當前位置:首頁 » 語數英語 » 高二期末數學

高二期末數學

發布時間: 2022-10-07 09:37:53

㈠ 高二數學下冊知識點總結

我們對於數學的學習,最容易記住的就是做題,背公式,通過做一題多解、多題一解、一題多變對知識點深入和透徹的理解,達到一個能靈活和綜合應用的高度。這樣才能提高你的數學知識,幫助你在考試中更容易拿到名次。下面是我給大家帶來的 高二數學 下冊知識點 總結 ,希望能幫助到你!

高二數學下冊知識點總結1

1.拋物線是軸對稱圖形。對稱軸為直線

x=-b/2a。

對稱軸與拋物線的交點為拋物線的頂點P。

特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

2.拋物線有一個頂點P,坐標為

P(-b/2a,(4ac-b^2)/4a)

當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。

3.二次項系數a決定拋物線的開口方向和大小。

當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

|a|越大,則拋物線的開口越小。

4.一次項系數b和二次項系數a共同決定對稱軸的位置。

當a與b同號時(即ab>0),對稱軸在y軸左;

當a與b異號時(即ab<0),對稱軸在y軸右。

5.常數項c決定拋物線與y軸交點。

拋物線與y軸交於(0,c)

6.拋物線與x軸交點個數

Δ=b^2-4ac>0時,拋物線與x軸有2個交點。

Δ=b^2-4ac=0時,拋物線與x軸有1個交點。

Δ=b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x=-b±√b^2-4ac的值的相反數,乘上虛數i,整個式子除以2a)

高二數學下冊知識點總結2

一、集合、簡易邏輯(14課時,8個)

1.集合;2.子集;3.補集;4.交集;5.並集;6.邏輯連結詞;7.四種命題;8.充要條件。

二、函數(30課時,12個)

1.映射;2.函數;3.函數的單調性;4.反函數;5.互為反函數的函數圖象間的關系;6.指數概念的擴充;7.有理指數冪的運算;8.指數函數;9.對數;10.對數的運算性質;11.對數函數.12.函數的應用舉例。

三、數列(12課時,5個)

1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式。

四、三角函數(46課時,17個)

1.角的概念的推廣;2.弧度制;3.任意角的三角函數;4.單位圓中的三角函數線;5.同角三角函數的基本關系式;6.正弦、餘弦的誘導公式;7.兩角和與差的正弦、餘弦、正切;8.二倍角的正弦、餘弦、正切;9.正弦函數、餘弦函數的圖象和性質;10.周期函數;11.函數的奇偶性;12.函數的圖象;13.正切函數的圖象和性質;14.已知三角函數值求角;15.正弦定理;16.餘弦定理;17.斜三角形解法舉例。

五、平面向量(12課時,8個)

1.向量;2.向量的加法與減法;3.實數與向量的積;4.平面向量的坐標表示;5.線段的定比分點;6.平面向量的數量積;7.平面兩點間的距離;8.平移。

六、不等式(22課時,5個)

1.不等式;2.不等式的基本性質;3.不等式的證明;4.不等式的解法;5.含絕對值的不等式。

七、直線和圓的方程(22課時,12個)

1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區域;8.簡單線性規劃問題;9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標准方程和一般方程;12.圓的參數方程。

八、圓錐曲線(18課時,7個)

1.橢圓及其標准方程;2.橢圓的簡單幾何性質;3.橢圓的參數方程;4.雙曲線及其標准方程;5.雙曲線的簡單幾何性質;6.拋物線及其標准方程;7.拋物線的簡單幾何性質。

九、直線、平面、簡單何體(36課時,28個)

1.平面及基本性質;2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質;5.直線和平面垂直的判定與性質;6.三垂線定理及其逆定理;7.兩個平面的位置關系;8.空間向量及其加法、減法與數乘;9.空間向量的坐標表示;10.空間向量的數量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質;16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質;21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質;24.多面體;25.稜柱;26.棱錐;27.正多面體;28.球。

十、排列、組合、二項式定理(18課時,8個)

1.分類計數原理與分步計數原理;2.排列;3.排列數公式;4.組合;5.組合數公式;6.組合數的兩個性質;7.二項式定理;8.二項展開式的性質。

十一、概率(12課時,5個)

1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個發生的概率;4.相互獨立事件同時發生的概率;5.獨立重復試驗。

選修Ⅱ(24個)

十二、概率與統計(14課時,6個)

1.離散型隨機變數的分布列;2.離散型隨機變數的期望值和方差;3.抽樣 方法 ;4.總體分布的估計;5.正態分布;6.線性回歸。

十三、極限(12課時,6個)

1.數學歸納法;2.數學歸納法應用舉例;3.數列的極限;4.函數的極限;5.極限的四則運算;6.函數的連續性。

十四、導數(18課時,8個)

1.導數的概念;2.導數的幾何意義;3.幾種常見函數的導數;4.兩個函數的和、差、積、商的導數;5.復合函數的導數;6.基本導數公式;7.利用導數研究函數的單調性和極值;8.函數的值和最小值。

十五、復數(4課時,4個)

1.復數的概念;2.復數的加法和減法;3.復數的乘法和除法;4.復數的一元二次方程和二項方程的解法。

高二數學下冊知識點總結3

1.萬能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)

2.輔助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a

3.三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]sina_cosb=[sin(a+b)+sin(a-b)]/2cosa_sinb=[sin(a+b)-sin(a-b)]/2cosa_cosb=[cos(a+b)+cos(a-b)]/2sina_sinb=-[cos(a+b)-cos(a-b)]/2sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

向量公式:

1.單位向量:單位向量a0=向量a/|向量a|

2.P(x,y)那麼向量OP=x向量i+y向量j|向量OP|=根號(x平方+y平方)

3.P1(x1,y1)P2(x2,y2)那麼向量P1P2={x2-x1,y2-y1}|向量P1P2|=根號[(x2-x1)平方+(y2-y1)平方]

4.向量a={x1,x2}向量b={x2,y2}向量a_向量b=|向量a|_|向量b|_Cosα=x1x2+y1y2Cosα=向量a_向量b/|向量a|_|向量b|(x1x2+y1y2)根號(x1平方+y1平方)_根號(x2平方+y2平方)

5.空間向量:同上推論(提示:向量a={x,y,z})

6.充要條件:如果向量a向量b那麼向量a_向量b=0如果向量a//向量b那麼向量a_向量b=|向量a|_|向量b|或者x1/x2=y1/y2

7.|向量a向量b|平方=|向量a|平方+|向量b|平方2向量a_向量b=(向量a向量b)平方

高二數學下冊知識點總結相關 文章 :

★ 人教版高二數學下冊知識點歸納,人教版高二數學下冊知識點歸納

★ 高二數學下學期知識點總結

★ 高二數學知識點總結

★ 高二數學知識點歸納總結

★ 高二數學下冊知識點總結(2)

★ 高二數學知識點總結歸納

★ 高二數學下冊期末考試知識點總結

★ 高二數學知識點總結(人教版)

★ 高二數學知識點新總結2020

★ 高二數學知識點總結人教版

㈡ 我是高二文科的一名學生,這次期末考試數學只得了57分,滿分150,我很想把數學學好,請問該怎麼

如何學好數學1

數學是必考科目之一,故從初一開始就要認真地學習數學。那麼,怎樣才能學好數學呢?現介紹幾種方法以供參考:

一、課內重視聽講,課後及時復習。

新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課後要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不採用不清楚立即翻書之舉。認真獨立完成作業,勤於思考,從某種意義上講,應不造成不懂即問的學習作風,對於有些題目由於自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網路,納入自己的知識體系。

