2017高考數學三答案
① 2017高考數學專練及答案:圓錐曲線的定點 定值與最值
一、選擇題
1.已知拋物線y2=2px(p>0)的焦點為F,點P1(x1,y1),P2(x2,y2),P3(x3,y3)在拋物線上,且2x2=x1+x3,則有()
A.|FP1|+|FP2|=|FP3|
B.|FP1|2+|FP2|2=|FP3|2
C.2|FP2|=|FP1|+|FP3|
D.|FP2|2=|FP1|·|FP3|
答案:C解題思路:拋物線的准線方程為x=-,由定義得|FP1|=x1+,|FP2|=x2+,|FP3|=x3+,則|FP1|+|FP3|=x1++x3+=x1+x3+p,2|FP2|=2x2+p,由2x2=x1+x3,得2|FP2|=|FP1|+|FP3|,故選C.
2.與拋物線y2=8x相切傾斜角為135°的直線l與x軸和y軸的交點分別是A和B,那麼過A,B兩點的最小圓截拋物線y2=8x的准線所得的弦長為()
A.4B.2C.2D.
答案:C命題立意:本題考查直線與拋物線及圓的位置關系的應用,難度中等.
解題思路:設直線l的方程為y=-x+b,聯立直線與拋物線方程,消元得y2+8y-8b=0,因為直線與拋物線相切,故Δ=82-4×(-8b)=0,解得b=-2,故直線l的方程為x+y+2=0,從而A(-2,0),B(0,-2),因此過A,B兩點最小圓即為以AB為直徑的圓,其方程為(x+1)2+(y+1)2=2,而拋物線y2=8x的准線方程為x=-2,此時圓心(-1,-1)到准線的距離為1,故所截弦長為2=2.
3.如圖,過拋物線y2=2px(p>0)的焦點F的直線l交拋物線於點A,B,交其准線於點C,若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為()
A.y2=9x B.y2=6x
C.y2=3x D.y2=x
答案:C命題立意:本題考查拋物線定義的應用及拋物線方程的求解,難度中等.
解題思路:如圖,分別過點A,B作拋物線准線的垂線,垂足分別為E,D,由拋物線定義可知|AE|=|AF|=3,|BC|=2|BF|=2|BD|,在RtBDC中,可知BCD=30°,故在RtACE中,可得|AC|=2|AE|=6,故|CF|=3,則GF即為ACE的中位線,故|GF|=p==,因此拋物線方程為y2=2px=3x.
4.焦點在x軸上的雙曲線C的左焦點為F,右頂點為A,若線段FA的中垂線與雙曲線C有公共點,則雙曲線C的離心率的取值范圍是()
A.(1,3) B.(1,3]
C.(3,+∞) D.[3,+∞)
答案:D命題立意:本題主要考查雙曲線的離心率問題,考查考生的化歸與轉化能力.
解題思路:設AF的中點C(xC,0),由題意xC≤-a,即≤-a,解得e=≥3,故選D.
5.過點(,0)引直線l與曲線y=相交於A,B兩點,O為坐標原點,當AOB的面積取值時,直線l的搭肆斜率等於()
A. B.- C.± D.-
答案:B命題透析:本題考查直線與圓的位置關系以及數形結合的數學思想.
思路點撥:由y=,得x2+y2=1(y≥0),即該曲線表示圓心在原點,半徑為1的上半圓,如圖所示.
故SAOB=|OA||OB|·sin AOB=sin AOB,所以當sin AOB=1,即OAOB時,SAOB取得值,此時O到直線l的距離d=|OA|sin 45°=.設此時直線l的方程為y=k(x-),即kx-y-k=0,則有=,解得k=±,由圖可知直線l的傾斜角為鈍角,故k=-.
