特點選取了具有時代特點、貼近學生實際的事例創設情境。例如在引入元素和集合時,教科書安排了8個實例,既包括學生熟悉的「1~20以內的質數」「所有的正方形」等例子,又有與生活密切相關的「新華中學2004年9月入學的高一學生的全體」等例子;在引入函數一般概念時,選取了生活中的實例:炮彈的高度與時間的關系、南極臭氧空洞面積從1979年到2001年變化的圖象、「八五」以來我國城鎮居民恩格爾系數變化數據表;在介紹函數基本性質時,教科書運用了學生熟悉的二次函數、一次函數的圖象和數值表。在這些背景實例中,教科書在每一次知識的轉折點上,都力求提出具有啟發性、挑戰性的問題,引導學生經歷觀察、思考、探究、交流、反思的過程,逐步獲得對抽象概念的理解。例如,在函數單調性學習時,教科書在通過對圖象觀察,獲得圖象的特徵後提出問題:「如何用數學形式化的語言描述函數圖象的『上升』、『下降』呢?」,根據數值表就二次函數得到文字語言描述後,給出思考問題「對於用函數解析式f(x)=x表示的函數,如何用數學形式化的語言描述『隨著x的增大,相應的f(x)隨著減小』、『隨著x的增大,相應的f(x)也隨著增大』?」。
豐富的背景實例、恰當的問題串和精闢的分析展現了知識發生發展的過程,反映了從具體到抽象、特殊到一般的原則。對於學生,這些問題串就是他們在學習過程中主動思考、主動探究的「指示牌」,通過層層深入的思考與探究,經歷數學知識的發現和創造過程,了解知識的來龍去脈。
2.重視數學思想方法的滲透,體現數學的文化價值
「科學性」與「思想性」是本套教科書努力創新的一個方面。根據本章數學知識內容的特點,教科書充分滲透了數形結合的思想方法。無論是利用Veen圖表示集合的關系和運算,還是從對函數圖象特徵的描述入手,逐步獲得嚴格的形式化的函數性質的定義,幾乎在本章的每一處都充分體現了這一思想方法。並且,教科書還為學生掌握這一思想方法提供了許多機會,期望學生在閱讀、思考與運用中逐漸掌握數形結合的方法,感受幾何直觀對理解抽象概念和解決問題中的作用。
教科書盡最大可能地展示了聯想、類比、推廣等研究數學問題中常用的邏輯思考的方法。例如通過類比方法的運用,類比數的大小、相等關系引入集合間的包含、相等關系;通過類比數的加法運算引出集合「並」的運算;通過推廣函數概念獲得了映射概念,等等。教科書中展示邏輯思考方法,可以使學生體會數學思考和探索活動的基本規律,養成良好的思維習慣,形成有條理地、符合邏輯地進行思考、推理、表達與交流的能力。
數學是人類文化的重要組成部分,是人類社會進步的產物,也是推動社會發展的動力。本章對數學文化給予了很大的關注,不僅提供了「閱讀與思考 函數概念的發展歷程」,而且還安排了讓學生通過收集資料、閱讀思考、合作交流等學習方式完成實習作業,希望學生通過學習本章不僅在數學知識和能力方面得到提高,而且能夠感受到數學文化的熏陶,逐步地認識數學的科學價值和人文價值,提高科學文化素養。
3.提供積極思考、自主探索的空間,使學生主動地學習
豐富學生的學習方式、改進學生的學習方法是高中數學課程追求的基本理念。學生的數學學習活動不應只限於對概念、結論和技能的記憶、模仿和接受,獨立思考、自主探索、動手實踐、合作交流、閱讀自學等都是學習數學的重要方式。本章在知識內容的呈現上為引導學生的積極思考、自主探索留下了比較充分的空間,採取的主要方法有:
(1)設置具有啟發性和挑戰性的問題,引發學生的思考和探究。例如:
思考 我們知道,實數有加法運算。類比實數的加法運算,集合是否也可以「相加」呢?
