當前位置:首頁 » 語數英語 » 十大數學難題

十大數學難題

發布時間: 2023-11-27 14:40:09

數學世界十大難題

10、納衛爾-斯托可方程的存在性與光滑性:小船穿梭在波浪起伏的湖中,湍急的氣流跟隨著我們的現代噴氣式飛機的飛行,不管有微風還是湍流都可以通過解納維葉-斯托克斯方程的解來對其進行解釋和語言。

1、NP完全問題:如果一個人跟你說你數13717421可以寫成兩個較小的數的乘積,他告訴你可以分解為3607乘上3803計算機驗證這樣算是對的,人們猜想是不是在多項式時間內,直接算出或是找到正確答案這就是NP=P?的猜想,如果沒有提示是需要花很多時間來解答的。

⑵ 世界頂級未解數學難題都有哪些

1、霍奇猜想(Hodge conjecture):

二十世紀的數學家們發現了研究復雜對象的形狀的強有力的辦法。基本想法是問在怎樣的程度上,我們可以把給定對象的形狀通過把維數不斷增加的簡單幾何營造塊粘合在一起來形成。

這種技巧是變得如此有用,使得它可以用許多不同的方式來推廣;最終導致一些強有力的工具,使數學家在對他們研究中所遇到的形形色色的對象進行分類時取得巨大的進展。

不幸的是,在這一推廣中,程序的幾何出發點變得模糊起來。在某種意義下,必須加上某些沒有任何幾何解釋的部件。

霍奇猜想斷言,對於所謂射影代數簇這種特別完美的空間類型來說,稱作霍奇閉鏈的部件實際上是稱作代數閉鏈的幾何部件的(有理線性)組合。

2、龐加萊猜想(Poincaré conjecture):

如果我們伸縮圍繞一個蘋果表面的橡皮帶,那麼我們可以既不扯斷它,也不讓它離開表面,使它慢慢移動收縮為一個點。

另一方面,如果我們想像同樣的橡皮帶以適當的方向被伸縮在一個輪胎面上,那麼不扯斷橡皮帶或者輪胎面,是沒有辦法把它收縮到一點的。

我們說,蘋果表面是「單連通的」,而輪胎面不是。大約在一百年以前,法國數學家龐加萊已經知道,二維球面本質上可由單連通性來刻畫,他提出三維球面的對應問題。這個問題立即變得無比困難,從那時起,數學家們就在為此奮斗。

3、黎曼假設:

有些數具有不能表示為兩個更小的數的乘積的特殊性質,例如,2、3、5、7……等等。這樣的數稱為素數;它們在純粹數學及應用數學中都起著重要作用。

在所有自然數中,素數分布似乎並不遵循任何有規則的模式;然而,德國數學家黎曼(1826~1866)觀察到,素數的頻率緊密相關於所謂的黎曼ζ函數。

黎曼假設斷言,方程ζ(s)=0的非平凡零點的實部都是1/2,即位於直線1/2 + ti(「臨界線」,critical line)上。這點已經對於開首的1,500,000,000個解驗證過。證明它對於每一個有意義的解都成立,將為圍繞素數分布的許多奧秘帶來光明。

4、楊-米爾斯(Yang-Mills)存在性和質量缺口:

量子物理的定律是以經典力學的牛頓定律對宏觀世界的方式對基本粒子世界成立的。大約半個世紀以前,楊振寧和羅伯特·米爾斯發現,量子物理揭示了在基本粒子物理與幾何對象的數學之間的令人注目的關系。

基於楊-米爾斯方程的預言已經在如下的全世界范圍內的實驗室中所履行的高能實驗中得到證實:布羅克哈文、斯坦福、歐洲粒子物理研究所和築波。

盡管如此,他們的既描述重粒子、又在數學上嚴格的方程,並沒有已知的解。特別是,被大多數物理學家所確認、並且在他們的對於「誇克」的不可見性的解釋中應用的「質量缺口」假設,從來沒有得到一個數學上令人滿意的證實。

(2)十大數學難題擴展閱讀:

周氏猜測:

當2^(2^n)<p<2^(2^(n+1))時,Mp有2^(n+1)-1個是素數。

周海中還據此作出推論:當p<2^(2^(n+1))時,Mp有2^(n+2)-n-2個是素數。

關於梅森素數的分布研究,英國數學家香克斯、德國數學家伯利哈特、印度數學家拉曼紐楊和美國數學家吉里斯等曾分別提出過猜測,但他們的猜測有一個共同點,就是都以近似表達式提出;而它們與實際情況的接近程度均難如人意。

唯有周氏猜測是以精確表達式提出,而且頗具數學美。這一猜測至今未被證明或反證,已成了著名的數學難題。

美籍挪威數論大師、菲爾茨獎和沃爾夫獎得主阿特勒·塞爾伯格認為:周氏猜測具有創新性,開創了富於啟發性的新方法;其創新性還表現在揭示新的規律上。

參考資料:

網路--數學難題

⑶ 世界數學十大名題是哪幾道

一是有20棵樹,每行四棵,古羅馬、古希臘在16世紀就完成了16行的排列,18世紀高斯猜想能排18行,19世紀美國勞埃德完成此猜想,20世紀末兩位電子計算機高手完成20行紀錄,跨入21世紀還會有新突破嗎?