二、適當多做題,養成良好的解題習慣。

要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為准,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對於一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。

三、調整心態,正確對待考試。

首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對於那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題後要總結歸納。調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。

在考試前要做好准備,練練常規題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對於一些容易的基礎題要有十二分把握拿全分;對於一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發揮。

由此可見,要把數學學好就得找到適合自己的學習方法,了解數學學科的特點,使自己進入數學的廣闊天地中去。
如何學好數學2

高中生要學好數學,須解決好兩個問題:第一是認識問題;第二是方法問題。
有的同學覺得學好教學是為了應付升學考試,因為數學分所佔比重大;有的同學覺得學好數學是為將來進一步學習相關專業打好基礎,這些認識都有道理,但不夠全面。實際上學習教學更重要的目的是接受數學思想、數學精神的熏陶,提高自身的思維品質和科學素養,果能如此,將終生受益。曾有一位領導告訴我,他的文科專業出身的秘書為他草擬的工作報告,因為華而不實又缺乏邏輯性,不能令他滿意,因此只得自己執筆起草。可見,即使將來從事文秘工作,也得要有較強的科學思維能力,而學習數學就是最好的思維體操。有些高一的同學覺得自己剛剛初中畢業,離下次畢業還有3年,可以先松一口氣,待到高二、高三時再努力也不遲,甚至還以小學、初中就是這樣「先松後緊」地混過來作為「成功」的經驗。殊不知,第一,現在高中數學的教學安排是用兩年的時間學完三年的課程,高三全年搞總復習,教學進度排得很緊;第二,高中數學最重要、也是最難的內容(如函數、立幾)放在高一年級學,這些內容一旦沒學好,整個高中數學就很難再學好,因此一開始就得抓緊,那怕在潛意識里稍有鬆懈的念頭,都會削弱學習的毅力,影響學習效果。
至於學習方法的講究,每位同學可根據自己的基礎、學習習慣、智力特點選擇適合自己的學習方法,我這里主要根據教材的特點提出幾點供大家學習時參考。
l、要重視數學概念的理解。高一數學與初中數學最大的區別是概念多並且較抽象,學起來「味道」同以往很不一樣,解題方法通常就來自概念本身。學習概念時,僅僅知道概念在字面上的含義是不夠的,還須理解其隱含著的深層次的含義並掌握各種等價的表達方式。例如,為什麼函數y=f(x)與y=f-1 (x)的圖象關於直線y=x對稱,而y=f(x)與x=f-1(y)卻有相同的圖象;又如,為什麼當f(x-l)=f(1-x)時,函數y=f(x)的圖象關於y軸對稱,而 y=f(x-l)與 y=f(1-x)的圖象卻關於直線 x=1對稱,不透徹理解一個圖象的對稱性與兩個圖象的對稱關系的區別,兩者很容易混淆。
2『學習立體幾何要有較好的空間想像能力,而培養空間想像能力的辦法有二:一是勤畫圖;二是自製模型協助想像,如利用四直角三棱錐的模型對照習題多看,多想。但最終要達到不依賴模型也能想像的境界。
3、學習解析幾何切忌把它學成代數、只計算不畫圖,正確的辦法是邊畫圖邊計算,要能在畫圖中尋求計算途徑。
4、在個人鑽研的基礎上,邀幾個程度相當的同學一起討論,這也是一種好的學習方法,這樣做常可以把問題解決得更加透徹,對大家都有益。

答一送一:
如何在學習上占第一

學習上占第一,每個同學都可以做到。之所以你占不了第一,主要有兩個原因:第一、生活方式、學習方法不正確,第二、沒有堅強的毅力。在這裡面毅力是第一重要的,學習方法是第二重要的。在現實生活中,全中國仍有70%以上的占第一的學生雖然佔了第一,但他們並不是毅力最強的,或者說學習方法生活方式不是最好的。他們也許今天是第一,明天就不是了。也就是說,你如果按占第一的方法去學習、去鍛煉,一般都會超過現有的第一。
輝煌的第一是不是要經過艱苦的努力才能得到呢?說它艱苦是因為「培養堅強的毅力」是世上最艱苦的工作,只有你具有了堅強的毅力才可能成為第一,當然正確的生活方式和學習方法也是特別重要的。在這里什麼是堅強的毅力呢,只要你能按下面幾點要求去做,而且每天都做記錄,持之以恆,每天都不間斷地堅持一個學期、一年、三年,那麼你的毅力就足以達到占第一的要求了。在這項鍛煉中就怕你中間有間斷,風雨、心情、疾病、家務等等都不是你中斷鍛煉的理由。你要記住,學好學業是你學生生活中最重要的,沒有什麼工作的重要性會超過它。除了堅強的毅力,正確的學習方法和生活方式也是很重要的。
第一人人可以占,原來占第一的同學也不一定就比你更聰明多少,腦細胞也不一定比你多。愛迪生不是說過「天才是百分之九十九的汗水加上百分之一的靈感」嗎?!所以你第一要過心理關,就是說:要堅信你一定能成功,一定會超過現有的第一,包括現在是第一的你自已。
第二、你要天天鍛煉。沒有一個健康的身體,你什麼事也做不好,即使偶爾做好了,也不能長久。每天30分鍾左右的鍛煉一定要天天堅持。鍛煉的形式多種多樣,跑步、打乒乓球、打籃球、俯卧撐、立定跳遠等等都可以。有些同學好面子,見到別人不跑步,怕自已跑別人看見了不好意思,那就錯了,真正不好意思的是辛苦了幾年考不上大學,是上了幾年大學還要下崗。如果將來自已養活不了自已,那才是真正不好意思的。
第三、學習態度要端正。每次上課前,一定要把老師准備講的內容預習好,把不好理解的、不會的內容做好標記,在老師講到該處時認真聽講。如果老師講了以後還不會,一定要再問老師,直到明白為止。當一個問題問了兩遍三遍還不會時,一般的同學就不好意思問了,千萬別這樣,老師們最喜歡「不問明白誓不罷休」的性格了。上課時要認真聽講,認真思考,做好筆記。做筆記時一定要清楚,因為筆記的價值比課本還,將來的復習主要靠它。
課下首先要做的不是做作業,而是把筆記、課本上的知識點先學好,該記的內容一定把它背熟。這樣會大大提高你做作業的速度,即平常說的「磨刀不誤砍柴功」。做作業時應該獨立思考,實在不能解決的問題,再和同學、老師商量。問同學時,不要問這道題結果是什麼,而是要問「這道題究竟怎麼做?」「這道題為什麼這樣做?」
第四、正確面對錯誤和失敗。當有的知識你沒有在課上學會、當你的練習做錯時或者在考試中成績太差時,你既不要報怨,也不要氣餒,你應該正視這自已不願得到的現實。沒有學會不要緊,把該知識寫到你的《備忘錄》中,然後問同學問老師,再把正確的解釋或結果,寫到其它頁上。錯了題也是這樣,考試失利不就是錯的題多點嗎,正確的方法是把原題抄到《備忘錄》中,把正確的做法學會後,把做法和結果寫到其它頁上,如果能註上做該類題的注意事項,就會把你的學習效率又提高30%-60%。之所以把答案或解釋寫到其它頁上,就是為了下次看知識點或錯誤的題目時,再動動腦筋,想想該知識點的理解和解釋情況,再練練該題的做法和答案。錯誤和失敗並不可怕,只要你能正視它,一切都會成為你成功的動力。
第五、記帳。你的學習一定要有一本帳,你什麼時候做得好,記下來,什麼時候錯了題,記下來(註:帳本上只記「今天錯題為《備忘錄》××頁× 題)。課下幾點幾分學了英語,記錄好;幾點幾分至幾點幾分學了物理記下來。把你生活中鍛煉、學習的分分秒秒記錄在你的帳本上,把你每次作業和考試中的正確題數、錯誤題數和錯誤題號(《備忘錄》上的頁號題號)一一記錄在你的帳本上。把你每天學會的知識點都記錄在帳本上,以備明天、後天再檢查一下自已是否真正掌握了這些知識點。在帳本上過去了幾天的知識點,你一定要學會並能熟練掌握。
帳本記錄的是你學習、鍛煉中每一個細節。這樣記下來,在校生活中,每天約有一頁32開紙的記錄量,不在校時可能有兩頁32紙的記錄量。在星期和假期里千萬不能間斷。把你的帳一天天積累起來,這就是你所走過的第一之路。
雖說在素質教育的今天學校不排名次,但學習出類拔萃是我們努力的目標,是我們考上高一級學校的必要條件,也是我們走向社會後,做好每一件工作的資本。同學們,去爭取第一吧。如果你一年年按上面的要求做,你一定能占第一。
如果大家都這樣去做,即使你占不了第一,一定是中國出類拔萃的學生,因為中國大多數的同學沒有這樣的毅力,沒有這樣好的學習方法和生活方式。同學們,為美好的明天奮斗吧!
===============================================
首先要有學習數學的興趣。兩千多年前的孔子就說過:「知之者不如好之者,好之者不如樂之者。」這里的「好」與「樂」就是願意學、喜歡學,就是學習興趣,世界知名的偉大科學家、相對論學說的創立者愛因斯坦也說過:「在學校里和生活中,工作的最重要動機是工作中的樂趣。」學習的樂趣是學習的主動性和積極性,我們經常看到一些同學,為了弄清一個數學概念長時間埋頭閱讀和思考;為了解答一道數學習題而廢寢忘食。這首先是因為他們對數學學習和研究感興趣,很難想像,對數學毫無興趣,見了數學題就頭痛的人能夠學好數學,要培養學習數學的興趣首先要認識學習數學的重要性,數學被稱為科學的皇後,它是學習科學知識和應用科學知識必 的工具。可以說,沒有數學,也就不可能學好其他學科;其次必須有鑽研的精神,有非學好不可的韌勁,在深入鑽研的過程中,就可以略到數學的奧妙,體會到學習數學獲取成功的喜悅。長久下去,自然會對數學產生濃厚的興趣,並激發出學好數學的高度自覺性和積極性。

