小學六年級數學上冊人教版
『壹』 求人教版小學六年級上冊數學書 電子版下載地址
人教版 小學六年級數學上冊 胡青清 視頻 網路網盤
鏈接:
若資源有問題歡迎追問~
『貳』 小學六年級上冊數學知識歸納(人教版)
http://wenku..com/view/a79dd3c7d5bbfd0a7956735a.html
http://wenku..com/view/9403c096daef5ef7ba0d3cf0.html
http://wenku..com/view/1eed476bb84ae45c3b358cfa.html
建議你去網上搜一下,這幾個網址里都有
給你一個樣本:
人教版六年級數學上冊知識點整理歸納
六年級上冊數學知識點
第一單元 位置
1、什麼是數對?
——數對:由兩個數組成,中間用逗號隔開,用括弧括起來。括弧裡面的數由左至右為列數和行數,即「先列後行」。
作用:確定一個點的位置。經度和緯度就是這個原理。
例:在方格圖(平面直角坐標系)中用數對(3,5)表示(第三列,第五行)。
註:(1)在平面直角坐標系中X軸上的坐標表示列,y軸上的坐標表示行。如:數對(3,2)表示第三列,第二行。
(2)數對(X,5)的行號不變,表示一條橫線,(5,Y)的列號不變,表示一條豎線。(有一個數不確定,不能確定一個點)
( 列 , 行 )
↓ ↓
豎排叫列 橫排叫行
(從左往右看)(從下往上看)
(從前往後看)
2、圖形左右平移行數不變;圖形上下平移列數不變。
3、兩點間的距離與基準點(0,0)的選擇無關,基準點不同導致數對不同,兩點間但距離不變。
第二單元 分數乘法
(一)分數乘法意義:
1、分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。
註:「分數乘整數」指的是第二個因數必須是整數,不能是分數。
例如: ×7表示: 求7個 的和是多少? 或表示: 的7倍是多少?
2、一個數乘分數的意義就是求一個數的幾分之幾是多少。
註:「一個數乘分數」指的是第二個因數必須是分數,不能是整數。(第一個因數是什麼都可以)
例如: × 表示: 求 的 是多少?
9 × 表示: 求9的 是多少?
A × 表示: 求a的 是多少?
(二)分數乘法計演算法則:
1、分數乘整數的運演算法則是:分子與整數相乘,分母不變。
註:(1)為了計算簡便能約分的可先約分再計算。(整數和分母約分)
(2)約分是用整數和下面的分母約掉最大公因數。(整數千萬不能與分母相乘,計算結果必須是最簡分數)
2、分數乘分數的運演算法則是:用分子相乘的積做分子,分母相乘的積做分母。(分子乘分子,分母乘分母)
註:(1)如果分數乘法算式中含有帶分數,要先把帶分數化成假分數再計算。
(2)分數化簡的方法是:分子、分母同時除以它們的最大公因數。
(3)在乘的過程中約分,是把分子、分母中,兩個可以約分的數先劃去,再分別在它們的上、下方寫出約分後的數。(約分後分子和分母必須不再含有公因數,這樣計算後的結果才是最簡單分數)
(4)分數的基本性質:分子、分母同時乘或者除以一個相同的數(0除外),分數的大小不變。
(三)積與因數的關系:
一個數(0除外)乘大於1的數,積大於這個數。a×b=c,當b >1時,c>a.
一個數(0除外)乘小於1的數,積小於這個數。a×b=c,當b <1時,c<a (b≠0).
一個數(0除外)乘等於1的數,積等於這個數。a×b=c,當b =1時,c=a .
註:在進行因數與積的大小比較時,要注意因數為0時的特殊情況。
附:形如 的分數可折成( )×
(四)分數乘法混合運算
1、分數乘法混合運算順序與整數相同,先乘、除後加、減,有括弧的先算括弧裡面的,再算括弧外面的。
2、整數乘法運算定律對分數乘法同樣適用;運算定律可以使一些計算簡便。
乘法交換律:a×b=b×a
乘法結合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)倒數的意義:乘積為1的兩個數互為倒數。
1、倒數是兩個數的關系,它們互相依存,不能單獨存在。單獨一個數不能稱為倒數。(必須說清誰是誰的倒數)
2、判斷兩個數是否互為倒數的唯一標準是:兩數相乘的積是否為「1」。
例如:a×b=1則a、b互為倒數。
3、求倒數的方法:
①求分數的倒數:交換分子、分母的位置。
②求整數的倒數:整數分之1。
③求帶分數的倒數:先化成假分數,再求倒數。
④求小數的倒數:先化成分數再求倒數。
4、1的倒數是它本身,因為1×1=1
0沒有倒數,因為任何數乘0積都是0,且0不能作分母。
5、任意數a(a≠0),它的倒數為 ;非零整數a的倒數為 ;分數 的倒數是 。
6、真分數的倒數是假分數,真分數的倒數大於1,也大於它本身。
假分數的倒數小於或等於1。
帶分數的倒數小於1。
(六)分數乘法應用題 ——用分數乘法解決問題
1、求一個數的幾分之幾是多少?(用乘法)
「1」× =
例如:求25的 是多少? 列式:25× =15
甲數的 等於乙數,已知甲數是25,求乙數是多少? 列式:25× =15
註:已知單位「1」的量,求單位「1」的量的幾分之幾是多少,用單位「1」的量與分數相乘。
2、( 什麼)是(什麼 )的 。
( )= ( 「1」 ) ×
例1: 已知甲數是乙數的 ,乙數是25,求甲數是多少?
甲數=乙數× 即25× =15
注:(1)「是」「的」字中間的量「乙數」是 的單位「1」的量,即 是把乙數看作單位「1」,把乙數平均分成5份,甲數是其中的3份。
(2)「是」「占」「比」這三個字都相當於「=」號,「的」字相當於「×」。
(3)單位「1」的量×分率=分率對應的量
例2:甲數比乙數多(少) ,乙數是25,求甲數是多少?
甲數=乙數±乙數× 即25±25× =25×(1± )=40(或10)
3、巧找單位「1」的量:在含有分數(分率)的語句中,分率前面的量就是單位「1」對應的量,或者「占」「是」「比」字後面的量是單位「1」。
4、什麼是速度?
——速度是單位時間內行駛的路程。速度=路程÷時間 時間=路程÷速度 路程=速度×時間
——單位時間指的是1小時1分鍾1秒等這樣的大小為1的時間單位,每分鍾、每小時、每秒鍾等。
5、求甲比乙多(少)幾分之幾?
