當前位置:首頁 » 語數英語 » 文科數學知識點

文科數學知識點

發布時間: 2024-08-27 20:48:54

『壹』 文科數學高考必考的知識點有哪些

選擇:集合、面積體積、三角系列、概率、函數、向量、不等式、圓錐曲線、復數
大題:概率回、三角函數、數列、幾答何、圓錐曲線、極限、導數、直線與圓、不等式。
范圍都在必修12345和選修1-1、1-2、4-4.內
考點也就那幾個
集合、
復數、
概率、
橢圓、
雙曲線、
拋物線、
命題、
等差、
等比、
框圖、
三角函數、
解三角、
三視圖、
求體積、求面積、
解不等式、
向量、
線性、
樹狀圖、
方差、
解析幾何、
求導、
坐標系、
對數、指數、
圓。

『貳』 湖南高考數學知識點總結

考試是檢測學生學習效果的重要手段和方法,考前需要做好各方面的知識儲備。下面是我為大家整理的高考穗碰數學知識點,希望對大家有所幫助!

高考文科數學考點總結

第一,函式與導數。主要考查 *** 運算、函式的有關概念定義域、值域、解析式、函式的極限、連續、導數。

第二,平面向量與三角函式、三角變換及其應用。這一部分是高考微博的重點但不是難點,主要出一些基礎題或中檔題。

第三,數列及其應用。這部分是高考的重點而且是難點,主要出一些綜合題。

第四,不等式。主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小槐清。是高考的重點和難點。

第五,概率和統計。這部分和我們的生活聯絡比較大,屬應用題。

第六,空間位置關系的定性與定量分析,主要是證明平行或垂直,求角和距離。

第七,解析幾何。是高考的難點,運算量大,一般含引數。

湖南高考文科數學考點一:直線方程

1. 直線的傾斜角:一條直線向上的方向與軸正方向所成的最小正角叫做這條直線的傾斜角,其中直線與軸平行或重合時,其傾斜角為0,故直線傾斜角的范圍是.

註:①當或時,直線垂直於軸,它的斜率不存在.

②每一條直線都存在惟一的傾斜角,除與軸垂直的直線不存在斜率外,其餘每一條直線都有惟一的斜率,並且當直線的斜率一定時,其傾斜角也對應確定.

2. 直線方程的幾種形式:點斜式、截距式、兩點式、斜切式.

特別地,當直線經過兩點,即直線在軸,軸上的截距分別為時,直線方程是:.

註:若是一直線的方程,則這條直線的方程是,但若則不是這條線.

附:直線系:對於直線的斜截式方程,當均為確定的數值時,它表示一條確定的直線,如果變化時,對應的直線也會變化.①當為定植,變化時,它們表示過定點0,的直線束.②當為定值,變化時,它們表示一組平行直線.

3. ⑴兩條直線平行:

∥兩條直線平行的條件是:①和是兩條不重合的直線. ②在和的斜率都存在的前提下得到的. 因此,應特別注意,抽掉或忽視其中任一個「前提」都會導致結論的錯誤.

一般的結論是:對於兩條直線,它們在軸上的縱截距是,則∥,且或的斜率均不存在,即是平行的必要不充分條件,且

推論:如果兩條直線的傾斜角為則∥.

⑵兩條直線垂直:

兩條直線垂直的條件:①設兩條直線和的斜率分別為和,則有這里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜率不存在. 即是垂直的充要條件

4. 直線的交角:

⑴直線到的角方向角;直線到的角,是指直線繞交點依逆時針方向旋轉到與重合時所轉動的角,它的范圍是,當時.

⑵兩條相交直線與的夾角:兩條相交直線與的夾角,是指由與相交所成的四個角中最小的正角,又稱為和所成的角,它的取值范圍是,當,則有.