6.點P在直線l:y=x-1上,若存在過P的直線交拋物線y=x2於A,B兩點,且|PA|=|AB|,則稱點P為「正點」,那麼下列結論中正知滲轎確的是()
A.直線l上的所有點都是「正點」
B.直線l上僅有有限個點是「正點」
C.直線l上的所有點都不是「正點」
喊或D.直線l上有無窮多個點(點不是所有的點)是「正點」
答案:A解題思路:本題考查直線與拋物線的定義.設A(m,n),P(x,x-1),則B(2m-x,2n-x+1), A,B在y=x2上, n=m2,2n-x+1=(2m-x)2,消去n,整理得關於x的方程x2-(4m-1)x+2m2-1=0, Δ=8m2-8m+5>0恆成立, 方程恆有實數解.
二、填空題
7.設A,B為雙曲線-=1(b>a>0)上兩點,O為坐標原點.若OAOB,則AOB面積的最小值為________.
答案:解題思路:設直線OA的方程為y=kx,則直線OB的方程為y=-x,則點A(x1,y1)滿足故x=,y=,
|OA|2=x+y=;
同理|OB|2=.
故|OA|2·|OB|2=·=.
=≤(當且僅當k=±1時,取等號), |OA|2·|OB|2≥,
又b>a>0,
故SAOB=|OA|·|OB|的最小值為.
8.已知直線y=x與雙曲線-=1交於A,B兩點,P為雙曲線上不同於A,B的點,當直線PA,PB的斜率kPA,kPB存在時,kPA·kPB=________.
答案:解題思路:設點A(x1,y1),B(x2,y2),P(x0,y0),則由得y2=,y1+y2=0,y1y2=-,
x1+x2=0,x1x2=-4×.
由kPA·kPB=·====知kPA·kPB為定值.
9.設平面區域D是由雙曲線y2-=1的兩條漸近線和拋物線y2=-8x的准線所圍成的三角形(含邊界與內部).若點(x,y)D,則目標函數z=x+y的值為______.
答案:
3解題思路:本題考查雙曲線、拋物線的性質以及線性規劃.雙曲線y2-=1的兩條漸近線為y=±x,拋物線y2=-8x的准線為x=2,當直線y=-x+z過點A(2,1)時,zmax=3.
三、解答題
10.已知拋物線y2=4x,過點M(0,2)的直線與拋物線交於A,B兩點,且直線與x軸交於點C.
(1)求證:|MA|,|MC|,|MB|成等比數列;
(2)設=α,=β,試問α+β是否為定值,若是,求出此定值;若不是,請說明理由.
解析:(1)證明:設直線的方程為:y=kx+2(k≠0),
聯立方程可得得
k2x2+(4k-4)x+4=0.
設A(x1,y1),B(x2,y2),C,
則x1+x2=-,x1x2=,
|MA|·|MB|=|x1-0|·|x2-0|=,
而|MC|2=2=,
|MC|2=|MA|·|MB|≠0,
即|MA|,|MC|,|MB|成等比數列.
(2)由=α,=β,得
(x1,y1-2)=α,
(x2,y2-2)=β,
即得:α=,β=,
則α+β=,
由(1)中代入得α+β=-1,
故α+β為定值且定值為-1.
11.如圖,在平面直角坐標系xOy中,設點F(0,p)(p>0),直線l:y=-p,點P在直線l上移動,R是線段PF與x軸的交點,過R,P分別作直線l1,l2,使l1PF,l2l,l1∩l2=Q.
(1)求動點Q的軌跡C的方程;
(2)在直線l上任取一點M作曲線C的兩條切線,設切點為A,B,求證:直線AB恆過一定點;
(3)對(2)求證:當直線MA,MF,MB的斜率存在時,直線MA,MF,MB的斜率的倒數成等差數列.
解題思路:本題考查軌跡方程的求法及直線與拋物線的位置關系.(1)利用拋物線的定義即可求出拋物線的標准方程;(2)利用導數及方程根的思想得出兩切點的直線方程,進一步求出直線恆過的定點;(3)分別利用坐標表示三條直線的斜率,從而化簡證明即可.
解析:(1)依題意知,點R是線段PF的中點,且RQ⊥FP,
RQ是線段FP的垂直平分線. |QP|=|QF|.故動點Q的軌跡C是以F為焦點,l為准線的拋物線,其方程為:x2=4py(p>0).
(2)設M(m,-p),兩切點為A(x1,y1),B(x2,y2).
由x2=4py得y=x2,求導得y′=x.