多:(甲-乙)÷乙
少:(乙-甲)÷乙
第三單元 分數除法
一、分數除法的意義:分數除法是分數乘法的逆運算,已知兩個數的積與其中一個因數,求另一個因數的運算。
二、分數除法計演算法則:除以一個數(0除外),等於乘上這個數的倒數。
1、被除數÷除數=被除數×除數的倒數。例 ÷3= × = 3÷ =3× =5
2、除法轉化成乘法時,被除數一定不能變,「÷」變成「×」,除數變成它的倒數。
3、分數除法算式中出現小數、帶分數時要先化成分數、假分數再計算。
4、被除數與商的變化規律:
①除以大於1的數,商小於被除數:a÷b=c 當b>1時,c<a (a≠0)
②除以小於1的數,商大於被除數:a÷b=c 當b<1時,c>a (a≠0 b≠0)
③除以等於1的數,商等於被除數:a÷b=c 當b=1時,c=a
三、分數除法混合運算
1、混合運算用梯等式計算,等號寫在第一個數字的左下角。
2、運算順序:
①連除:屬同級運算,按照從左往右的順序進行計算;或者先把所有除法轉化成乘法再計算;或者依據「除以幾個數,等於乘上這幾個數的積」的簡便方法計算。加、減法為一級運算,乘、除法為二級運算。
②混合運算:沒有括弧的先乘、除後加、減,有括弧的先算括弧裡面,再算括弧外面。
註:(a±b)÷c=a÷c±b÷c
四、比:兩個數相除也叫兩個數的比
1、比式中,比號(∶)前面的數叫前項,比號後面的項叫做後項,比號相當於除號,比的前項除以後項的商叫做比值。
註:連比如:3:4:5讀作:3比4比5
2、比表示的是兩個數的關系,可以用分數表示,寫成分數的形式,讀作幾比幾。
例:12∶20= =12÷20= =0.6 12∶20讀作:12比20
註:區分比和比值:比值是一個數,通常用分數表示,也可以是整數、小數。
比是一個式子,表示兩個數的關系,可以寫成比,也可以寫成分數的形式。
3、比的基本性質:比的前項和後項同時乘以或除以相同的數(0除外),比值不變。
3、化簡比:化簡之後結果還是一個比,不是一個數。
(1)、 用比的前項和後項同時除以它們的最大公約數。
(2)、 兩個分數的比,用前項後項同時乘分母的最小公倍數,再按化簡整數比的方法來化簡。也可以求出比值再寫成比的形式。
(3)、 兩個小數的比,向右移動小數點的位置,也是先化成整數比。
4、求比值:把比號寫成除號再計算,結果是一個數(或分數),相當於商,不是比。
5、比和除法、分數的區別:
除法 被除數 除號(÷) 除數(不能為0) 商不變性質 除法是一種運算
分數 分子 分數線(——) 分母(不能為0) 分數的基本性質 分數是一個數
比 前項 比號(∶) 後項(不能為0) 比的基本性質 比表示兩個數的關系
附:商不變性質:被除數和除數同時乘或除以相同的數(0除外),商不變。
分數的基本性質:分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
五、分數除法和比的應用
1、已知單位「1」的量用乘法。例:甲是乙的 ,乙是25,求甲是多少?即:甲=乙× (15× =9)
2、未知單位「1」的量用除法。例: 甲是乙的 ,甲是15,求乙是多少?即:甲=乙× (15÷ =25)(建議列方程答)
3、分數應用題基本數量關系(把分數看成比)
(1)甲是乙的幾分之幾?
甲=乙×幾分之幾 (例:甲是15的 ,求甲是多少?15× =9)
乙=甲÷幾分之幾 (例:9是乙的 ,求乙是多少?9÷ =15)
幾分之幾=甲÷乙 (例:9是15的幾分之幾?9÷15= )(「是」字相當「÷」號,乙是單位「1」)
(2)甲比乙多(少)幾分之幾?
A 差÷乙= (「比」字後面的量是單位「1」的量)(例:9比15少幾分之幾?(15-9)÷15= = = )
B 多幾分之幾是: –1 (例: 15比9少幾分之幾?15÷9= -1= –1= )
C 少幾分之幾是:1– (例:9比15少幾分之幾?1-9÷15=1– =1– = )
D 甲=乙±差=乙±乙× =乙±乙× =乙(1± ) (例:甲比15少 ,求甲是多少?15–15× =15×(1– )=9(多是「+」少是「–」)
E 乙=甲÷(1± )(例:9比乙少 ,求乙是多少?9÷(1- )=9 ÷ =15)(多是「+」少是「–」)
(例:15比乙多 ,求乙是多少?15÷(1+ )=15 ÷ =9)(多是「+」少是「–」)
4、按比例分配:把一個量按一定的比分配的方法叫做按比例分配。
例如:已知甲乙的和是56,甲、乙的比3∶5,求甲、乙分別是多少?
方法一:56÷(3+5)=7 甲:3×7=21 乙:5×7=35
方法二:甲:56× =21 乙:56× =35
例如:已知甲是21,甲、乙的比3∶5,求乙是多少?
方法一:21÷3=7 乙:5×7=35
方法二:甲乙的和21÷ =56 乙:56× =35
方法二:甲÷乙= 乙=甲÷ =21÷ =35
5、畫線段圖:
(1)找出單位「1」的量,先畫出單位「1」,標出已知和未知。
(2)分析數量關系。
(3)找等量關系。
(4)列方程。
註:兩個量的關系畫兩條線段圖,部分和整體的關系畫一條線段圖。
第四單元 圓
一、.圓的特徵
1、圓是平面內封閉曲線圍成的平面圖形,.