5. 過兩直線的交點的直線系方程為引數,不包括在內

湖南高考文科數學考點二:軌跡方程

一、求動點的軌跡方程的基本步驟

⒈建立適當的座標系,設出動點M的座標;

⒉寫出點M的 *** ;

⒊列出方程=0;

⒋化簡方程為最簡形式;

⒌檢驗。

二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關點法、引數法和交軌法等。

⒈直譯法:直接將條件翻譯成等式,整理化簡後即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

⒉定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

⒊相關點法:用動點Q的座標x,y表示相關點P的座標x0、y0,然後代入點P的座標x0,y0所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。

⒋引數法:當動點座標x、y之間的直接關系難以找到時,往往先猜明談尋找x、y與某一變數t的關系,得再消去參變數t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做引數法。

⒌交軌法:將兩動曲線方程中的引數消去,得到不含引數的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。

湖南高考文科數學考點三:導數

一、函式的單調性

在a,b內可導函式fx,f′x在a,b任意子區間內都不恆等於0.

f′x≥0⇔fx在a,b上為增函式.

f′x≤0⇔fx在a,b上為減函式.

二、函式的極值

1、函式的極小值:

函式y=fx在點x=a的函式值fa比它在點x=a附近其它點的函式值都小,f′a=0,而且在點x=a附近的左側f′x<0,右側f′x>0,則點a叫做函式y=fx的極小值點,fa叫做函式y=fx的極小值.

2、函式的極大值:

函式y=fx在點x=b的函式值fb比它在點x=b附近的其他點的函式值都大,f′b=0,而且在點x=b附近的左側f′x>0,右側f′x<0,則點b叫做函式y=fx的極大值點,fb叫做函式y=fx的極大值.

極小值點,極大值點統稱為極值點,極大值和極小值統稱為極值.

三、函式的最值

1、在閉區間[a,b]上連續的函式fx在[a,b]上必有最大值與最小值.

2、若函式fx在[a,b]上單調遞增,則fa為函式的最小值,fb為函式的最大值;若函式fx在[a,b]上單調遞減,則fa為函式的最大值,fb為函式的最小值.

四、求可導函式單調區間的一般步驟和方法

1、確定函式fx的定義域;

2、求f′x,令f′x=0,求出它在定義域內的一切實數根;

3、把函式fx的間斷點即fx的無定義點的橫座標和上面的各實數根按由小到大的順序排列起來,然後用這些點把函式fx的定義區間分成若干個小區間;

4、確定f′x在各個開區間內的符號,根據f′x的符號判定函式fx在每個相應小開區間內的增減性.

湖南高考文科數學考點四:不等式

1理解不等式的性質及其證明。

【導讀】

不等式的性質是不等式的理論支撐,其基礎性質源於數的大小比較。要注意以下幾點:

加強化歸意識,把比較大小問題轉化為實數的運算;

通過復習強化不等式「運算」的條件。如a>b、才c>d在什麼條件下才能推出ac>bd;

強化函式的性質在大小比較中的重要作用,加強知識間的聯絡;

不等式的性質是解、證不等式的基礎,對任意兩實數a、b有a-b>0 a>b,a-b=0 a=b,a-b<0 a

一定要在理解的基礎上記准、記熟不等式的性質,並注意解題中靈活、准確地加以應用;

對兩個或兩個以上不等式同加或同乘時一定要注意不等式是否同向且大於零;

對於含參問題的大小比較要注意分類討論。

2掌握兩個不擴充套件到三個正數的算術平均數不小於它們的幾何平均數的定理,並會簡單的應用。

【導讀】

1、在證明不等式的各種方法中,作差比較法是一種最基本最重要的方法,它是利用不等式兩邊的差是正數還是負數來證明不等式,其應用非常廣泛,一定要熟練掌握。

2、對於公式a+b≥ 2√ab,ab≤a+b/22要理解它們的作用和使用條件及內在聯絡,兩個公式也體現了ab和a+b的轉化關系。

3、在應用均值定理求最值時,要把握定理成立的三個條件就是「一正——各項均為正;二定——積或和為定值;三項等——等號能否取得」。若忽略了某個條件,就會出現錯誤。

3掌握分析法、綜合法、比較法證明的簡單不等式。

【導讀】

1、在證明不等式的過程中,分析法和綜合法是不能分離的,如果使用綜合法證明不等式難以入手時,常用分析法探索證題途徑,之後用綜合法的形式寫出它的證明過程。有時問題證明難度較大,常使用分析綜合法,實現兩頭往中間靠以達到證明目的。