兩條切線方程為y-y1=x1(x-x1),
y-y2=x2(x-x2),
對於方程,代入點M(m,-p)得,
-p-y1=x1(m-x1),又y1=x,
-p-x=x1(m-x1),
整理得x-2mx1-4p2=0.
同理對方程有x-2mx2-4p2=0,
即x1,x2為方程x2-2mx-4p2=0的兩根.
x1+x2=2m,x1x2=-4p2.
設直線AB的斜率為k,k===(x1+x2),
所以直線的方程為y-=(x1+x2)(x-x1),展開得:
y=(x1+x2)x-,
將代入得:y=x+p.
直線恆過定點(0,p).
② 跪求2017年全國高考沖刺壓軸卷三的理綜和數學答案
上樂沖刺吧里找找看
③ 17年高考理科全國卷數學考卷的答案
2017年普通高等學校招生全國統一考試理科數學參考答案:
④ 我國古代數學家劉徽創立的「割圓術」
隨著2017年高考數學科目的結束,家長和考生最想知道的無非是高考數學試題的答案,下面我為大家提供2017年浙江高考文科數學試卷的試題和答案,供家長和學生們參考,祝願應屆高考學子取得理想的成績。
11.我國古代數學家劉徽創立的「割圓術」可以估算圓周率π,理論上能把π的值計算到任意精度。祖沖之繼承並發展了「割圓術」,將π的值精確到小數點後七位,其結果領先世界一千多年,「割圓術」的第一步是計算單位圓內接正六邊形的面積S內,S內= 。
此題答案為 二分之三倍的根號三
12.已知ab∈R, (a+bi)²=3+4i(i是虛數單位)則a²+b²= ,ab= 。
此題答案為 5 2
14. 已知△ABC,AB=AC=4,BC=2. 點D為基寬AB延長線上一點,BD=2,連結CD,則△BDC的面積是___________,cos∠BDC=__________.
此題答案為 二分之根號十五
15.已知向量a,b滿足丨a丨=1,丨b丨=2,則丨a+b丨+丨a-b丨的最小值是________,最大值是_______.
此題答案為 4,二倍的根號五
16.從6男2女共8名學生中選出隊長1人,副隊長1人,普通隊員2人組成4人服務隊,要求服務隊中至少有1名女生,共有______中不同的選法.(用數字作答)
此題答案為 660
17. 已知α∈R,函數f(x)=丨x + 4/x丨-α+α 在區間[1,4]上的最大值是5,則α的簡鋒備取值范圍是___________.
此題答案為 (負無窮,9/2)
以上為浙江高考文科數學試攔毀卷的部分試題及答案,僅供參考。
⑤ 2017年全國各地高考數學真題及參考答案 哪份試卷最難
毫無疑問江蘇最難ε=ε=ε=(゚◇゚ノ)ノ
⑥ 2017高考數學專練及答案:函數與方程
一、選擇題
1.已知函數f(x)=2x3-x2+m的圖象上A點處的切線與直線x-y+3=0的夾角為45°,則A點的橫坐標為()
A.0 B.1 C.0或 D.1或
答案:C命題立意:本題考查導數的應用,難度中等.
解題思路:直線x-y+3=0的傾斜角為45°,
切線的傾斜角為0°或90°,由f′(x)=6x2-x=0可得x=0或x=,故選C.
易錯點撥:常見函數的切線的斜率都是存在的,所以傾斜角不會是90°.
2.設函數f(x)=則滿足f(x)≤2的x的取值范圍是()
A.[-1,2] B.[0,2]
C.[1,+∞) D.[0,+∞)
答案:D命題立意:本題考查分段函數的相關知識,求解時可分為x≤1和x>1兩種情況進行求解,再對所求結果求並集即得最終結果.
解題思路:若x≤1,則21-x≤2,解得0≤x≤1;若x>1,則1-log2 x≤2,解得x>1,綜上可知,x≥0.故選D.