2、圓的特徵:外形美觀,易滾動。
3、圓心o:圓中心的點叫做圓心.圓心一般用字母O表示.圓多次對折之後,摺痕的相交於圓的中心即圓心。圓心確定圓的位置。
半徑r:連接圓心到圓上任意一點的線段叫做半徑。在同一個圓里,有無數條半徑,且所有的半徑都相等。半徑確定圓的大小。
直徑d: 通過圓心且兩端都在圓上的線段叫做直徑。在同一個圓里,有無數條直徑,且所有的直徑都相等。直徑是圓內最長的線段。
同圓或等圓內直徑是半徑的2倍:d=2r 或 r=d÷2= d=
4、等圓:半徑相等的圓叫做同心圓,等圓通過平移可以完全重合。
同心圓:圓心重合、半徑不等的兩個圓叫做同心圓。
5、圓是軸對稱圖形:如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形是軸對稱圖形。摺痕所在的直線叫做對稱軸。
有一條對稱軸的圖形:半圓、扇形、等腰梯形、等腰三角形、角
有二條對稱軸的圖形:長方形
有三條對稱軸的圖形:等邊三角形
有四條對稱軸的圖形:正方形
有無條對稱軸的圖形:圓,圓環
6、畫圓
(1)圓規兩腳間的距離是圓的半徑。
(2)畫圓步驟:定半徑、定圓心、旋轉一周。
二、圓的周長:圍成圓的曲線的長度叫做圓的周長,周長用字母C表示。
1、圓的周長總是直徑的三倍多一些。
2、圓周率:圓的周長與直徑的比值是一個固定值,叫做圓周率,用字母π表示。
即:圓周率π= =周長÷直徑≈3.14
所以,圓的周長(c)=直徑(d)×圓周率(π) ——周長公式: c=πd, c=2πr
註:圓周率π是一個無限不循環小數,3.14是近似值。
3、周長的變化的規律:半徑擴大多少倍直徑也擴大多少倍,周長擴大的倍數與半徑、直徑擴大的倍數相同。
如果r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3
4、半圓周長=圓周長一半+直徑= ×2πr=πr+d
三、圓的面積s
1、圓面積公式的推導
如圖把一個圓沿直徑等分成若干份,剪開拼成長方形,份數越多拼成的圖像越接近長方形。
圓的半徑 = 長方形的寬
圓的周長的一半 = 長方形的長
長方形面積 = 長 ×寬
所以:圓的面積 = 長方形的面積 = 長 ×寬 = 圓的周長的一半(πr)×圓的半徑(r)
S圓 = πr × r
S圓 = πr×r = πr2
2、幾種圖形,在面積相等的情況下,圓的周長最短,而長方形的周長最長;反之,在周長相等的情況下,圓的面積則最大,而長方形的面積則最小。
周長相同時,圓面積最大,利用這一特點,籃子、盤子做成圓形。
3、圓面積的變化的規律:半徑擴大多少倍直徑、周長也同時擴大多少倍,圓面積擴大的倍數是半徑、直徑擴大的倍數的平方倍。
如果: r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3=2∶3∶4
則:S1∶S2∶S3=4∶9∶16
4、環形面積 = 大圓 – 小圓=πr大2 - πr小2=π(r大2 - r小2)
扇形面積 = πr2× (n表示扇形圓心角的度數)
5、跑道:每條跑道的周長等於兩半圓跑道合成的圓的周長加上兩條直跑道的和。因為兩條直跑道長度相等,所以,起跑線不同,相鄰兩條跑道起跑線也不同,間隔的距離是:2×π×跑道寬度。
註:一個圓的半徑增加a厘米,周長就增加2πa厘米
一個圓的直徑增加b厘米,周長就增加πb 厘米
6、任意一個正方形的內切圓即最大圓的直徑是正方形的邊長,它們的面積比是4∶π
7、常用數據
π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7
第五單元、百分數
一、百分數的意義:表示一個數是另一個數的百分之幾。
註:百分數是專門用來表示一種特殊的倍比關系的,表示兩個數的比,所以,百分數又叫百分比或百分率,百分數不能帶單位。
1、百分數和分數的區別和聯系:
(1)聯系:都可以用來表示兩個量的倍比關系。
(2)區別:意義不同:百分數只表示倍比關系,不表示具體數量,所以不能帶單位。分數不僅表示倍比關系,還能帶單位表示具體數量。
百分數的分子可以是小數,分數的分子只以是整數。
註:百分數在生活中應用廣泛,所涉及問題基本和分數問題相同,分母是100的分數並不是百分數,必須把分母寫成「%」才是百分數,所以「分母是100的分數就是百分數」這句話是錯誤的。「%」的兩個0要小寫,不要與百分數前面的數混淆。一般來講,出勤率、成活率、合格率、正確率能達到100%,出米率、出油率達不到100%,完成率、增長了百分之幾等可以超過100%。一般出粉率在70、80%,出油率在30、40%。
2、小數、分數、百分數之間的互化
(1)百分數化小數:小數點向左移動兩位,去掉「%」。
(2)小數化百分數:小數點向右移動兩位,添上「%」。
(3)百分數化分數:先把百分數寫成分母是100的分數,然後再化簡成最簡分數。
(4)分數化百分數:分子除以分母得到小數,(除不盡的保留三位小數)然後化成百分數。
(5)小數 化 分數:把小數成分母是10、100、1000等的分數再化簡。
(6)分數 化 小數:分子除以分母。
二、百分數應用題
1、 求常見的百分率 如:達標率、及格率、成活率、發芽率、出勤率等求百分率就是求一個數是另一個數的百分之幾
2、 求一個數比另一個數多(或少)百分之幾,實際生活中,人們常用增加了百分之幾、減少了百分之幾、節約了百分之幾等來表示增加、或減少的幅度。
求甲比乙多百分之幾 (甲-乙)÷乙
求乙比甲少百分之幾 (甲-乙)÷甲
3、 求一個數的百分之幾是多少 一個數(單位「1」) ×百分率
4、 已知一個數的百分之幾是多少,求這個數 部分量÷百分率=一個數(單位「1」)
5、 折扣 折扣、打折的意義:幾折就是十分之幾也就是百分之幾十
折扣 成數 幾分之幾 百分之幾 小數 通用
八折 八成 十分之八 百分之八十 0.8
八五折 八成五 十分之八點五 百分之八十五 0.85
五折 五成 十分之五 百分之五十 0.5 半價
6、 納稅 繳納的稅款叫做應納稅額。
(應納稅額)÷(總收入)=(稅率)
(應納稅額)=(總收入)×(稅率)
7、 利率
(1)存入銀行的錢叫做本金。
(2)取款時銀行多支付的錢叫做利息。
(3)利息與本金的比值叫做利率。
利息=本金×利率×時間
稅後利息=利息-利息的應納稅額=利息-利息×5%
註:國債和教育儲蓄的利息不納稅
8、百分數應用題型分類
(1)求甲是乙的百分之幾——(甲÷乙)×100% = ×100% = 百分之幾
(2)求甲比乙多(少)百分之幾—— ×100% = ×100%
例
① 甲是50,乙是40,甲是乙的百分之幾?(50是40的百分之幾?)50÷40=125%
② 甲是50,乙是40,乙是甲的百分之幾?(40是50的百分之幾?)40÷50=80%
③ 乙是40,甲是乙的125%,甲數是多少?(40的125%是多少?)40×125%=50
④ 甲是50,乙是甲的80%,乙數是多少?(50的80%是多少?)50×80%=40
⑤ 乙是40,乙是甲的80%,甲數是多少?(一個數的80%是40,這個數是多少?)40÷80%=50
⑥ 甲是50,甲是乙的125%,乙數是多少?(一個數的125%是50,這個數是多少?)50÷125%=40
⑦ 甲是50,乙是40,甲比乙多百分之幾?(50比40多百分之幾?)(50-40)÷40×100%=25%
⑧ 甲是50,乙是40,乙比甲少百分之幾?(40比50少百分之幾?)(50-40)÷50×100%=20%
⑨ 甲比乙多25%,多10,乙是多少?10÷25%=40
⑩ 甲比乙多25%,多10,甲是多少?10÷25%+10=50
⑪ 乙比甲少20%,少10,甲是多少?10÷20%=50
⑫ 乙比甲少20%,少10,乙是多少?10÷20%-10=40
⑬ 乙是40,甲比乙多25%,甲數是多少?(什麼數比40多25%?)40×(1+25%)=50
⑭ 甲是50,乙比甲少20%,乙數是多少?(什麼數比50多25%?)50×(1-20%)=40
⑮ 乙是40,比甲少20%,甲數是多少?(40比什麼數少20%?)40÷(1-20%)=50
⑯ 甲是50,比乙多25%,乙數是多少?(50比什麼數多25%?)40÷(1+25%)=40
第六單元、統計
1、 扇形統計圖的意義:用整個圓的面積表示總數,用圓內各個扇形面積表示各部分數量同總數之間關系,也就是各部分數量占總數的百分比,因此也叫百分比圖。
2、 常用統計圖的優點:
(1)、條形統計圖直觀顯示每個數量的多少。
(2)、折線統計圖不僅直觀顯示數量的增減變化,還可清晰看出各個數量的多少。
(3)、扇形統計圖直觀顯示部分和總量的關系。
第七單元、數學廣角
一、研究中國古代的雞兔同籠問題。
1、 用表格方式解決有局限性,數目必須小,例:
頭數 雞(只)兔(只) 腿數
35 1 34
35 2 33
35 3 32
……
(逐一列表法、腿數少,小幅度跳躍;腿數多,大幅度跳躍。跳躍逐一相結合、取中列表)
2、 用假設法解決
(1) 假如都是兔
(2) 假如都是雞
(3) 假如它們各抬起一條腿
(4) 假如兔子抬起兩條前腿
3、 用代數方法解(一般規律)
注釋:這個問題,是我國古代著名趣題之一。大約在1500年前,《孫子算經》中就記載了這個有趣的問題。書中是這樣敘述的:「今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?這四句話的意思是:有若干只雞兔同在一個籠子里,從上面數,有35個頭;從下面數,有94隻腳。求籠中各有幾只雞和兔?