2、由於高考試題不會出現單一的不等式的證明題,常常與函式、數列、三角、方程綜合在一起,所以在學習中,不等式的證明除常用的三種方法外,還有其他方法,比如比較大小。證明不等式的常用方法有:差、商比較法、函式性質法、分析綜合法和放縮法。要能了解常見的放縮途徑,如:利用增或舍、分式性質、函式單調性、有界性、基本不等式及絕對值不等式性質和數學歸納法等。有時要先對不等式作等價變形再進行證明,有時幾種證明方法綜合使用。

3、比較法有兩種形式:一是作差,而是作商。用作差法證明不等式是證明不等式中最基本、最常用的方法。它的依據是不等式的基本性質。步驟是:作差商→變形→判斷。變形的目的是為了判斷,若是作差,就判斷與0的大小關系,為了便於判斷,往往把形式變為積或完全平方式。若是作商,兩邊為正,就判斷與1的大小關系。

湖南高考文科數學考點五:幾何

1稜柱:

定義:有兩個面互相平行,其餘各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的標准分為三稜柱、四稜柱、五稜柱等。

表示:用各頂點字母,如五稜柱或用對角線的端點字母,如五稜柱

幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。

2棱錐

定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體

分類:以底面多邊形的邊數作為分類的標准分為三棱錐、四棱錐、五棱錐等

表示:用各頂點字母,如五棱錐

幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方。

3稜台:

定義:用一個平行於棱錐底面的平面去截棱錐,截面和底面之間的部分

分類:以底面多邊形的邊數作為分類的標准分為三棱態、四稜台、五稜台等

表示:用各頂點字母,如五稜台

幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側棱交於原棱錐的頂點

4圓柱:

定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成的曲面所圍成的幾何體

幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

5圓錐:

定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體

幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。

6圓台:

定義:用一個平行於圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。

7球體:

定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。 看過"湖南高考數學知識點 湖南高考文科數學考點 "的還:

『叄』 高三數學知識點考點總結大全

數學是我們我們從小學到大的一門學科,如果能認認真真學下來,數學並不難,只是數學要下苦功去學,學會了很有意思。這次我給大家整理了 高三數學 知識點考點 總結 ,供大家閱讀參考。

高三數學知識點考點總結

1.定義:

用符號〉,=,〈號連接的式子叫不等式。

2.性質:

①不等式的兩邊都加上或減去同一個整式,不等號方向不變。

②不等式的兩邊都乘以或者除以一個正數,不等號方向不變。

③不等式的兩邊都乘以或除以同一個負數,不等號方向相反。

3.分類:

①一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的次數是1的不等式叫一元一次不等式。

②一元一次不等式組:

a.關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。

b.一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。

4.考點:

①解一元一次不等式(組)

②根據具體問題中的數量關系列不等式(組)並解決簡單實際問題

③用數軸表示一元一次不等式(組)的解集

高三數學知識點

一、排列

1定義

(1)從n個不同元素中取出m個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一排列。

(2)從n個不同元素中取出m個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數,記為Amn.

2排列數的公式與性質

(1)排列數的公式:Amn=n(n-1)(n-2)…(n-m+1)

特例:當m=n時,Amn=n!=n(n-1)(n-2)…×3×2×1

規定:0!=1

二、組合

1定義

(1)從n個不同元素中取出m個元素並成一組,叫做從n個不同元素中取出m個元素的一個組合

(2)從n個不同元素中取出m個元素的所有組合的個數,叫做從n個不同元素中取出m個元素的組合數,用符號Cmn表示。

2比較與鑒別

由排列與組合的定義知,獲得一個排列需要「取出元素」和「對取出元素按一定順序排成一列」兩個過程,而獲得一個組合只需要「取出元素」,不管怎樣的順序並成一組這一個步驟。

排列與組合的區別在於組合僅與選取的元素有關,而排列不僅與選取的元素有關,而且還與取出元素的順序有關。因此,所給問題是否與取出元素的順序有關,是判斷這一問題是排列問題還是組合問題的理論依據。

三、排列組合與二項式定理知識點

1.計數原理知識點

①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分類)

2.排列(有序)與組合(無序)

Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!