有了學習數學的興趣和積極性,要學好數學,還要注意學習方法並養成良好的學習習慣。

知識是能力的基礎,要切實抓好基礎知識的學習。數學基礎知識學習包括概念學習,定理公式學習以及解題學習三個方面。學習數學概念,要善於抓住它的本質屬性,也就是區別於這個概念和其他概念的屬性;學習定理公式,要緊緊抓住定理方向的內在聯系,抓住定理公式適用的范圍及題型,做到得心應手地應用這些定理公式,數學解題實№上是在熟練掌握概念與定理公式的基礎上解決矛盾,完成從「未知」向「已知」的轉化。要著重學習各種轉化方式,培養轉化的能力。總而言之,在學習數學基礎知識中,要注意把握知識的整體精髓,悟其中的規律和實質,形成一個緊密聯系的整體認識體系,以促進各種形式間的相互遷移和轉化。同時,還要注意知識形成過程無處不隱含著人們在教學活動中解決問題的途徑、手段和策略,無處不以數學思想、方法為指南,而這也是我們學習知識時最希望要學到的東西。

數學思想方法是知識、技能轉化為能力的橋粱,是數學結構中強有力的支柱,在中學數學課本里滲透了函數的思想,方程的思想,數形結合的思想,邏輯劃分的思想,等價轉化的思想,類比歸納的思想,介紹了配方法、消元法、換元法、待定系數法、反證法、數學歸納法等,在學好數學知識的同時,要下大力氣理解這些思想和方法的原理和依據,並通過大量的練習,掌握運用這些思想和方法解決數學問題的步驟和技巧。

在數學學習中,要特別重視運用數學知識解決實№問題能力的培養。數學社會化的趨勢,使得「大眾數學」的口號席捲整個世界,有人認為未來的工作崗位是為已作好數學准備的人才提供的,這里所說的「已作好了數學准備」並不僅指懂得了數學理論,更重要的是學會了數學思想,學會了將數學知識靈活運用於解決現實問題中。培養數學應用能力,首先要養成將實№問題數學化的習慣;其次,要掌握將實№問題數學化的一般方法,即建立數學模型的方法,同時,還要加強數學與其他學科的聯系,除與傳統學科如物理、化學聯系外,可適當了解數學在經濟學、管理學、工業等方面的應用。

如果我們在數學學習中,既扎扎實實地學好了數學知識和技能,又牢固地掌握了數學思想和方法,而且能靈活應用數學知識和技能解決實№問題,那麼,我們就走在了一條數學學習成功的大道上。

㈢ 洛陽市高二下學期期末考試數學考必修一么

數學是必修課。
高二的必修有數學,語文,英語,歷史,地理,生物,物理,政治

㈣ 高二上學期期末數學考95分是什麼水平

如果平時在這個分數段,就是正常水平,如果平時比這分數低,就是超常發揮,如果平時比這次高,那就是失誤了,一般來說,這個分數段,普通水平

㈤ 高二數學理科的必會知識點歸納

我們要品格高尚,積極進取;要胸懷大志,勤奮刻苦;要放飛理想,腳踏實地;要開拓創新,精益求精!人生非坦途,學習中一定會有很多困難,拿出你:「天生我才必有用的」的信心,以下是我給大家整理的 高二數學 理科的必會知識點歸納,希望大家能夠喜歡!

高二數學理科的必會知識點歸納1

導數是微積分中的重要基礎概念。當函數y=f(x)的自變數x在一點x0上產生一個增量Δx時,函數輸出值的增量Δy與自變數增量Δx的比值在Δx趨於0時的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df(x0)/dx。

導數是函數的局部性質。一個函數在某一點的導數描述了這個函數在這一點附近的變化率。如果函數的自變數和取值都是實數的話,函數在某一點的導數就是該函數所代表的曲線在這一點上的切線斜率。導數的本質是通過極限的概念對函數進行局部的線性逼近。例如在運動學中,物體的位移對於時間的導數就是物體的瞬時速度。

不是所有的函數都有導數,一個函數也不一定在所有的點上都有導數。若某函數在某一點導數存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函數一定連續;不連續的函數一定不可導。

對於可導的函數f(x),x?f'(x)也是一個函數,稱作f(x)的導函數。尋找已知的函數在某點的導數或其導函數的過程稱為求導。實質上,求導就是一個求極限的過程,導數的四則運演算法則也來源於極限的四則運演算法則。反之,已知導函數也可以倒過來求原來的函數,即不定積分。微積分基本定理說明了求原函數與積分是等價的。求導和積分是一對互逆的操作,它們都是微積分學中最為基礎的概念。

高二數學理科的必會知識點歸納2

基本概念

公理1:如果一條直線上的兩點在一個平面內,那麼這條直線上的所有的點都在這個平面內。

公理2:如果兩個平面有一個公共點,那麼它們有且只有一條通過這個點的公共直線。

公理3:過不在同一條直線上的三個點,有且只有一個平面。

推論1:經過一條直線和這條直線外一點,有且只有一個平面。

推論2:經過兩條相交直線,有且只有一個平面。

推論3:經過兩條平行直線,有且只有一個平面。

公理4:平行於同一條直線的兩條直線互相平行。

等角定理:如果一個角的兩邊和另一個角的兩邊分別平行並且方向相同,那麼這兩個角相等。

空間兩直線的位置關系:

空間兩條直線只有三種位置關系:平行、相交、異面

1、按是否共面可分為兩類:

(1)共面:平行、相交

(2)異面:

異面直線的定義:不同在任何一個平面內的兩條直線或既不平行也不相交。

異面直線判定定理:用平面內一點與平面外一點的直線,與平面內不經過該點的直線是異面直線。

2、若從有無公共點的角度看可分為兩類:

(1)有且僅有一個公共點——相交直線;(2)沒有公共點——平行或異面

高二數學理科的必會知識點歸納3

一、集合、簡易邏輯(14課時,8個)1.集合;2.子集;3.補集;4.交集;5.並集;6.邏輯連結詞;7.四種命題;8.充要條件.