二、和尚分饅頭
100個和尚吃100個饅頭,大和尚一人吃3個,小和尚三人吃一個。大小和尚各多少人?
國明代珠算家程大位的名著《直指演算法統宗》里有一道著名算題:
一百饅頭一百僧,
大僧三個更無爭,
小僧三人分一個,
大小和尚各幾丁?"
如果譯成白話文,其意思是:有100個和尚分100隻饅頭,正好分完。如果大和尚一人分3隻,小和尚3人分一隻,試問大、小和尚各有幾人?
方法一,用方程解:
解:設大和尚有x人,則小和尚有(100-x)人,根據題意列得方程:
3x + (100-x)=100
x=25
100-25=75人
方法二,雞兔同籠法:
(1)假設100人全是大和尚,應吃饅頭多少個?
3×100=300(個).
(2)這樣多吃了幾個呢?
300-100=200(個).
(3)為什麼多吃了200個呢?這是因為把小和尚當成大和尚。那麼把小和尚當成大和尚時,每個小和尚多算了幾個饅頭?
3- = (個)
(4)每個小和尚多算了8/3個饅頭,一共多算了200個,所以小和尚有:
小和尚:200÷ =75(人)
大和尚:100-75=25(人)
方法三,分組法:
由於大和尚一人分3隻饅頭,小和尚3人分一隻饅頭。我們可以把3個小和尚與1個大和尚編為一組,這樣每組4個和尚剛好分4個饅頭,那麼100個和尚總共分為100÷(3+1)=25組,因為每組有1個大和尚,所以有25個大和尚;又因為每組有3個小和尚,所以有25×3=75個小和尚。
這是《直指演算法統宗》里的解法,原話是:"置僧一百為實,以三一並得四為法除之,得大僧二十五個。"所謂"實"便是"被除數","法"便是"除數"。列式就是:
100÷(3+1)=25(組)
大和尚:25×1=25(人)
小和尚:100-25=75(人)或25×3=75(人)
我國古代勞動人民的智慧由此可見一斑。
三、整數、分數、百分數應用題結構類型
(一)求甲是乙的幾倍(或幾分之幾或百分之幾)的應用題。
解法:甲數除以乙數
例:校園里有楊樹40棵,柳樹有50棵,楊樹的棵樹占柳樹的百分之幾?(或幾分之幾?)
(二)求甲數的幾倍(或幾分之幾或百分之幾)是多少的應用題。
解答分數應用題,首先要確定單位「1」,在單位「1」確定以後,一個具體數量總與一個具體分數(分率)相對應,這種關系叫「量率對應」,這是解答分數應用題的關鍵。
求一個數的幾倍(幾分之幾或百分之幾)是多少用乘法,單位「1」×分率=對應數量
例:六年級有學生180人,五年級的學生人數是六年級人數的56 。五年級有學生多少人?
180×56 =150
(三)已知甲數的幾倍(或幾分之幾或百分之幾)是多少,求甲數(即求標准量或單位「1」)的應用題。
解法:對應數量÷對應分率=單位「1」
例:育紅小學六年級男生有120人,占參加興趣活動小組人數的35 . 六年級參加興趣活動小組人數共有學生多少人?
120÷35 =200(人)
『叄』 六年級上冊數學人教版知識點
只有知識才是力量,只有知識能使我們誠實地愛人,尊重人的勞動,由衷地贊賞無間斷的偉大勞動的美好成果;只有知識才能使我們成為具有堅強精神的、誠實的、有理性的人。下面我給大家分享一些六年級上冊數學人教版知識,希望能夠幫助大家,歡迎閱讀!
六年級上冊數學人教版知識1
一、分數乘法
(一)、分數乘法的計演算法則:
1、分數與整數相乘:分子與整數相乘的積做分子,分母不變。(整數和分母約分)
2、分數與分數相乘:用分子相乘的積做分子,分母相乘的積做分母。
3、為了計算簡便,能約分的要先約分,再計算。
注意:當帶分數進行乘法計算時,要先把帶分數化成假分數再進行計算。
(二)、規律:(乘法中比較大小時)
一個數(0除外)乘大於1的數,積大於這個數。
一個數(0除外)乘小於1的數(0除外),積小於這個數。
一個數(0除外)乘1,積等於這個數。
(三)、分數混合運算的運算順序和整數的運算順序相同。
(四)、整數乘法的交換律、結合律和分配律,對於分數乘法也同樣適用。
乘法交換律: a × b = b × a
乘法結合律: ( a × b )×c = a × ( b × c )
乘法分配律: ( a + b )×c = a c + b c a c + b c = ( a + b )×c
二、分數乘法的解決問題
(已知單位「1」的量(用乘法),求單位「1」的幾分之幾是多少)
1、找單位「1」: 在分率句中分率的前面; 或 「占」、「是」、「比」的後面
2、求一個數的幾倍: 一個數×幾倍; 求一個數的幾分之幾是多少: 一個數× 。
3、寫數量關系式技巧:
(1)「的」 相當於 「×」 「占」、「是」、「比」相當於「 = 」
(2)分率前是「的」: 單位「1」的量×分率=分率對應量
(3)分率前是「多或少」的意思: 單位「1」的量×(1 分率)=分率對應量
三、倒數
1、倒數的意義: 乘積是1的兩個數互為倒數。
強調:互為倒數,即倒數是兩個數的關系,它們互相依存,倒數不能單獨存在。
(要說清誰是誰的倒數)。
2、求倒數的 方法 :
(1)、求分數的倒數:交換分子分母的位置。(2)、求整數的倒數:把整數看做分母是1的分數,再交換分子分母的位置。(3)、求帶分數的倒數:把帶分數化為假分數,再求倒數。
(4)、求小數的倒數: 把小數化為分數,再求倒數。
3、1的倒數是1; 0沒有倒數。 因為1×1=1;0乘任何數都得0, (分母不能為0)
4、 對於任意數 ,它的倒數為 ;非零整數 的倒數為 ;分數 的倒數是 ;
5、真分數的倒數大於1;假分數的倒數小於或等於1;帶分數的倒數小於1。
六年級上冊數學人教版知識2
分數除法
一、 分數除法
1、分數除法的意義:
分數除法與整數除法的意義相同,表示已知兩個因數的積和其中一個因數,求另一個因數的運算。
2、分數除法的計演算法則: 除以一個不為0的數,等於乘這個數的倒數。
3、 規律(分數除法比較大小時):(1)、當除數大於1,商小於被除數;
(2)、當除數小於1(不等於0),商大於被除數;(3)、當除數等於1,商等於被除數。
4、 「 」叫做中括弧。一個算式里,如果既有小括弧,又有中括弧,要先算小括弧裡面的, 再算中括弧裡面的。