3.函數y=x-2sin x,x的大致圖象是()
答案:D解析思路:因為函數為奇函數,所以圖象關於原點對稱,排除A,B.函數的導數為f′(x)=1-2cos x,由f′(x)=1-2cos x=0,得cos x=,所以x=.當00,函數單調遞增,所以當x=時,函數取得極小值.故選D.
4.已知函數f(x)滿足豎宏:當x≥4時,f(x)=2x;當x<4時,f(x)=f(x+1),則f=()
A. B. C.12 D.24
答案:D命題立意:本題考查指數式的運算,難度中等.
解題思路:利用指數式的運演算法則求解.因為2+log =2+log2 3(3,4),所以f=f=f(3+log2 3)=23+log2 3=8×3=24.
5.已知函數f(x)=若關於x的方程f2(x)-af(x)=0恰好有5個不同的實數解,則a的取值范圍是()
A.(0,1) B.(0,2) C.(1,2) D.(0,3)
答案:
A解題思路:設t=f(x),則方程為t2-at=0,解得t=0或t=a,
即f(x)=0或衡伍f(x)=a.
如圖,作出函數的圖象,
由函數圖象可知,f(x)=0的解有兩個,
故要使方程f2(x)-af(x)=0恰有5個不同的解,則方程f(x)=a的解必有三個,此時0
6.若R上的奇函數y=f(x)的圖象關於直線x=1對稱,且當0
A.4 020 B.4 022 C.4 024 D.4 026
答案:B命題立意:本題考查函數性質的應用及數形結合思想,考查推理與轉化能力,難度中等.
解題思路:由於函數圖象關於直線x=1對稱,故有f(-x)=f(2+x),又函數為奇函數,故-f(x)=f(2+x),從而得-f(x+2)=f(x+4)=f(x),即函數以4為周期,據題意其在一個周期內的圖象如圖所示.
又函數為定義在R上的奇函數,故f(0)=0,因此f(x)=+f(0)=,因此在區間(2 010,2 012)內的函數圖象可由區間(-2,0)內的圖象向右平移2 012個單位得到,此時兩根關於直線x=2 011對稱,故x1+x2=4 022.
7.已知函數滿足f(x)=2f,當x[1,3]時,f(x)=ln x,若在區間內,函數g(x)=f(x)-ax有三個不同零點,則實數a的取值范圍是()
A. B.
C. D.
答案:A思路點撥:當x∈時,則1<≤3,
f(x)=2f=2ln=-2ln x.
f(x)=
g(x)=f(x)-ax在區間內有三個不同零點,即函數y=與y=a的圖象在上有三個不同的交點.
當x∈時,y=-,
y′=<0,
y=-在上遞減,
y∈(0,6ln 3).
當x[1,3]時,y=,
y′=,
y=在[1,e]上遞增,在[e,3]上遞減.
結合圖象,所以y=與y=a的圖象有三個交點時,a的取值范圍為.
8.若函數f(x)=loga有最小值,則實數a的取值余攔冊范圍是()
A.(0,1) B.(0,1)(1,)
C.(1,) D.[,+∞)
答案:C解題思路:設t=x2-ax+,由二次函數的性質可知,t有最小值t=-a×+=-,根據題意,f(x)有最小值,故必有解得1
9.已知函數f(x)=若函數g(x)=f(x)-m有三個不同的零點,則實數m的取值范圍為()
A. B.
C. D.
答案:
C命題立意:本題考查函數與方程以及數形結合思想的應用,難度中等.
解題思路:由g(x)=f(x)-m=0得f(x)=m,作出函數y=f(x)的圖象,當x>0時,f(x)=x2-x=2-≥-,所以要使函數g(x)=f(x)-m有三個不同的零點,只需直線y=m與函數y=f(x)的圖象有三個交點即可,如圖.只需-
10.在實數集R中定義一種運算「*」,對任意給定的a,bR,a*b為確定的實數,且具有性質:
(1)對任意a,bR,a*b=b*a;
(2)對任意aR,a*0=a;
(3)對任意a,bR,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.
關於函數f(x)=(3x)*的性質,有如下說法:函數f(x)的最小值為3;函數f(x)為奇函數;函數f(x)的單調遞增區間為,.其中所有正確說法的個數為()
A.0 B.1 C.2 D.3
答案:B解題思路:f(x)=f(x)*0=*0=0]3x×+[(3x)*0]+)-2×0=3x×+3x+=3x++1.
