縮放數學
① 高中數學中放縮法是啥意思
縮法的定義
所謂放縮法,要證明不等式A<B成立,有時可以將它的一邊放大或縮小,尋找一個中間量,如將A放大成C,即A<C,後證C<B,這種證法便稱為放縮法。 放縮法是不等式的證明裡的一種方法,其他還有比較法,綜合法,分析法,反證法,代換法等。
放縮法的主要理論依據
(1)不等式的傳遞性;
(2)等量加不等量為不等量;
(3)同分子(母)異分母(子)的兩個分式大小的比較。
放縮法是貫穿證明不等式始終的指導變形方向的一種思考方法 。
放縮法的常見技巧
(1)舍掉(或加進)一些項。
(2)在分式中放大或縮小分子或分母。
(3)應用基本不等式放縮。
(4)應用函數的單調性進行放縮。
(5)根據題目條件進行放縮。
使用放縮法的注意事項
(1)放縮的方向要一致。
(2)放與縮要適度。
(3)很多時候只對數列的一部分進行放縮法,保留一些項不變(多為前幾項或後幾項)。
(4)用放縮法證明極其簡單,然而,用放縮法證不等式,技巧性極強,稍有不慎,則會出現放縮失當的現象。所以對放縮法,只需要了解,不宜深入。
放縮法相關例題
[例1] 證明:1/2-1/(n+1)<1/2^2+1/3^2+......+1/n^2<(n-1)/n (n=2,3,4...) 解:∵1/2^2+1/3^2+......1/n^2>1/2*3+1/3*4+......+1/n*(n+1)
=1/2-1/3+1/3-1/4+......+1/n-1/(n-1)
=1/2-1/(n+1)即左側
1/2^2+1/3^2+......1/n^2<1/1*2+1/2*3+......+1/(n+1)*n
=1-1/2+1/2-1/3+......1/(n-1)-1/n
=1-1/n 即右側
∴1/2-1/(n-1)<1/2^2+1/3^2+......+1/n^2<(n-1)/n
這樣可以么?
② ·高考數學 縮放是怎麼回事
縮放的意思為:縮小和放大都自如。
在歐幾里德幾何中,均勻縮放是放大或縮小物體的線性變換;縮放因子在所有方向上都是一樣的;它也叫做位似變換。均勻縮放的結果相似(在幾何意義上)於原始的物體。
更一般的是在每個坐標軸方向上的有單獨縮放因子的縮放;特殊情況是方向縮放(在一個方向上)。形狀可能變化,比如矩形可能變成不同形狀的矩形,還可能變成平行四邊形(保持在平行於軸的線之間的角度,但不保持所有的角度)。