二是相鄰兩國不同著一色,任一地圖著色最少可用幾色完成著色?五色已證出,四色至今僅美國阿佩爾和哈肯,羅列了很多圖譜,通過電子計算機逐一理論完成,全面的邏輯的人工推理證明尚待有志者。

三是任三人中可證必有兩人同性,任六人中必有三人互相認識或互相不認識(認識用紅線連,不認識用藍線連,即六質點中二色線連必出現單色三角形)。近年來國際奧林匹克數學競賽也圍繞此類熱點題型遴選後備攻堅力量。(如十七個科學家討論三課題,兩兩討論一個題,證至少三個科學家討論同一題;十八個點用兩色連必出現單色四邊形;兩色連六個點必出現兩個單色三角形,等等。)單色三角形研究中,尤以不出現單色三角形的極值圖譜的研究更是難點中之難點,熱門中之熱門。

歸納為20棵樹植樹問題,四色繪地圖問題,單色三角形問題。通稱現代數學三大難題。

⑷ 世界十大數學猜想都是什麼

世界十大數學猜想:NP完全問題、霍奇猜想、龐加萊猜想、黎曼假設、楊-米爾斯理專論、納衛爾-屬斯托可方程、BSD猜想 費爾馬大定 四色問題 哥德巴赫猜想

世界近代三大數學難題
1、費爾馬大定理
2、四色問題
3、哥德巴赫猜想
世界七大數學難題
一、P(多項式時間)問題對NP(nondeterministic polynomial time,非確定多項式時間)問題
二、霍奇(Hodge)猜想
三、龐加萊(Poincare)猜想
四、黎曼(Riemann)假設
五、楊-米爾斯(Yang-Mills)存在性和質量缺口
六、納維葉-斯托克斯(Navier-Stokes)方程的存在性與光滑性
七、貝赫(Birch)和斯維訥通-戴爾(Swinnerton-Dyer)猜想
有待破解的數學難題
除了上述著名數學難題外,還有以下著名數學難題有待破解。
Abc猜想
考拉茲猜想
周氏猜測(梅森素數分布猜測)
阿廷猜想(新梅森猜想)
哥德巴赫猜想
孿素數猜想
克拉梅爾猜想
哈代-李特爾伍德第二猜想
六空間理論

⑸ 世界上最難的數學題是哪一道

戱滏臯 2014-10-25回答:
不知你是說給學生的習題還是給數學家的問題...
難度大致上可以用時版間來權看吧,下面列出了幾個100年以上的重要數學問題.
猜想/定理 證明 提出 注
費馬大定理 1994 - 1637 = 357 10萬馬克等
哥德巴赫猜想 - 1742 > 272 希爾伯特23個問題
孿生素數猜想 - 1849 > 164 希爾伯特23個問題(部分解決)
黎曼猜想 - 1859 > 155 希爾伯特23個問題,千禧年大獎難題
地圖四色定理 1976 - 1852 = 124
龐加萊猜想 2006 - 1904 = 102 千禧年大獎難題
當然時間並不完全代表難度,還與數學家的投入有密切關系,而投入的多少與問題的重要性有關,問題的重要性(以及難度)可以從是否有懸賞(懸賞金額),是否廣泛關注來大致認識.
考慮到近兩個世紀地球人口劇增,近期提出的問題其實也應該相當有難度.
貌似一般認為黎曼猜想是現在未證明的而又最具有深遠影響的定理了.

熱點內容
保定教育網 發布:2024-11-24 17:17:02 瀏覽:787
師德先進個人推薦材料 發布:2024-11-24 16:04:48 瀏覽:580
優酷校園大使 發布:2024-11-24 16:01:06 瀏覽:723
班主任感懷 發布:2024-11-24 15:55:55 瀏覽:920
揚大湯老師 發布:2024-11-24 15:50:48 瀏覽:292
閔行區十佳師德標兵 發布:2024-11-24 14:17:16 瀏覽:853
合肥特崗教師 發布:2024-11-24 13:22:16 瀏覽:105
火眼教學 發布:2024-11-24 13:17:16 瀏覽:615
長豐在哪裡 發布:2024-11-24 11:49:23 瀏覽:970
兒童英語基礎 發布:2024-11-24 11:16:49 瀏覽:293