考察下列各個集合,你能說出集合 與集合A,B之間的關系嗎?
①A={1,3,5 },B={2,4,6 },C={1,2,3,4,5,6 };
②A={有理數},B={無理數},C={實數}。
(2)在適當的時候提出學習要求或預留空白,為學生提供動手實踐的機會。例如1.2節的例5的邊框中提出如下要求:
是否可以設計一個表格,讓售票員和乘客非常容易地知道任兩站之間的票價?
(3)通過拓展性欄目,引導學生根據自己的興趣,翻閱更多的資料,經過閱讀自學、獨立思考、討論交流獲取更多的知識。
例如1.1集合中的「閱讀與思考 集合中元素的個數」。
四、對教學的幾個建議
1.把集合作為一種語言來學習
根據標準的要求,高中數學課程只將集合作為一種語言來學習。因此,學習集合初步知識的目的主要在於能使用最基本的集合語言表示有關數學對象,發展運用數學語言進行交流的能力。在教學中,可以將集合語言與自然語言及圖形語言進行比較,並注意創設讓學生使用集合語言進行表達和交流的豐富情境和機會,特別是在學習集合間的關系和運算時,要重視使用Venn圖,以便學生在實際使用中逐漸熟悉自然語言、集合語言、圖形語言的各自特點,並能根據實際需要進行相互轉換,從中感受集合語言的意義和作用。例如利用問題「在平面直角坐標中,集合 就表示直線y=x,從這個角度看,集合表示什麼?集合C、D之間有什麼關系嗎?請分別用集合語言和幾何語言說明這種關系」,可以使學生體會集合語言表達數學內容的特點,在不同語言的轉換中感受集合語言的作用。在教學時,可以充分利用教科書提供的機會或開發一些情境,逐漸發展學生使用集合語言進行交流的能力。
2.函數概念的處理方式
與以往相比,本章發生變化最大的就是函數概念的處理方式,在教學時,應給予充分的重視。從「先講映射後講函數」轉變為「先講函數後講映射」的主要理由在於這樣可以使學生更好地理解函數概念的本質。其一,在初中函數學習基礎上繼續深入學習函數,銜接自然,利於學生在原有認知基礎上提升對函數概念的理解;其二,單刀直入進入函數概念的學習更有利於學生將注意力放在理解函數概念本質上,而不必花大量精力學習映射、認識映射與函數間的關系後才能理解函數概念。從豐富的具體事例中概括函數的本質特徵,得出函數概念,體現了從具體到抽象的認知規律,有利於學生建立關於抽象的函數概念的背景支持。在教學中,可以多為學生提供豐富的背景實例,也可以讓學生自己舉出一些函數實例,引導學生通過自己的觀察、分析、歸納和概括,獲得用集合與對應語言刻畫的函數概念。
當然,對函數概念本質的理解並非一次就可以實現的,要通過與初中定義的比較、與其它知識的聯系以及不斷的應用等才能逐步理解。除了在本章要適當地為學生提供反復理解函數概念的機會外,在後續的學習中,應當通過基本初等函數的學習,引導學生以具體函數為依託,反復地、螺旋上升地理解函數的本質。
3.重視信息技術的使用
考慮到我國不同地區信息技術硬體條件的差異性,以及可用於數學教與學的不同軟體各具優勢,教科書沒有在正文中詳述信息技術的使用,只在適於使用信息技術的地方利用邊框給予提示,但在信息技術應用欄目中對用計算機做函數圖象做了較為詳細的介紹。
本章有許多可以使用信息技術的機會,例如函數的求值,作函數的圖象,研究函數的性質等,這主要是基於信息技術的圖象功能和數值計算功能,它不僅能便捷地計算函數值、迅速繪制函數圖象,而且許多軟體具有互動式的動態環境,非常有利於學生的主動探究。因此,有條件的學校應盡量地加強數學教學與信息技術的整合,積極開發使用信息技術的空間,讓學生利用信息技術探索函數的圖象與性質等,從而更好地理解函數概念。