二、函數(30課時,12個)1.映射;2.函數;3.函數的單調性;4.反函數;5.互為反函數的函數圖象間的關系;6.指數概念的擴充;7.有理指數冪的運算;8.指數函數;9.對數;10.對數的運算性質;11.對數函數.12.函數的應用舉例.

三、數列(12課時,5個)1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式.

四、三角函數(46課時17個)1.角的概念的推廣;2.弧度制;3.任意角的三角函數;4,單位圓中的三角函數線;5.同角三角函數的基本關系式;6.正弦、餘弦的誘導公式』7.兩角和與差的正弦、餘弦、正切;8.二倍角的正弦、餘弦、正切;9.正弦函數、餘弦函數的圖象和性質;10.周期函數;11.函數的奇偶性;12.函數的圖象;13.正切函數的圖象和性質;14.已知三角函數值求角;15.正弦定理;16餘弦定理;17斜三角形解法舉例.

五、平面向量(12課時,8個)1.向量2.向量的加法與減法3.實數與向量的積;4.平面向量的坐標表示;5.線段的定比分點;6.平面向量的數量積;7.平面兩點間的距離;8.平移.

六、不等式(22課時,5個)1.不等式;2.不等式的基本性質;3.不等式的證明;4.不等式的解法;5.含絕對值的不等式.

七、直線和圓的方程(22課時,12個)1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區域;8.簡單線性規劃問題.9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標准方程和一般方程;12.圓的參數方程.

八、圓錐曲線(18課時,7個)1橢圓及其標准方程;2.橢圓的簡單幾何性質;3.橢圓的參數方程;4.雙曲線及其標准方程;5.雙曲線的簡單幾何性質;6.拋物線及其標准方程;7.拋物線的簡單幾何性質.

九、(B)直線、平面、簡單何體(36課時,28個)1.平面及基本性質;2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質;5,直線和平面垂直的判與性質;6.三垂線定理及其逆定理;7.兩個平面的位置關系;8.空間向量及其加法、減法與數乘;9.空間向量的坐標表示;10.空間向量的數量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14異面直線的距離;15.直線和平面垂直的性質;16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質;21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質;24.多面體;25.稜柱;26.棱錐;27.正多面體;28.球.

十、排列、組合、二項式定理(18課時,8個)1.分類計數原理與分步計數原理.2.排列;3.排列數公式』4.組合;5.組合數公式;6.組合數的兩個性質;7.二項式定理;8.二項展開式的性質.

十一、概率(12課時,5個)1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個發生的概率;4.相互獨立事件同時發生的概率;5.獨立重復試驗.選修Ⅱ(24個)

十二、概率與統計(14課時,6個)1.離散型隨機變數的分布列;2.離散型隨機變數的期望值和方差;3.抽樣 方法 ;4.總體分布的估計;5.正態分布;6.線性回歸.

十三、極限(12課時,6個)1.數學歸納法;2.數學歸納法應用舉例;3.數列的極限;4.函數的極限;5.極限的四則運算;6.函數的連續性.

十四、導數(18課時,8個)1.導數的概念;2.導數的幾何意義;3.幾種常見函數的導數;4.兩個函數的和、差、積、商的導數;5.復合函數的導數;6.基本導數公式;7.利用導數研究函數的單調性和極值;8函數的值和最小值.

十五、復數(4課時,4個)1.復數的概念;2.復數的加法和減法;3.復數的乘法和除法答案補充高中數學有130個知識點,從前一份試卷要考查90個知識點,覆蓋率達70%左右,而且把這一項作為衡量試捲成功與否的標准之一.這一傳統近年被打破,取而代之的是關注思維,突出能力,重視思想方法和思維能力的考查.現在的我們學數學比前人幸福啊!!相信對你的學習會有幫助的,祝你成功!答案補充一試全國高中數_賽的一試競賽大綱,完全按照全日制中學《數學教學大綱》中所規定的教學要求和內容,即高考所規定的知識范圍和方法,在方法的要求上略有提高,其中概率和微積分初步不考。二試1、平面幾何基本要求:掌握初中數學競賽大綱所確定的所有內容。補充要求:面積和面積方法。幾個重要定理:梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理。幾個重要的極值:到三角形三頂點距離之和最小的點--費馬點。到三角形三頂點距離的平方和最小的點,重心。三角形內到三邊距離之積的點,重心。幾何不等式。簡單的等周問題。了解下述定理:在周長一定的n邊形的集合中,正n邊形的面積。在周長一定的簡單閉曲線的集合中,圓的面積。在面積一定的n邊形的集合中,正n邊形的周長最小。在面積一定的簡單閉曲線的集合中,圓的周長最小。幾何中的運動:反射、平移、旋轉。復數方法、向量方法。平面凸集、凸包及應用。答案補充第二數學歸納法。遞歸,一階、二階遞歸,特徵方程法。函數迭代,求n次迭代,簡單的函數方程。n個變元的平均不等式,柯西不等式,排序不等式及應用。復數的指數形式,歐拉公式,棣莫佛定理,單位根,單位根的應用。圓排列,有重復的排列與組合,簡單的組合恆等式。一元n次方程(多項式)根的個數,根與系數的關系,實系數方程虛根成對定理。簡單的初等數論問題,除初中大綱中所包括的內容外,還應包括無窮遞降法,同餘,歐幾里得除法,非負最小完全剩餘類,高斯函數,費馬小定理,歐拉函數,孫子定理,格點及其性質。3、立體幾何多面角,多面角的性質。三面角、直三面角的基本性質。正多面體,歐拉定理。體積證法。截面,會作截面、表面展開圖。4、平面解析幾何直線的法線式,直線的極坐標方程,直線束及其應用。二元一次不等式表示的區域。三角形的面積公式。圓錐曲線的切線和法線。圓的冪和根軸。


高二數學理科的必會知識點歸納相關 文章 :

★ 高二理科數學知識點

★ 高二數學知識點整理

★ 高二數學推理知識點大總結

★ 高二數學整體知識總結

★ 理科數學高二都要學習哪些內容

★ 高中理科數學公式知識點總結

★ 高中數學必考知識點歸納

★ 高二數學復數知識點整理

★ 高二數學理科生期末復習方法

㈥ 高二數學知識點整理

一、求雙曲線的標准方程
求雙曲線的標准方程

(a、b>0),通常是利用雙曲線的有關概念及性質再
結合其它知識直接求出a、b或利用待定系數法.
例1
求與雙曲線
有公共漸近線,且過點
的雙曲線的共軛雙曲線方程.