Cnm=n!/(n-m)!m!

Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!

3.排列組合混合題的解題原則:先選後排,先分再排

排列組合題的主要解題 方法 :優先法:以元素為主,應先滿足特殊元素的要求,再考慮其他元素.以位置為主考慮,即先滿足特殊位置的要求,再考慮其他位置.

捆綁法(集團元素法,把某些必須在一起的元素視為一個整體考慮)

插空法(解決相間問題)間接法和去雜法等等

在求解排列與組合應用問題時,應注意:

(1)把具體問題轉化或歸結為排列或組合問題;

(2)通過分析確定運用分類計數原理還是分步計數原理;

(3)分析題目條件,避免「選取」時重復和遺漏;

(4)列出式子計算和作答.

經常運用的數學思想是:

①分類討論思想;②轉化思想;③對稱思想.

4.二項式定理知識點:

①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

特別地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

②主要性質和主要結論:對稱性Cnm=Cnn-m

二項式系數在中間。(要注意n為奇數還是偶數,答案是中間一項還是中間兩項)

所有二項式系數的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

奇數項二項式系數的和=偶數項而是系數的和

Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

③通項為第r+1項:Tr+1=Cnran-rbr作用:處理與指定項、特定項、常數項、有理項等有關問題。

5.二項式定理的應用:解決有關近似計算、整除問題,運用二項展開式定理並且結合放縮法證明與指數有關的不等式。

6.注意二項式系數與項的系數(字母項的系數,指定項的系數等,指運算結果的系數)的區別,在求某幾項的系數的和時注意賦值法的應用。

高三數學考點總結

考點一:集合與簡易邏輯

集合部分一般以選擇題出現,屬容易題。重點考查集合間關系的理解和認識。近年的試題加強了對集合計算化簡能力的考查,並向無限集發展,考查 抽象思維 能力。在解決這些問題時,要注意利用幾何的直觀性,並注重集合表示方法的轉換與化簡。簡易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關系、邏輯聯結詞、「充要關系」、命題真偽的判斷、全稱命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語表達數學解題過程和邏輯推理。

考點二:函數與導數

函數是高考的重點內容,以選擇題和填空題的為載體針對性考查函數的定義域與值域、函數的性質、函數與方程、基本初等函數(一次和二次函數、指數、對數、冪函數)的應用等,分值約為10分,解答題與導數交匯在一起考查函數的性質。導數部分一方面考查導數的運算與導數的幾何意義,另一方面考查導數的簡單應用,如求函數的單調區間、極值與最值等,通常以客觀題的形式出現,屬於容易題和中檔題,三是導數的綜合應用,主要是和函數、不等式、方程等聯系在一起以解答題的形式出現,如一些不等式恆成立問題、參數的取值范圍問題、方程根的個數問題、不等式的證明等問題。

考點三:三角函數與平面向量

一般是2道小題,1道綜合解答題。小題一道考查平面向量有關概念及運算等,另一道對三角知識點的補充。大題中如果沒有涉及正弦定理、餘弦定理的應用,可能就是一道和解答題相互補充的三角函數的圖像、性質或三角恆等變換的題目,也可能是考查平面向量為主的試題,要注意數形結合思想在解題中的應用。向量重點考查平面向量數量積的概念及應用,向量與直線、圓錐曲線、數列、不等式、三角函數等結合,解決角度、垂直、共線等問題是「新 熱點 」題型.

考點四:數列與不等式

不等式主要考查一元二次不等式的解法、一元二次不等式組和簡單線性規劃問題、基本不等式的應用等,通常會在小題中設置1到2道題。對不等式的工具性穿插在數列、解析幾何、函數導數等解答題中進行考查.在選擇、填空題中考查等差或等比數列的概念、性質、通項公式、求和公式等的靈活應用,一道解答題大多凸顯以數列知識為工具,綜合運用函數、方程、不等式等解決問題的能力,它們都屬於中、高檔題目.