二、分數除法解決問題
(未知單位「1」的量(用除法): 已知單位「1」的幾分之幾是多少,求單位「1」的量。 )
1、數量關系式和分數乘法解決問題中的關系式相同:
(1)分率前是「的」: 單位「1」的量×分率=分率對應量
(2)分率前是「多或少」的意思: 單位「1」的量×(1 分率)=分率對應量
2、解法:(建議:最好用方程解答)
(1)方程: 根據數量關系式設未知量為X,用方程解答。
(2)算術(用除法): 分率對應量÷對應分率 = 單位「1」的量
3、求一個數是另一個數的幾分之幾:就 一個數÷另一個數
4、求一個數比另一個數多(少)幾分之幾:
① 求多幾分之幾:大數÷小數 – 1 ② 求少幾分之幾: 1 - 小數÷大數
或① 求多幾分之幾(大數-小數)÷小數② 求少幾分之幾:(大數-小數)÷大數
六年級上冊數學人教版知識3
比和比的應用
(一)、比的意義
1、比的意義:兩個數相除又叫做兩個數的比。
2、在兩個數的比中,比號前面的數叫做比的前項,比號後面的數叫做比的後項。比的前項除以後項所得的商,叫做比值。
例如 15 :10 = 15÷10= (比值通常用分數表示,也可以用小數或整數表示)
∶ ∶ ∶ ∶
前項 比號 後項 比值
3、比可以表示兩個相同量的關系,即倍數關系。也可以表示兩個不同量的比,得到一個新量。例: 路程÷速度=時間。
4、區分比和比值
比:表示兩個數的關系,可以寫成比的形式,也可以用分數表示。
比值:相當於商,是一個數,可以是整數,分數,也可以是小數。
5、根據分數與除法的關系,兩個數的比也可以寫成分數形式。
6、比和除法、分數的聯系:
比 前 項 比號「:」 後 項 比值
除 法 被除數 除號「÷」 除 數 商
分 數 分 子 分數線 「—」 分 母 分數值
7、比和除法、分數的區別:除法是一種運算,分數是一個數,比表示兩個數的關系。
8、根據比與除法、分數的關系,可以理解比的後項不能為0。
體育比賽中出現兩隊的分是2:0等,這只是一種記分的形式,不表示兩個數相除的關系。
(二)、比的基本性質
1、根據比、除法、分數的關系:
商不變的性質:被除數和除數同時乘或除以相同的數(0除外),商不變。
分數的基本性質:分數的分子和分母同時乘或除以相同的數時(0除外),分數值不變。
比的基本性質:比的前項和後項同時乘或除以相同的數(0除外),比值不變。
2、最簡整數比:比的前項和後項都是整數,並且是互質數,這樣的比就是最簡整數比。
3、根據比的基本性質,可以把比化成最簡單的整數比。
4.化簡比:
①用比的前項和後項同時除以它們的最大公因數。
(1) ②兩個分數的比:用前項後項同時乘分母的最小公倍數,再按化簡整數比的方法來化簡。
③兩個小數的比:向右移動小數點的位置,先化成整數比再化簡。
(2)用求比值的方法。注意: 最後結果要寫成比的形式。
如: 15∶10 = 15÷10 = = 3∶2
5.按比例分配:把一個數量按照一定的比來進行分配。這種方法通常叫做按比例分配。
如: 已知兩個量之比為 ,則設這兩個量分別為 。
6、 路程一定,速度比和時間比成反比。(如:路程相同,速度比是4:5,時間比則為5:4)
工作總量一定,工作效率和工作時間成反比。
(如:工作總量相同,工作時間比是3:2,工作效率比則是2:3)
六年級上冊數學人教版知識4
圓的面積
1、圓的面積:圓所佔平面的大小叫做圓的面積。 用字母S表示。
2、一條弧和經過這條弧兩端的兩條半徑所圍成的圖形叫做扇形。頂點在圓心的角叫做圓心角。
3、圓面積公式的推導:
(1)、用逐漸逼近的轉化思想: 體現化圓為方,化曲為直;化新為舊,化未知為已知,化復雜為簡單,化抽象為具體。
(2)、把一個圓等分(偶數份)成的扇形份數越多,拼成的圖像越接近長方形。
(3)、拼出的圖形與圓的周長和半徑的關系。
圓的半徑 = 長方形的寬
圓的周長的一半 = 長方形的長
因為: 長方形面積 = 長 × 寬
所以: 圓的面積 = 圓周長的一半 × 圓的半徑
S圓 = πr × r
圓的面積公式: S圓 = πr2
4、環形的面積:
一個環形,外圓的半徑是R,內圓的半徑是r。(R=r+環的寬度.)
S環 = πR?-πr? 或
環形的面積公式: S環 = π(R?-r?)。
5、一個圓,半徑擴大或縮小多少倍,直徑和周長也擴大或縮小相同的倍數。
而面積擴大或縮小的倍數是這倍數的平方倍。 例如:
在同一個圓里,半徑擴大3倍,那麼直徑和周長就都擴大3倍,而面積擴大9倍。
6、兩個圓: 半徑比 = 直徑比 = 周長比;而面積比等於這比的平方。 例如:
兩個圓的半徑比是2∶3,那麼這兩個圓的直徑比和周長比都是2∶3,而面積比是4∶9
7、任意一個正方形與它內切圓的面積之比都是一個固定值,即:4∶π
8、當長方形,正方形,圓的周長相等時,圓面積最大,正方形居中,長方形面積最小。反之,面積相同時,長方形的周長最長,正方形居中,圓周長最短。
9、確定起跑線:
(1)、每條跑道的長度 = 兩個半圓形跑道合成的圓的周長 + 兩個直道的長度。
(2)、每條跑道直道的長度都相等,而各圓周長決定每條跑道的總長度。(因此起跑線不同)
(3)、每相鄰兩個跑道相隔的距離是: 2×π×跑道的寬度
(4)、當一個圓的半徑增加a厘米時,它的周長就增加2πa厘米;當一個圓的直徑增加a厘米時,它的周長就增加πa厘米。
11、常用各π值結果:
π = 3.14
2π = 6.28
3π = 9.42
5π = 15.7
6π = 18.84
7π = 21.98
9π = 28.26
10π = 31.4
16π = 50.24
36π = 113.04
64π = 200.96
96π = 301.44
4π = 12.56 8π = 25.12 25π = 78.5
六年級上冊數學人教版知識5
一、 認識圓
1、圓的定義:圓是由曲線圍成的一種平面圖形。
2、圓心:將一張圓形紙片對折兩次,摺痕相交於圓中心的一點,這一點叫做圓心。
一般用字母O表示。它到圓上任意一點的距離都相等.