令與雙曲線
有公共漸近線的雙曲線系方程為
,將點
代入,得
,∴雙曲線方程為
,由共軛雙曲線的定義,可得此雙曲線的共軛雙曲線方程為
.

此例是「求與已知雙曲線共漸近線的雙曲線方程」類型的題.一般地,與雙曲線
有公共漸近線的雙曲線的方程可設為
(kR,且k≠0);有公共焦點的雙曲線方程可設為
,本題用的是待定系數法.
例2
雙曲線的實半軸與虛半軸長的積為
,它的兩焦點分別為F1、F2,直線
過F2且與直線F1F2的夾角為
,且

與線段F1F2的垂直平分線的交點為P,線段PF2與雙曲線的交點為Q,且
,建立適當的坐標系,求雙曲線的方程.

以F1F2的中點為原點,F1、F2所在直線為x軸建立坐標系,則所求雙曲線方程為
(a>0,b>0),設F2(c,0),不妨設
的方程為
,它與y軸交點
,由定比分點坐標公式,得Q點的坐標為
,由點Q在雙曲線上可得
,又



,∴雙曲線方程為
.

此例用的是直接法.
二、雙曲線定義的應用
1、第一定義的應用
例3
設F1、F2為雙曲線
的兩個焦點,點P在雙曲線上,且滿足∠F1PF2=900,求ΔF1PF2的面積.

由雙曲線的第一定義知,
,兩邊平方,得
.
∵∠F1PF2=900,∴




.
2、第二定義的應用
例4
已知雙曲線
的離心率
,左、右焦點分別為F1、F2,左准線為l,能否在雙曲線左支上找到一點P,使

P到l的距離d與
的比例中項?

設存在點
,則
,由雙曲線的第二定義,得



,又


,解之,得





矛盾,故點P不存在.

以上二例若不用雙曲線的定義得到焦半徑

或其關系,解題過程將復雜得多.
三、雙曲線性質的應用
例5
設雙曲線

)的半焦距為c,
直線l過(a,0)、(0,b)兩點,已知原點到
的距離為

求雙曲線的離心率.
解析
這里求雙曲線的離心率即求
,是個幾何問題,怎麼把
題目中的條件與之聯系起來呢?如圖1,



,由面積法知ab=
,考慮到



,亦即
,注意到a
評論
0
0
載入更多

㈦ 高二,馬上要期末考試了,怎麼快速得學好數學

淡定....數學是和智商掛鉤的,所以數學好不好是天生的。我數學一直很好,你是不是上課的時候有時聽懂了一半又有點不懂,然後就做錯題?這時你應該找一個數學成績好的、RP好的同桌,上課聽不懂就問他,然後就ok了

㈧ 高二數學學考必考知識點概括

很多同學在看見數學的時候,就感覺力不從心,成績滑落到低谷,慢慢的厭倦,甚至提到數學就會感覺到頭疼,從而會使自己生疏了物理!所以我們要積極的改變對數學的 學習態度 和 學習 方法 ,讓自己盡可能的適應。以下是我給大家整理的 高二數學 學考必考知識點概括,希望大家能夠喜歡!

高二數學學考必考知識點概括1

直線、平面、簡單幾何體:

1、學會三視圖的分析:

2、斜二測畫法應注意的地方:

(1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應軸o'x'、o'y'、使∠x'o'y'=45°(或135°);

(2)平行於x軸的線段長不變,平行於y軸的線段長減半.

(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.

3、表(側)面積與體積公式:

⑴柱體:①表面積:S=S側+2S底;②側面積:S側=;③體積:V=S底h

⑵錐體:①表面積:S=S側+S底;②側面積:S側=;③體積:V=S底h:

⑶台體①表面積:S=S側+S上底S下底②側面積:S側=

⑷球體:①表面積:S=;②體積:V=

4、位置關系的證明(主要方法):注意立體幾何證明的書寫

(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

(2)平面與平面平行:①線面平行面面平行。

(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內的兩條相交直線

5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)

⑴異面直線所成角的求法:平移法:平移直線,構造三角形;

⑵直線與平面所成的角:直線與射影所成的角

高二數學學考必考知識點概括2

1.輾轉相除法是用於求公約數的一種方法,這種演算法由歐幾里得在公元前年左右首先提出,因而又叫歐幾里得演算法.

2.所謂輾轉相法,就是對於給定的兩個數,用較大的數除以較小的數.若余數不為零,則將較小的數和余數構成新的一對數,繼續上面的除法,直到大數被小數除盡,則這時的除數就是原來兩個數的公約數.

3.更相減損術是一種求兩數公約數的方法.其基本過程是:對於給定的兩數,用較大的數減去較小的數,接著把所得的差與較小的數比較,並以大數減小數,繼續這個操作,直到所得的數相等為止,則這個數就是所求的公約數.

4.秦九韶演算法是一種用於計算一元二次多項式的值的方法.

5.常用的排序方法是直接插入排序和冒泡排序.

6.進位制是人們為了計數和運算方便而約定的記數系統.「滿進一」,就是k進制,進制的基數是k.

7.將進制的數化為十進制數的方法是:先將進制數寫成用各位上的數字與k的冪的乘積之和的形式,再按照十進制數的運算規則計算出結果.

8.將十進制數化為進制數的方法是:除k取余法.即用k連續去除該十進制數或所得的商,直到商為零為止,然後把每次所得的余數倒著排成一個數就是相應的進制數.

1.重點:理解輾轉相除法與更相減損術的原理,會求兩個數的公約數;理解秦九韶演算法原理,會求一元多項式的值;會對一組數據按照一定的規則進行排序;理解進位制,能進行各種進位制之間的轉化.

2.難點:秦九韶演算法求一元多項式的值及各種進位制之間的轉化.

3.重難點:理解輾轉相除法與更相減損術、秦九韶演算法原理、排序方法、進位制之間的轉化方法.

高二數學學考必考知識點概括3

1.計數原理知識點

①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分類)

2.排列(有序)與組合(無序)

Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!

Cnm=n!/(n-m)!m!

Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!

3.排列組合混合題的解題原則:先選後排,先分再排

排列組合題的主要解題方法:優先法:以元素為主,應先滿足特殊元素的要求,再考慮其他元素.以位置為主考慮,即先滿足特殊位置的要求,再考慮其他位置.

捆綁法(集團元素法,把某些必須在一起的元素視為一個整體考慮)

插空法(解決相間問題)間接法和去雜法等等

在求解排列與組合應用問題時,應注意:

(1)把具體問題轉化或歸結為排列或組合問題;

(2)通過分析確定運用分類計數原理還是分步計數原理;

(3)分析題目條件,避免「選取」時重復和遺漏;

(4)列出式子計算和作答.

經常運用的數學思想是:

①分類討論思想;②轉化思想;③對稱思想.

4.二項式定理知識點:

①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

特別地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

②主要性質和主要結論:對稱性Cnm=Cnn-m

二項式系數在中間。(要注意n為奇數還是偶數,答案是中間一項還是中間兩項)

所有二項式系數的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

奇數項二項式系數的和=偶數項而是系數的和

Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

③通項為第r+1項:Tr+1=Cnran-rbr作用:處理與指定項、特定項、常數項、有理項等有關問題。

5.二項式定理的應用:解決有關近似計算、整除問題,運用二項展開式定理並且結合放縮法證明與指數有關的不等式。

6.注意二項式系數與項的系數(字母項的系數,指定項的系數等,指運算結果的系數)的區別,在求某幾項的系數的和時注意賦值法的應用。


高二數學學考必考知識點概括相關 文章 :

★ 高二數學考試必考知識點

★ 高二數學考點知識點總結復習大綱

★ 高二數學常考知識點總結

★ 高二數學學習方法指導與學習方法總結

★ 高二數學考點總結

★ 高中數學必考知識點歸納整理

★ 高中數學必考知識點歸納

★ 高二數學整體知識總結

★ 高二數學上下學期知識點復習提綱

★ 高二下學期數學期末備考知識點復習

㈨ 高二數學下冊知識點

因為高二開始努力,所以前面的知識肯定有一定的欠缺,這就要求自己要制定一定的計劃,更要比別人付出更多的努力,相信付出的汗水不會白白流淌的,收獲總是自己的。我網高二頻道為你整理了《 高二數學 重要知識點歸納》,助你金榜題名!