考點五:立體幾何與空間向量

一是考查空間幾何體的結構特徵、直觀圖與三視圖;二是考查空間點、線、面之間的位置關系;三是考查利用空間向量解決立體幾何問題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求).在高考試卷中,一般有1~2個客觀題和一個解答題,多為中檔題。

考點六:解析幾何

一般有1~2個客觀題和1個解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關系、圓錐曲線的定義應用、標准方程的求解、離心率的計算等,解答題則主要考查直線與橢圓、拋物線等的位置關系問題,經常與平面向量、函數與不等式交匯,考查一些存在性問題、證明問題、定點與定值、最值與范圍問題等。

考點七:演算法復數推理與證明

高考對演算法的考查以選擇題或填空題的形式出現,或給解答題披層「外衣」.考查的熱點是流程圖的識別與演算法語言的閱讀理解.演算法與數列知識的網路交匯命題是考查的主流.復數考查的重點是復數的有關概念、復數的代數形式、運算及運算的幾何意義,一般是選擇題、填空題,難度不大.推理證明部分命題的方向主要會在函數、三角、數列、立體幾何、解析幾何等方面,單獨出題的可能性較小。對於理科,數學歸納法可能作為解答題的一小問.

高三數學考點有哪些

1、圓柱體:

表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

2、圓錐體:

表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

3、正方體

a-邊長,S=6a2,V=a3

4、長方體

a-長,b-寬,c-高S=2(ab+ac+bc)V=abc

5、稜柱

S-底面積h-高V=Sh

6、棱錐

S-底面積h-高V=Sh/3

7、稜台

S1和S2-上、下底面積h-高V=h[S1+S2+(S1S2)^1/2]/3

8、擬柱體

S1-上底面積,S2-下底面積,S0-中截面積

h-高,V=h(S1+S2+4S0)/6

9、圓柱

r-底半徑,h-高,C—底面周長

S底—底面積,S側—側面積,S表—表面積C=2πr

S底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h

10、空心圓柱

R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)

11、直圓錐

r-底半徑h-高V=πr^2h/3

12、圓台

r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/3

13、球

r-半徑d-直徑V=4/3πr^3=πd^3/6

14、球缺

h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3

15、球台

r1和r2-球台上、下底半徑h-高V=πh[3(r12+r22)+h2]/6

16、圓環體

R-環體半徑D-環體直徑r-環體截面半徑d-環體截面直徑

V=2π2Rr2=π2Dd2/4

17、桶狀體

D-桶腹直徑d-桶底直徑h-桶高

V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)

V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

如何學好數學

首先你要有一個好的態度,有些人學習數學,可能有的階段會喜歡學習,但是某一階段,對數學就沒有什麼興趣了,可能每個人都會有這樣一個階段,但是如果發現自己不喜歡學習數學了,一定要剋制自己,在學習數學上,保持一個良好的 學習態度 ,這是你學好數學的第一步。

充分的利用好上課的時間,上課時間你所掌握的知識,會比你在課下學很長時間都有用,所以珍惜課堂老師所講的內容,老師的某些話對我們以後做數學題都很有幫助,如果你上課走神,這些話沒有聽到,你在做題的時候,可能會走很多彎路,做題的效率也會降低,一旦有這樣的情況,可能你就會不喜歡數學了。

學習最重要的是思考,會思考數學才能學好,數學中的題都是需要我們去舉一反三的,沒做一道題,都要思考一下,圍繞著這道題的知識點,還會有什麼樣的題型出現,哪怕是遇到不會的題,也要勤加的思考,如果你把知識點自認為學習透徹,那麼就用做題檢驗吧,數學中多做題是必須的,成績都是用題堆積出來的,很少會有人不做題數學成績很高的。


高三數學知識點考點總結大全相關 文章 :