3、半徑:連接圓心到圓上任意一點的線段叫做半徑。一般用字母r表示。
把圓規兩腳分開,兩腳之間的距離就是圓的半徑。
4、直徑:通過圓心並且兩端都在圓上的線段叫做直徑。一般用字母d表示。
直徑是一個圓內最長的線段。
5、圓心確定圓的位置,半徑確定圓的大小。
6、在同圓或等圓內,有無數條半徑,有無數條直徑。所有的半徑都相等,所有的直徑都相等。
7.在同圓或等圓內,直徑的長度是半徑的2倍,半徑的長度是直徑的 。
用字母表示為:d=2r或r =
8、軸對稱圖形:
如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形是軸對稱圖形。
摺痕所在的這條直線叫做對稱軸。(經過圓心的任意一條直線或直徑所在的直線)
9、長方形、正方形和圓都是對稱圖形,都有對稱軸。這些圖形都是軸對稱圖形。
10、只有1一條對稱軸的圖形有: 角、等腰三角形、等腰梯形、扇形、半圓。
只有2條對稱軸的圖形是: 長方形
只有3條對稱軸的圖形是: 等邊三角形
只有4條對稱軸的圖形是: 正方形;
有無數條對稱軸的圖形是: 圓、圓環。
二、圓的周長
1、圓的周長:圍成圓的曲線的長度叫做圓的周長。用字母C表示。
2、圓周率實驗:
在圓形紙片上做個記號,與直尺0刻度對齊,在直尺上滾動一周,求出圓的周長。
發現一般規律,就是圓周長與它直徑的比值是一個固定數(π)。
3.圓周率:任意一個圓的周長與它的直徑的比值是一個固定的數,我們把它叫做圓周率。
用字母π(pai) 表示。
(1)、一個圓的周長總是它直徑的3倍多一些,這個比值是一個固定的數。
圓周率π是一個無限不循環小數。在計算時,一般取π ≈ 3.14。
(2)、在判斷時,圓周長與它直徑的比值是π倍,而不是3.14倍。
(3)、世界上第一個把圓周率算出來的人是我國的數學家祖沖之。
4、圓的周長公式: C= πd d = C ÷π
或C=2π r r = C ÷ 2π
5、在一個正方形里畫一個最大的圓,圓的直徑等於正方形的邊長。
在一個長方形里畫一個最大的圓,圓的直徑等於長方形的寬。
6、區分周長的一半和半圓的周長:
(1) 周長的一半:等於圓的周長÷2 計算方法:2π r ÷ 2 即 π r
(2)半圓的周長:等於圓的周長的一半加直徑。 計算方法:πr+2r
六年級上冊數學人教版知識點相關 文章 :
★ 六年級數學上冊知識點人教版
★ 六年級上冊數學知識點整理歸納
★ 六年級數學上冊知識點復習
★ 六年級數學上冊知識人教版
★ 六年級數學上冊知識點總結
★ 六年級數學上冊知識點復習資料
★ 人教版小學六年級數學下冊知識點
★ 六年級上冊數學第二單元知識點
★ 人教版六年級數學(下冊)期末知識要點
★ 六年級數學上冊《百分數》知識點總結
『肆』 人教版六年級上冊數學教案
人教版六年級上冊數學教案5篇
在教學中注重數學思想和方法的滲透,使學生會「做數學」。那麼小學六年級數學上學期教學設計該怎麼設計呢?下面我給大家帶來關於人教版六年級上冊數學教案,方便大家學習
人教版六年級上冊數學教案1
教學目標
使學生在具體情境中初步理解東偏北(南)、西偏南(北)等方向的含義,會用方向和距離描述物體的位置,初步感受用方向和距離確定物體位置的科學性和合理性。進一步培養學生觀察能力、識圖能力和有條理地進行表達的能力,發展空間觀念。
教學重難點
重點:通過解決實際問題,使學生體會確定位置在生活中的應用,了解確定位置的方法;在情境中學生能根據方向和距離確定物體的位置,並描述簡單的路線圖。
難點:通過解決實際問題,使學生能根據方向和距離確定物體的位置,並能描述簡單的帆肢路線圖。
教學過程
一、設置情景,導入新課
同學們,你們看過《龜兔賽跑》的故事嗎?生說看過。誰知道比賽的結果是誰贏了?一起說烏龜。為什麼是烏龜贏了?生說:因為兔子睡了一覺。兔子知道自己錯了。今天又要跟烏龜再比賽賽跑:
請看《龜兔賽跑續集》
觀看龜兔賽跑圖片,導入課題。
小兔為什麼又會輸?生笑著說這是因為小兔跑錯方向了。怎樣才能走到終點呢?由哪幾個要素決定?今天我們就來研究有關於:終點在起點什麼方向上?終點和起點相距多遠?
帶著這兩個問題,
我們來學習今天的新課:位置
同學們,我們已經學習了哪些方位?生:東,南,西,北四個方位。還有呢?生:東南,西南,東北,西北。我們已經學習了8個方位。課件出示。
二、自主探究,合作交流
每年我國的沿海地區都會受到台風的侵擾。瞧,這是某年的一個強台衡螞風位置圖,請測算一下。
(一)教學例1
1. 現在台風中心的位置。(課件出示)
目前台風中心位於A市東偏南30°方向、距A市600km的洋面上,正以20千米/時的速度沿直線向A市移動。
台風大約多少個小時後到達A市?
2.東偏南30°是什麼意思?如果只有這個條件,能否確定台風中心的具體位置嗎?
3.如果這樣預告會發生什麼情況?這樣確定方向准確嗎?怎樣預告會更加的准確?
4.還要預告什麼?(距離)
(距離600千米)如果沒有距離又會怎樣?
5.小結:預告台風時既要說方向又要說距離。 強調:東偏南30°還可以怎樣表示?也可以說成南偏東60°,但在生活中一般我們先說與物體所在方向離得較近(夾角較小)的方位。 6.口答:台風大約多少個小時後到達A市?
7.練習:完成教科書第20頁的做一做。
先讓學生獨立完成,讓學生操作中經歷知識的形成過程,然後集體訂正。
(二)教學例2
1.課件出示:台風到達A市後,改變方向向B市移動。受台風影響,C市也將有大到暴雨。 B市位於A市北偏西30°方向、距離A 市200km。C市在A市正北方,距離A市300km 。請你在例1的圖標中標出B市、C市的位置。
2.怎樣表示距離呢?
先確定平面圖上的方向,再確定各建築物的距離。如果學生沒有說到,老師可以進行引導:你們打算怎樣在圖上表示出200km?從而幫助學生確定比例尺,和圖上距離。用1cm表示100km比較合適。
3.學生獨立完成,集體訂正。
4.訂正後交流:你們組認為在確定這點在圖上的態攔世位置時,應注意什麼?怎樣確定?