高二數學下冊知識點

1.求函數的單調性:

利用導數求函數單調性的基本 方法 :設函數yf(x)在區間(a,b)內可導,(1)如果恆f(x)0,則函數yf(x)在區間(a,b)上為增函數;(2)如果恆f(x)0,則函數yf(x)在區間(a,b)上為減函數;(3)如果恆f(x)0,則函數yf(x)在區間(a,b)上為常數函數。

利用導數求函數單調性的基本步驟:①求函數yf(x)的定義域;②求導數f(x);③解不等式f(x)0,解集在定義域內的不間斷區間為增區間;④解不等式f(x)0,解集在定義域內的不間斷區間為減區間。

反過來,也可以利用導數由函數的單調性解決相關問題(如確定參數的取值范圍):設函數yf(x)在區間(a,b)內可導,

(1)如果函數yf(x)在區間(a,b)上為增函數,則f(x)0(其中使f(x)0的x值不構成區間);

(2)如果函數yf(x)在區間(a,b)上為減函數,則f(x)0(其中使f(x)0的x值不構成區間);

(3)如果函數yf(x)在區間(a,b)上為常數函數,則f(x)0恆成立。

2.求函數的極值:

設函數yf(x)在x0及其附近有定義,如果對x0附近的所有的點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數f(x)的極小值(或極大值)。

可導函數的極值,可通過研究函數的單調性求得,基本步驟是:

(1)確定函數f(x)的定義域;(2)求導數f(x);(3)求方程f(x)0的全部實根,x1x2xn,順次將定義域分成若干個小區間,並列表:x變化時,f(x)和f(x)值的變化情況:

(4)檢查f(x)的符號並由表格判斷極值。

3.求函數的值與最小值:

如果函數f(x)在定義域I內存在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函數在定義域上的值。函數在定義域內的極值不一定,但在定義域內的最值是的。

求函數f(x)在區間[a,b]上的值和最小值的步驟:(1)求f(x)在區間(a,b)上的極值;

(2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區間[a,b]上的值與最小值。

4.解決不等式的有關問題:

(1)不等式恆成立問題(絕對不等式問題)可考慮值域。

f(x)(xA)的值域是[a,b]時,

不等式f(x)0恆成立的充要條件是f(x)max0,即b0;

不等式f(x)0恆成立的充要條件是f(x)min0,即a0。

f(x)(xA)的值域是(a,b)時,

不等式f(x)0恆成立的充要條件是b0;不等式f(x)0恆成立的充要條件是a0。

(2)證明不等式f(x)0可轉化為證明f(x)max0,或利用函數f(x)的單調性,轉化為證明f(x)f(x0)0。

5.導數在實際生活中的應用:

實際生活求解(小)值問題,通常都可轉化為函數的最值.在利用導數來求函數最值時,一定要注意,極值點的單峰函數,極值點就是最值點,在解題時要加以說明。

高二數學下冊知識點

復合函數定義域

若函數y=f(u)的定義域是B,u=g(x)的定義域是A,則復合函數y=f[g(x)]的定義域是D={x|x∈A,且g(x)∈B}綜合考慮各部分的x的取值范圍,取他們的交集。

求函數的定義域主要應考慮以下幾點:

⑴當為整式或奇次根式時,R的值域;

⑵當為偶次根式時,被開方數不小於0(即≥0);

⑶當為分式時,分母不為0;當分母是偶次根式時,被開方數大於0;

⑷當為指數式時,對零指數冪或負整數指數冪,底不為0。

⑸當是由一些基本函數通過四則運算結合而成的,它的定義域應是使各部分都有意義的自變數的值組成的集合,即求各部分定義域集合的交集。

⑹分段函數的定義域是各段上自變數的取值集合的並集。

⑺由實際問題建立的函數,除了要考慮使解析式有意義外,還要考慮實際意義對自變數的要求

⑻對於含參數字母的函數,求定義域時一般要對字母的取值情況進行分類討論,並要注意函數的定義域為非空集合。

⑼對數函數的真數必須大於零,底數大於零且不等於1。

⑽三角函數中的切割函數要注意對角變數的限制。

復合函數常見題型

(ⅰ)已知f(x)定義域為A,求f[g(x)]的定義域:實質是已知g(x)的范圍為A,以此求出x的范圍。

(ⅱ)已知f[g(x)]定義域為B,求f(x)的定義域:實質是已知x的范圍為B,以此求出g(x)的范圍。

(ⅲ)已知f[g(x)]定義域為C,求f[h(x)]的定義域:實質是已知x的范圍為C,以此先求出g(x)的范圍(即f(x)的定義域);然後將其作為h(x)的范圍,以此再求出x的范圍。

高二數學下冊知識點

直線、平面、簡單幾何體:

1、學會三視圖的分析:

2、斜二測畫法應注意的地方:

(1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應軸o'x'、o'y'、使∠x'o'y'=45°(或135°);

(2)平行於x軸的線段長不變,平行於y軸的線段長減半.

(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.

3、表(側)面積與體積公式:

⑴柱體:①表面積:S=S側+2S底;②側面積:S側=;③體積:V=S底h

⑵錐體:①表面積:S=S側+S底;②側面積:S側=;③體積:V=S底h:

⑶台體①表面積:S=S側+S上底S下底②側面積:S側=

⑷球體:①表面積:S=;②體積:V=

4、位置關系的證明(主要方法):注意立體幾何證明的書寫

(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

(2)平面與平面平行:①線面平行面面平行。

(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內的兩條相交直線

5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)

⑴異面直線所成角的求法:平移法:平移直線,構造三角形;

⑵直線與平面所成的角:直線與射影所成的角


高二數學下冊知識點相關 文章 :

★ 人教版高二數學下冊知識點歸納,人教版高二數學下冊知識點歸納

★ 高二數學下冊課本知識點

★ 高二數學下學期知識點總結

★ 高二數學知識點歸納總結

★ 高二數學下冊拋物線知識點

★ 高二數學知識點總結

★ 高二數學知識點及公式2020

★ 高二數學下冊期末考試知識點總結

★ 高二數學知識點總結人教版

★ 高二數學上下學期知識點復習提綱

㈩ 高二數學知識總結歸納

高二本身的知識體系而言,它主要是對高一知識的深入和新知識模塊的補充。以數學為例,除去不同學校教學進度的不同,下面給大家分享一些關於 高二數學 知識 總結 歸納,希望對大家有所幫助。

高二數學知識總結1

一、直線與圓:

1、直線的傾斜角的范圍是

在平面直角坐標系中,對於一條與軸相交的直線,如果把軸繞著交點按逆時針方向轉到和直線重合時所轉的最小正角記為,就叫做直線的傾斜角。當直線與軸重合或平行時,規定傾斜角為0;

2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.