★ 高三數學重要知識點總結

★ 高三數學知識點總結與歸納

★ 高三數學知識點總結

★ 高三數學考試知識點總結

★ 高三數學重點知識點

★ 高三數學必考知識點總結整合

★ 高三重要數學知識點梳理

★ 高三數學第一輪復習知識點

★ 高三數學補習知識點總結

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

『肆』 高中文科數學函數都包括哪些知識點怎麼

推薦里買一本 小小本的 一本通, 高考之間我就是看著那本,把基本的知識點公式全記住。高考的考點就是對公式的活用 。 祝你成功了。

『伍』 高考文科數學知識點總結歸納

對於文科生來說,數學是一門比較特別的學科,高考要想數學分數高,必須掌握必考知識點。下面是我為大家整理的高考文科數學知識點,希望對大家有所幫助。

高考文科數學知識點

第一,函數與導數

主要考查集合運算、函數的有關概念定義域、值域、解析式、函數的極限、連續、導數。

第二,平面向量與三角函數、三角變換及其應用

這一部分是高考的重點但不是難點,主要出一些基礎題或中檔題。

第三,數列及其應用

這部分是高考的重點而且是難點,主要出一些綜合題。

第四,不等式

主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點和難點。

第五,概率和統計

這部分和我們的生活聯系比較大,屬應用題。

第六,空間位置關系的定性與定量分析

主要是證明平行或垂直,求角和距離。主要考察對定理的熟悉程度、運用程度。

第七,解析幾何

高考的難點,運算量大,一般含參數。

文科數學高頻必考考點

第一部分:選擇與填空

1.集合的基本運算(含新定集合中的運算,強調集合中元素的互異性);

2.常用邏輯用語(充要條件,全稱量詞與存在量詞的判定);

3.函數的概念與性質(奇偶性、對稱性、單調性、周期性、值域最大值最小值);

4.冪、指、對函數式運算及圖像和性質

5.函數的零點、函數與方程的遷移變化(通常用反客為主法及數形結合思想);

6.空間體的三視圖及其還原圖的表面積和體積;

7.空間中點、線、面之間的位置關系、空間角的計算、球與多面體外接或內切相關問題;

8.直線的斜率、傾斜角的確定;直線與圓的位置關系,點線距離公式的應用;

9.演算法初步(認知框圖及其功能,根據所給信息,幾何數列相關知識處理問題);

10.古典概型,幾何概型理科:排列與組合、二項式定理、正態分布、統計案例、回歸直線方程、獨立性檢驗;文科:總體估計、莖葉圖、頻率分布直方圖;

11.三角恆等變形(切化弦、升降冪、輔助角公式);三角求值、三角函數圖像與性質;

12.向量數量積、坐標運算、向量的幾何意義的應用;

13.正餘弦定理應用及解三角形;

14.等差、等比數列的性質應用、能應用簡單的地推公式求其通項、求項數、求和;

15.線性規劃的應用;會求目標函數;

16.圓錐曲線的性質應用(特別是會求離心率);

17.導數的幾何意義及運算、定積分簡單求法

18.復數的概念、四則運算及幾何意義;

19.抽象函數的識別與應用;

第二部分:解答題

第17題:向量與三角交匯問題,解三角形,正餘弦定理的實際應用;

第18題:(文)概率與統計(概率與統計相結合型)

(理)離散型隨機變數的概率分布列及其數字特徵;

第19題:立體幾何

①證線面平行垂直;面與面平行垂直

②求空間中角(理科特別是二面角的求法)

③求距離(理科:動態性)空間體體積;

第20題:解析幾何(注重思維能力與技巧,減少計算量)

①求曲線軌跡方程(用定義或待定系數法)

②直線與圓錐曲線的關系(靈活運用點差法和弦長公式)

③求定點、定值、最值,求參數取值的問題;

第21題:函數與導數的綜合應用

這是一道典型應用知識網路的交匯點設計的試題,是考查考生解題能力和文科數學素質為目標的壓軸題。

主要考查:分類討論思想;化歸、轉化、遷移思想;整體代換、分與合思想

一般設計三問:

①求待定系數,利用求導討論確定函數的單調性;

②求參變數取值或函數的最值;

③探究性問題或證不等式恆成立問題。

第22題:三選一:

(1)幾何證明主要考查三角形相似,圓的切割線定理,證明成比例,求角度,求長度;利用射影定理解決圓中計算和證明問題是歷年高考題的 熱點 ;