當x=-1時,f(x)0,得x>或x<-,因此函數f(x)的單調遞增區間為,,即正確.
二、填空題
11.已知f(x)=若f[f(0)]=4a,則實數a=________.
答案:2命題立意:本題考查了分段函數及復合函數的相關知識,對復合函數求解時,要從內到外逐步運算求解.
解題思路:因為f(0)=2,f(2)=4+2a,所以4+2a=4a,解得a=2.
12.設f(x)是定義在R上的奇函數,在(-∞,0)上有2xf′(2x)+f(2x)<0且f(-2)=0,則不等式xf(2x)<0的解集為________.
答案:(-1,0)(0,1)命題立意:本題考查函數的奇偶性與單調性的應用,難度中等.
解題思路:[xf(2x)]′=2xf′(2x)+f(2x)<0,故函數F(x)=xf(2x)在區間(-∞,0)上為減函數,又由f(x)為奇函數可得F(x)=xf(2x)為偶函數,且F(-1)=F(1)=0,故xf(2x)<0F(x)<0,當x0時,不等式解集為(0,1),故原不等式解集為(-1,0)(0,1).
13.函數f(x)=|x-1|+2cos πx(-2≤x≤4)的所有零點之和為________.
答案:6命題立意:本題考查數形結合及函數與方程思想的應用,充分利用已知函數的對稱性是解答本題的關鍵,難度中等.
解題思路:由於函數f(x)=|x-1|+2cos πx的零點等價於函數g(x)=-|x-1|,h(x)=2cos πx的圖象在區間[-2,4]內交點的橫坐標.由於兩函數圖象均關於直線x=1對稱,且函數h(x)=2cos πx的周期為2,結合圖象可知兩函數圖象在一個周期內有2個交點且關於直線x=1對稱,故其在三個周期[-2,4]內所有零點之和為3×2=6.
14.已知函數f(x)=ln ,若f(a)+f(b)=0,且0
答案:命題立意:本題主要考查對數函數的運算,函數的值域,考查運算求解能力,難度中等.
解題思路:由題意可知,ln +ln =0,
即ln=0,從而×=1,
化簡得a+b=1,
故ab=a(1-a)=-a2+a=-2+,
又0
故0<-2+<.
B組
一、選擇題
1.已知偶函數f(x)在區間[0,+∞)單調遞減,則滿足不等式f(2x-1)>f成立的x取值范圍是()
A. B.
C. D.
答案:B解析思路:因為偶函數的圖象關於y軸對稱,在區間[0,+∞)單調遞減,所以f(x)在(-∞,0]上單調遞增,若f(2x-1)>f,則-<2x-1<,
⑦ 跪求2017年全國高考沖刺壓軸卷三的數學和理綜答案
在數學學習中,數學概念的學習毫無疑問是重中之重,概念不清,一切無從談起。然而,這個重點又恰恰是一個難點,因為數學概念是人類對現實世界的空間形式和數量關系的簡明、概括的反映,非常抽象,而不少孩子抽象思維差,要掌握乾巴巴的數學概念對於小學生來說並非易事,所以,加強課前預習很有必要誰的人生不是如此?法國作家弗朗瓦斯薩岡早早成名,輕而易舉的走到了別人眼中的高峰。她寫作,賽車,飆車,酗酒,獨斷專行而放浪不羈。在正常人眼中她是塊被污染的美玉,甚至有人嘲諷她,質疑她的能力。可即使她如此不堪她依舊我行我素,過著我們無法企及的生活。如此看來,別人的懷疑,別人的否定,於我們自己來說,何必讓它成為一種負擔、既然問心無愧,就堅持自己的路,讓別人去說吧。
哈代說過;人心對我變冷的時候,我再也不憂戚,我將孤獨而平靜地等待永久的安息。的確,當所有人對你漠視冷淡時,何必內心執著於別人的態度,用一顆寧靜平淡的心去面對別人對你的質疑,做好自己分內點事,會更安心。
。