過兩點(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導的 方法 。

3、直線方程:⑴點斜式:直線過點斜率為,則直線方程為,

⑵斜截式:直線在軸上的截距為和斜率,則直線方程為

4、直線與直線的位置關系:

(1)平行A1/A2=B1/B2注意檢驗(2)垂直A1A2+B1B2=0

5、點到直線的距離公式;

兩條平行線與的距離是

6、圓的標准方程:.⑵圓的一般方程:

注意能將標准方程化為一般方程

7、過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那麼另外一條就是與軸垂直的直線.

8、直線與圓的位置關系,通常轉化為圓心距與半徑的關系,或者利用垂徑定理,構造直角三角形解決弦長問題.①相離②相切③相交

9、解決直線與圓的關系問題時,要充分發揮圓的平面幾何性質的作用(如半徑、半弦長、弦心距構成直角三角形)直線與圓相交所得弦長

二、圓錐曲線方程:

1、橢圓:①方程(a>b>0)注意還有一個;②定義:|PF1|+|PF2|=2a>2c;③e=④長軸長為2a,短軸長為2b,焦距為2c;a2=b2+c2;

2、雙曲線:①方程(a,b>0)注意還有一個;②定義:||PF1|-|PF2||=2a<2c;③e=;④實軸長為2a,虛軸長為2b,焦距為2c;漸進線或c2=a2+b2

3、拋物線:①方程y2=2px注意還有三個,能區別開口方向;②定義:|PF|=d焦點F(,0),准線x=-;③焦半徑;焦點弦=x1+x2+p;

4、直線被圓錐曲線截得的弦長公式:

三、直線、平面、簡單幾何體:

1、學會三視圖的分析:

2、斜二測畫法應注意的地方:

(1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應軸o'x'、o'y'、使∠x'o'y'=45°(或135°);

(2)平行於x軸的線段長不變,平行於y軸的線段長減半.

(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.

3、表(側)面積與體積公式:

⑴柱體:①表面積:S=S側+2S底;②側面積:S側=;③體積:V=S底h

⑵錐體:①表面積:S=S側+S底;②側面積:S側=;③體積:V=S底h:

⑶台體①表面積:S=S側+S上底S下底②側面積:S側=

⑷球體:①表面積:S=;②體積:V=

4、位置關系的證明(主要方法):注意立體幾何證明的書寫

(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

(2)平面與平面平行:①線面平行面面平行。

(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內的兩條相交直線

5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)

⑴異面直線所成角的求法:平移法:平移直線,構造三角形;

⑵直線與平面所成的角:直線與射影所成的角

四、導數:導數的意義-導數公式-導數應用(極值最值問題、曲線切線問題)

1、導數的定義:在點處的導數記作.

2.導數的幾何物理意義:曲線在點處切線的斜率

①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。

3.常見函數的導數公式:①;②;③;

⑤;⑥;⑦;⑧。

4.導數的四則運演算法則:

5.導數的應用:

(1)利用導數判斷函數的單調性:設函數在某個區間內可導,如果,那麼為增函數;如果,那麼為減函數;

注意:如果已知為減函數求字母取值范圍,那麼不等式恆成立。

(2)求極值的步驟:

①求導數;

②求方程的根;

③列表:檢驗在方程根的左右的符號,如果左正右負,那麼函數在這個根處取得極大值;如果左負右正,那麼函數在這個根處取得極小值;

(3)求可導函數值與最小值的步驟:

ⅰ求的根;ⅱ把根與區間端點函數值比較,的為值,最小的是最小值。

五、常用邏輯用語:

1、四種命題:

⑴原命題:若p則q;⑵逆命題:若q則p;⑶否命題:若p則q;⑷逆否命題:若q則p

注:1、原命題與逆否命題等價;逆命題與否命題等價。判斷命題真假時注意轉化。

2、注意命題的否定與否命題的區別:命題否定形式是;否命題是.命題「或」的否定是「且」;「且」的否定是「或」.

3、邏輯聯結詞:

⑴且(and):命題形式pq;pqpqpqp

⑵或(or):命題形式pq;真真真真假

⑶非(not):命題形式p.真假假真假

假真假真真

假假假假真

「或命題」的真假特點是「一真即真,要假全假」;

「且命題」的真假特點是「一假即假,要真全真」;

「非命題」的真假特點是「一真一假」

4、充要條件

由條件可推出結論,條件是結論成立的充分條件;由結論可推出條件,則條件是結論成立的必要條件。

5、全稱命題與特稱命題:

短語 「所有」在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,並用符號表示。含有全體量詞的命題,叫做全稱命題。

短語「有一個」或「有些」或「至少有一個」在陳述中表示所述事物的個體或部分,邏輯中通常叫做存在量詞,並用符號表示,含有存在量詞的命題,叫做存在性命題。

高二數學知識總結2

異面直線定義:不同在任何一個平面內的兩條直線

異面直線性質:既不平行,又不相交.

異面直線判定:過平面外一點與平面內一點的直線與平面內不過該店的直線是異面直線

異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角.兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直.

求異面直線所成角步驟:

A、利用定義構造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上.B、證明作出的角即為所求角C、利用三角形來求角

(7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那麼這兩角相等或互補.

(8)空間直線與平面之間的位置關系

直線在平面內——有無數個公共點.

三種位置關系的符號表示:aαa∩α=Aaα

(9)平面與平面之間的位置關系:平行——沒有公共點;αβ

相交——有一條公共直線.α∩β=b

2、空間中的平行問題

(1)直線與平面平行的判定及其性質

線面平行的判定定理:平面外一條直線與此平面內一條直線平行,則該直線與此平面平行.

線線平行線面平行

線面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平 面相 交,

那麼這條直線和交線平行.線面平行線線平行

(2)平面與平面平行的判定及其性質

兩個平面平行的判定定理

(1)如果一個平面內的兩條相交直線都平行於另一個平面,那麼這兩個平面平行

(線面平行→面面平行),

(2)如果在兩個平面內,各有兩組相交直線對應平行,那麼這兩個平面平行.

(線線平行→面面平行),

(3)垂直於同一條直線的兩個平面平行,

兩個平面平行的性質定理

(1)如果兩個平面平行,那麼某一個平面內的直線與另一個平面平行.(面面平行→線面平行)

(2)如果兩個平行平面都和第三個平面相交,那麼它們的交線平行.(面面平行→線線平行)

3、空間中的垂直問題

(1)線線、面面、線面垂直的定義

兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直.

線面垂直:如果一條直線和一個平面內的任何一條直線垂直,就說這條直線和這個平面垂直.

平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直.

(2)垂直關系的判定和性質定理

線面垂直判定定理和性質定理

判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那麼這條直線垂直這個平面.

性質定理:如果兩條直線同垂直於一個平面,那麼這兩條直線平行.

面面垂直的判定定理和性質定理

判定定理:如果一個平面經過另一個平面的一條垂線,那麼這兩個平面互相垂直.

性質定理:如果兩個平面互相垂直,那麼在一個平面內垂直於他們的交線的直線垂直於另一個平面.

4、空間角問題

(1)直線與直線所成的角

兩平行直線所成的角:規定為.

兩條相交直線所成的角:兩條直線相交其中不大於直角的角,叫這兩條直線所成的角.

兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大於直角的角叫做兩條異面直線所成的角.

(2)直線和平面所成的角

平面的平行線與平面所成的角:規定為.平面的垂線與平面所成的角:規定為.

平面的斜線與平面所成的角:平面的一條斜線和它在平面內的射影所成的銳角,叫做這條直線和這個平面所成的角.

求斜線與平面所成角的思路類似於求異面直線所成角:「一作,二證,三計算」.