通過剛才的學習,你覺得怎樣確定物體的位置?
教師小結:繪制平面圖時,一般先確定角度,再確定圖上的距離。
根據方向和距離可以確定物體所在的位置。
5.口答:台風到達A市後,移動速度變為40km/時,幾小時後到達B市?
6.練習:完成教科書第21頁的做一做,打開課本第21頁的做一做:
(1)有關信息:
教學樓在校門的正北方向150米處。
圖書館在校門的北偏東35度方向150米處。 體育館在校門西偏北40度方向200米處。
(2)師:要在平面圖上准確地標出一個地方的位置,你認為需要考慮哪幾個方面? (3)師生共同梳理: A.先確定好平面圖的中心。 B.確定方向和距離。
(4)自主操作,獨立繪制平面圖。
(5)指名展示交流,完善繪圖過程。
學生展示繪制的圖,並演示過程,其他學生評議補充。
看來畫圖的過程有點復雜,讓我們一起再來回顧一下整個過程。畫圖的過程和方法清楚了嗎?剛才你們是不是這樣畫的?
三、知識反饋,鞏固應用
看來同學們對本屆的知識掌握的還不錯。現在你們有勇氣來挑戰自我嗎?
課件出示:
1、警察局收到卧底送來的示意圖
(1)犯罪分子1在警察局的( )方向,距離是( )米。
(2)犯罪分子2在警察局的( )向,距離是
( )米。
(3)犯罪分子3在警察局的( )方向,距離是
( )米。
2、做一做,課件出示,獨立完成後訂正。
四、課堂小結
這節課你的最大收獲是什麼?你還有什麼不懂的地方?
位置與方向, 生活常遇到,
要想定位置, 兩點要記牢:
方向是首要, 距離少不了。
五、拓展延伸 同學們的收獲可真不少,你們能用今天所學的知識創作一幅學校建築平面圖嗎?自己開始試一試吧!
人教版六年級上冊數學教案2
教學目標
1、在學生已有的分數加法及分數基本意義的基礎上,結合生活實例,通過對分數連加算式的研究,使學生理解分數乘整數的意義,掌握分數乘整數的計算方法,能夠應用分數乘整數的計演算法則,比較熟練地進行計算。
2、通過觀察比較,指導學生通過體驗,歸納分數乘整數的計演算法則,培養學生的抽象概括能力。
3、 引導學生探求知識的內在聯系,激發學生學習興趣。通過演示,使學生初步感悟算理,並在這過程中感悟到數學知識的魅力,領略到美。
教學重難點
教學重點: 使學生理解分數乘整數的意義,掌握分數乘整數的計算方法。
教學難點: 引導學生總結分數乘整數的計演算法則。
教學過程
一、 復習
出示復習題。
1.根據題意列出算式:
5個12是多少?
3個14是多少?
2.下列句子中那些可以看做單位1
獵豹的速度是獅子的七分之三。
參加合唱隊的同學佔全班人數的五分之一。
紅花比黃花多二分之一。
十月比九月節約四分之三。
3.計算: 3/10 +3/ 10 + 3/10 =
3/10 + 3/10+ 3/10 這題我們還可以怎麼計算?
今天我們就來學習分數乘法。
二、 新授
1、利用 3/10 + 3/10 + 3/10 教學分數乘法。
(1) 這道加法算式中,加數各是多少?(都是3/10)
(2) 表示幾個相同加數的和,我們還可以用什麼方法來計算?怎麼列式?(乘法, 3/10 ×3)
(3) 3/10 +3/10+ 3/10=9,那麼 3/10 + 3/10 + 3/10= 3/10 ×3,
所以3/ 10 ×3=____________=9。 同學們想想看,3/10 ×3=9計算過程是怎樣的?
誰能把它補充完整
2、出示例1,
(1)理解題意:
引導學生看圖,理解「人跑一步的距離相當於袋鼠跳一下的 2/11 」,就是把袋鼠跳 一下的距離即這一整條線段看作單位「1」。把這條線段平均分成11份,其中的2 份就表示人跑一步的距離。
(2) 引導學生根據線段圖理解,
「人跑一步的距離相當於袋鼠跳一下的2/11 」是 什麼意思?如何理解「相當於」?再通過線段圖幫助理解。畫一條線段,表示袋鼠跳一下的距離。「人跑一步的距離相當於袋鼠
跳一下的2/11 」,就要把袋鼠跳一下的距離即這一條線段看作單位 「1」,把這條線段平均分成11份,其中的2份就表示人跑一步的距離。求「人跑3步的距離相當於袋鼠跳一下的幾分之幾?」 就是求3個2/11 是多少?
(列式:2/11×3 = 6/11 )
有沒有更簡便的計算方法呢?獨立完成。指生板演。出示課件演示。
3、結合以上兩題,歸納出分數乘整數的計演算法則:分數乘整數,用分數的的分子和整數 相乘的積作分子,分母不變。
4、練習:練習完成「做一做」第2題。
5、教學例2
(1)出示3/8×6,學生獨立計算。
(2)根據計算結果,學生觀察討論:乘得的積是不是最簡分數?應該怎麼辦?
(3)學生通過自己的想法的來約分:A、先約分再計算;B、先計算得出乘積後約分。 (4)對比,讓學生體會先約分再計算的方法比較簡便,同時向學生說明先約分的書寫格式。
6.練一練,課件出示,學生獨立計算。然後訂正。
三、鞏固練習
比賽:
第一回合
1、完成「做一做」的第一題。(提醒學生,計算前先觀察分數的分母與整數是否可以約 分,養成先約分在計算的習慣)
第二回合
2、「做一做」第3題。(提醒學生,計算前先觀察分數的分母與整數是否可以約 分,養成先約分在計算的習慣)
四、課堂總結:
今天你有什麼收獲?
五 、布置作業 : 練習二第1、2、4題。
人教版六年級上冊數學教案3
教學目標
1.使學生認識圓,掌握圓的各部分名稱。
2.通過動手操作、實驗觀察探索出圓的特徵及同一個圓里半徑和直徑的關系。
3.初步學會用圓規畫圓,培養學生的作圖能力。
4.培養學生觀察、分析、抽象、概括等思維能力。
教學重難點
教學重點
在動手操作中掌握圓的特徵,學會用圓規畫圓的方法。
教學難點
理解圓上的概念,歸納圓的特徵。
教學工具
課件
教學過程
一、活動一:演示操作,揭示課題
課件出示「大家都來當裁判嘍!」
演示兩人騎自行車的動畫,一人的自行車輪子是圓形的,一人的自行車輪子是其它形狀的。
讓學生初步感知圓在生活中的應用。
二、活動二:動手操作,探究新知
(一)教師讓學生舉例說明周圍哪些物體上有圓。
(二)認識圓的各部分名稱和圓的特徵。
1.學生拿出圓的學具。
2.教師:你們摸一摸圓的邊緣,是直的還是彎的?
教師說明:圓是平面上的一種曲線圖形。
3.通過具體操作,認識一下圓的各部分名稱和圓的特徵。
(1)先把圓對折、打開,換個方向,再對折,再打開……這樣反復折幾次。
教師提問:折過若干次後,你發現了什麼?