(2)坐標系與參數方程,主要抓兩點:參數方程、極坐標方程互化為普通方程;有參數、極坐標方程求解曲線的基本量。這類題,思路清晰,難度不大,抓基礎,不做難題。

(3)不等式選講:絕對值不等式與函數結合型。設計上為:①解含有參變數關於x的不等式;②求解不等式恆成立時參變數的取值;③證明不等式(利用均值定理、放縮法等)。

2018高考文科數學知識點:高中數學知識點 總結

必修一:1、集合與函數的概念(這部分知識抽象,較難理解)2、基本的初等函數(指數函數、對數函數)3、函數的性質及應用(比較抽象,較難理解)

必修二:1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問題,包括線面角和面面角

這部分知識是高一學生的難點,比如:一個角實際上是一個銳角,但是在圖中顯示的鈍角等等一些問題,需要學生的立體意識較強。這部分知識高考佔22---27分

2、直線方程:高考時不單獨命題,易和圓錐曲線結合命題

3、圓方程:

必修三:1、演算法初步:高考必考內容,5分(選擇或填空)2、統計:3、概率:高考必考內容,09年理科佔到15分,文科數學佔到5分

必修四:1、三角函數:(圖像、性質、高中重難點,)必考大題:15---20分,並且經常和其他函數混合起來考查

2、平面向量:高考不單獨命題,易和三角函數、圓錐曲線結合命題。09年理科佔到5分,文科佔到13分

必修五:1、解三角形:(正、餘弦定理、三角恆等變換)高考中理科佔到22分左右,數學佔到13分左右2、數列:高考必考,17---22分3、不等式:(線性規劃,聽課時易理解,但做題較復雜,應掌握技巧。高考必考5分)不等式不單獨命題,一般和函數結合求最值、解集。

高考文科數學知識點總結

乘法與因式分解

a2-b2=(a+b)(a-b)

a3+b3=(a+b)(a2-ab+b2)

a3-b3=(a-b)(a2+ab+b2)

三角不等式

|a+b|≤|a|+|b|

|a-b|≤|a|+|b|

|a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b|-|a|≤a≤|a|

一元二次方程的解

-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a

根與系數的關系

X1+X2=-b/aX1__X2=c/a注:韋達定理

判別式

b2-4a=0注:方程有相等的兩實根

b2-4ac>0注:方程有一個實根

b2-4ac<0注:方程有共軛復數根

三角函數公式

兩角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)

ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A)

ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半形公式

sin(A/2)=√((1-cosA)/2)

sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2)

cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))

tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA))

ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化積公式

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B)

-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2

cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB

tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB

-ctgA+ctgBsin(A+B)/sinAsinB

某些數列前n項和公式

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1)

12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4

1__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理:a/sinA=b/sinB=c/sinC=2R

注:其中R表示三角形的外接圓半徑

餘弦定理:b2=a2+c2-2accosB

注:角B是邊a和邊c的夾角

高考文科數學知識點總結相關 文章 :

★ 2022北京卷高考文科數學試題及答案解析

★ 2022全國新高考Ⅰ卷文科數學試題及答案解析

★ 2022年全國新高考1卷數學試題及答案解析

★ 2022全國新高考Ⅱ卷文科數學試題及答案解析

★ 高中導數知識點總結大全

★ 山東2022高考文科數學試題及答案解析

★ 湖北2022高考文科數學試題及答案解析

★ 2022河北高考文科數學試題及答案解析

★ 高中文科數學復習指導與注意事項

★ 2017高考數學三角函數知識點總結

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
熱點內容
幼兒園班主任學期工作總結 發布:2025-01-23 04:41:37 瀏覽:342
馬雲是什麼老師 發布:2025-01-23 04:05:27 瀏覽:116
創客教學模式 發布:2025-01-23 03:53:26 瀏覽:457
楊小敏老師 發布:2025-01-23 03:48:13 瀏覽:852
小孩子學英語 發布:2025-01-23 03:21:06 瀏覽:452
電能電功教學設計 發布:2025-01-23 03:20:24 瀏覽:969
博白縣教育科研網 發布:2025-01-23 01:35:39 瀏覽:438
玄武區教育 發布:2025-01-23 00:14:34 瀏覽:262
為什麼電腦自動重啟 發布:2025-01-23 00:06:01 瀏覽:284
胡姓班主任 發布:2025-01-22 23:37:52 瀏覽:182