在「作角」時依定義關鍵作射影,由射影定義知關鍵在於斜線上一點到面的垂線,

在解題時,注意挖掘題設中主要信息:

(1)斜線上一點到面的垂線;

(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質易得垂線.

(3)二面角和二面角的平面角

二面角的定義:從一條直線出發的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面.

二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內分別作垂直於棱的兩條射線,這兩條射線所成的角叫二面角的平面角.

直二面角:平面角是直角的二面角叫直二面角.

兩相交平面如果所組成的二面角是直二面角,那麼這兩個平面垂直;反過來,如果兩個平面垂直,那麼所成的二面角為直二面角

求二面角的方法

定義法:在棱上選擇有關點,過這個點分別在兩個面內作垂直於棱的射線得到平面角

垂面法:已知二面角內一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角

高二數學知識總結3

1.在中學我們只研直圓柱、直圓錐和直圓台。所以對圓柱、圓錐、圓台的旋轉定義、實際上是直圓柱、直圓錐、直圓台的定義。

這樣定義直觀形象,便於理解,而且對它們的性質也易推導。

對於球的定義中,要注意區分球和球面的概念,球是實心的。

等邊圓柱和等邊圓錐是特殊圓柱和圓錐,它是由其軸截面來定義的,在實踐中運用較廣,要注意與一般圓柱、圓錐的區分。

2.圓柱、圓錐、圓和球的性質

(1)圓柱的性質,要強調兩點:一是連心線垂直圓柱的底面;二是三個截面的性質——平行於底面的截面是與底面全等的圓;軸截面是一個以上、下底面圓的直徑和母線所組成的矩形;平行於軸線的截面是一個以上、下底的圓的弦和母線組成的矩形。

(2)圓錐的性質,要強調三點

①平行於底面的截面圓的性質:

截面圓面積和底面圓面積的比等於從頂點到截面和從頂點到底面距離的平方比。

②過圓錐的頂點,且與其底面相交的截面是一個由兩條母線和底面圓的弦組成的等腰三角形,其面積為:

易知,截面三角形的頂角不大於軸截面的頂角(如圖10-20),事實上,由BC≥AB,VC=VB=VA可得∠AVB≤BVC.

由於截面三角形的頂角不大於軸截面的頂角。

所以,當軸截面的頂角θ≤90°,有0°<α≤θ≤90°,即有

當軸截面的頂角θ>90°時,軸截面的面積卻不是的,這是因為,若90°≤α<θ<180°時,1≥sinα>sinθ>0.

③圓錐的母線l,高h和底面圓的半徑組成一個直徑三角形,圓錐的有關計算問題,一般都要歸結為解這個直角三角形,特別是關系式

l2=h2+R2

(3)圓台的性質,都是從「圓台為截頭圓錐」這個事實推得的,高考,但仍要強調下面幾點:

①圓台的母線共點,所以任兩條母線確定的截面為一等腰梯形,但是,與上、下底面都相交的截面不一定是梯形,更不一定是等腰梯形。

②平行於底面的截面若將圓台的高分成距上、下兩底為兩段的截面面積為S,則

其中S1和S2分別為上、下底面面積。

的截面性質的推廣。

③圓台的母線l,高h和上、下兩底圓的半徑r、R,組成一個直角梯形,且有

l2=h2+(R-r)2

圓台的有關計算問題,常歸結為解這個直角梯形。

(4)球的性質,著重掌握其截面的性質。

①用任意平面截球所得的截面是一個圓面,球心和截面圓圓心的連線與這個截面垂直。

②如果用R和r分別表示球的半徑和截面圓的半徑,d表示球心到截面的距離,則

R2=r2+d2

即,球的半徑,截面圓的半徑,和球心到截面的距離組成一個直角三角形,有關球的計算問題,常歸結為解這個直角三角形。

3.圓柱、圓錐、圓台和球的表面積

(1)圓柱、圓錐、圓台和多面體一樣都是可以平面展開的。

①圓柱、圓錐、圓台的側面展開圖,是求其側面積的基本依據。

圓柱的側面展開圖,是由底面圖的周長和母線長組成的一個矩形。

②圓錐和側面展開圖是一個由兩條母線長和底面圓的周長組成的扇形,其扇形的圓心角為

③圓台的側面展開圖是一個由兩條母線長和上、下底面周長組成的扇環,其扇環的圓心角為

這個公式有利於空間幾何體和其側面展開圖的互化

顯然,當r=0時,這個公式就是圓錐側面展開圖扇形的圓心角公式,所以,圓錐側面展開圖扇形的圓心角公式是圓台相關角的特例。

(2)圓柱、圓錐和圓台的側面公式為

S側=π(r+R)l

當r=R時,S側=2πRl,即圓柱的側面積公式。

當r=0時,S側=rRl,即圓錐的面積公式。

要重視,側面積間的這種關系。

(3)球面是不能平面展開的圖形,所以,求它的面積的方法與柱、錐、台的方法完全不同。

推導出來,要用「微積分」等高等數學的知識,課本上不能算是一種證明。

求不規則圓形的度量屬性的常用方法是「細分——求和——取極限」,這種方法,在學完「微積分」的相關內容後,不證自明,這里從略。

4.畫圓柱、圓錐、圓台和球的直觀圖的方法——正等測

(1)正等測畫直觀圖的要求:

①畫正等測的X、Y、Z三個軸時,z軸畫成鉛直方向,X軸和Y軸各與Z軸成120°。

②在投影圖上取線段長度的方法是:在三軸上或平行於三軸的線段都取實長。

這里與斜二測畫直觀圖的方法不同,要注意它們的區別。

(2)正等測圓柱、圓錐、圓台的直觀圖的區別主要是水平放置的平面圖形。

用正等測畫水平放置的平面圓形時,將X軸畫成水平位置,Y軸畫成與X軸成120°,在投影圖上,X軸和Y軸上,或與X軸、Y軸平行的線段都取實長,在Z軸上或與Z軸平行的線段的畫法與斜二測相同,也都取實長。

5.關於幾何體表面內兩點間的最短距離問題

柱、錐、台的表面都可以平面展開,這些幾何體表面內兩點間最短距離,就是其平面內展開圖內兩點間的線段長。

由於球面不能平面展開,所以求球面內兩點間的球面距離是一個全新的方法,這個最短距離是過這兩點大圓的劣弧長。


高二數學知識總結歸納相關 文章 :

★ 高二數學知識點總結歸納

★ 高二數學知識點歸納總結

★ 高二數學知識點歸納小總結

★ 高二數學知識點最新歸納

★ 高二數學常考知識點總結

★ 高二數學知識點總結

★ 高二數學重要知識點歸納

★ 高二數學知識點復習總結

★ 高二數學知識點總結詳細

★ 高二數學知識點總結人教版

熱點內容
小學六年級數學補習 發布:2025-02-27 07:30:00 瀏覽:330
一隻貝教學反思 發布:2025-02-27 06:59:50 瀏覽:198
小說英語 發布:2025-02-27 04:54:34 瀏覽:531
初三化學酸鹼 發布:2025-02-27 04:39:39 瀏覽:250
gb是哪個國家 發布:2025-02-27 04:29:47 瀏覽:622
生物顆粒燃料機 發布:2025-02-27 03:24:00 瀏覽:333
貴陽英孚教育 發布:2025-02-27 02:24:22 瀏覽:264
五上語文課堂作業本答案 發布:2025-02-27 01:42:32 瀏覽:934
微生物是啥 發布:2025-02-27 01:10:36 瀏覽:298
六年級數學競賽題 發布:2025-02-26 23:01:41 瀏覽:34