仔細觀察一下,這些摺痕總在圓的什麼地方相交?
教師指出:我們把圓中心的這一點叫做圓心。圓心一般用字母o表示。
教師板書:圓心
(2)用尺子量一量圓心到圓上任意一點的距離,看一看,可以發現什麼?
教師指出:我們把連接圓心和圓上任意一點的線段叫做半徑,半徑一般用字母r表示。板書:半徑
教師提問:根據半徑的概念同學們想一想,半徑應具備哪些條件?
在同一個圓里可以畫多少條半徑?
所有半徑的長度都相等嗎?
教師板書:在同一個圓里有無數條半徑,所有半徑的長度都相等。
(3)同學繼續觀察:剛才把圓對折時,每條摺痕都從圓的什麼地方通過?兩端都在圓的什麼地方?
教師指出:我們把通過圓心並且兩端都在圓上的線段叫做直徑。直徑一般用字母 d來表示。板書:直徑
教師提問:根據直徑的概念同學們想一想,直徑應具備什麼條件?
在同一個圓里可以畫出多少條直徑?
自己用尺子量一量同一個圓里的幾條直徑,看一看,所有直徑的長度都相等嗎?
教師板書:在同一個圓里有無數條直徑,所有直徑的長度都相等。
(4)教師小結:通過剛才的學習我們知道,在同一個圓里有無數條半徑,所有半徑的長度都相等;有無數條直徑,所有直徑的長度也都相等。
(5)討論:在同一個圓里,直徑的長度與半徑的長度又有什麼關系呢?
如何用字母表示這種關系?
反過來,在同一個圓里,半徑的長度是直徑的幾分之幾?
教師板書:在同一個圓里,直徑的長度是半徑的2倍。
(三)反饋練習。
1、P58的「做一做」第1、3、4題
2、練習十四的第2、3題
(四)圓的畫法。
1、學生自學,看書57頁。
2、學生試畫。
3、學生通過試畫小結用圓規畫圓的方法,注意的問題。
4、教師歸納板書:1.定半徑;2.定圓心;3.旋轉一周。
教師強調:畫圓時,圓規兩腳間的距離不能改變,有針尖的一腳不能移動,旋轉時要把重心放在有針尖的一腳。
5、學生練習
P58的「做一做」第2題
(五)教師提問
為什麼同學們畫的圓不一樣呢?什麼決定圓的大小?什麼決定圓的位置?
教師板書:半徑決定圓的大小,圓心決定圓的位置。
(六)思考:體育課上,老師想在操場畫一個大圓圈做游戲,沒有這么大的圓規怎麼辦?
三、全課小結
這節課我們學習了什麼?通過這節課的學習你有什麼收獲?
四、作業
練習十四的第1題
人教版六年級上冊數學教案4
教學目標
1.使學生學會圓環面積的計算方法,以及圓形與矩形混合圖形的相關計算方法。
2.學會利用已有的知識,運用數學思想方法,推導出圓環面積計算公式,有關於圓形與正方形應用的解答方法。
3.培養學生觀察、分析、推理和概括的能力,發展學生的空間概念。
教學重難點
1 教學重點
會利用圓和其他已學的相關知識解決實際問題。
2 教學難點
圓與其他圖形計算公式的混合使用。
教學工具
PPT 卡片
教學過程
1 復習鞏固上節知識,導入新課
2 新知探究
2.1 圓環面積
一、問題引入
同學們知道光碟可以用來做什麼嗎?誰能來描述一下光碟的外觀。
回答(略)。
今天我們就來做一做與光碟相關的數學問題。
二、圓環面積求解
例2.光碟的銀色部分是一個圓環,內圓半徑是50px,外圓半徑是150px。圓環的面積是多少?
步驟:
師:求圓環面積需要先求什麼?
生:內圓和外圓的面積
師:同學們可以自己做一做,分組交流一下自己的解法。
師:給出計算過程與結果:
三、知識應用
做一做第2題:
一個圓形環島的直徑是50m,中間是一個直徑為10m的圓形花壇,其他地方是草坪。草坪的佔地面積是多少?
師:這是一道典型的圓環面積應用題。通過直徑得到半徑,代入圓環面積公式,很簡單。
2.2 圓與正方形
一、問題引入
師:同學們知道蘇州的園林吧。大家有沒有觀察過園林建築的窗戶?它有很多很漂亮的設計,也有很多很常見的圖形,比如五邊形、六邊形、八邊形等等。其中外圓內方或者外方內圓是一種很常見的設計。
師:不僅是在園林中,事實上在中國的建築和其他的設計中都經常能見到「外圓內方」和「外方內圓」,比如這座沈陽的方圓大廈、商標等等。下面我們來認識一下這種圓形與正方形結合起來構成的圖形。
二、知識點
例3:圖中的兩個圓半徑是1m,你能求出正方形和圓之間部分的面積嗎?
步驟:
師:題目中都告訴了我們什麼?
生:左圖圓的半徑=正方形的邊長的一半=1m;右圖圓的面積=正方形對角線的一半=1m
師:分別要求的是什麼?
生:一個求正方形比圓多的面積,一個求圓比正方形多的面積。
師:應該怎麼計算呢?
歸納總結
如果兩個圓的半徑都是r,結果又是怎樣的呢?
當r=1時,與前面的結果完全一致。
四、知識應用
70頁做一做:
下圖是一面我國唐代外圓內方的銅鏡。銅鏡的直徑是600px。外面的圓與內部的正方形之間的面積是多少?
師:同學們用我們剛剛學過的知識來解答一下這道題目吧。
解:銅鏡的半徑是300px
5.3 隨堂練習
若還有足夠時間,課堂練習練習十五第5/6/7題。
(可以邀請同學板書解題過程)
6 小結
1. 今天我們共同研究了什麼?
今天我們在已知圓和正方形的面積公式的前提下,探索了圓環和「外圓內方」「外方內圓」圖形的面積計算方法。這不是要求同學們記住這些推導出來的公式,而是希望同學們能過明白推導的方法,以後遇到類似的問題可以自己運用學過的知識來解決問題。
2. 在日常生活中經常需要去求圓的面積,譬如說:蒙古包做成圓形的是因為可以最大化地利用居住面積,植物根莖的橫截面是圓形的,也是因為可以最大化的吸收水分。我們還可以再舉出其他的一些例子,如裝菜的盤子、車輪為什麼要做成圓形的?大家需要多看多想!
7 板書
例2解答步驟
人教版六年級上冊數學教案5
教學目標
(1)能夠利用身邊的工具測量出圓的周長
(2)能夠掌握多種測量計算圓的周長的方法
(3)能夠說出圓周率小數點7位
(4)能夠了解祖沖之
(5)能夠靈活運用圓的周長計算公式進行計算
(6)培養學生邏輯推理能力
(7)對學生進行愛國主義教育
(8)培養學生的觀察、比較、概括和動手操作的能力
教學重難點
重點:圓的周長和圓周率的意義
難點:圓周長公式的推導過程
教學工具
Ppt課件、視頻、籃球、硬幣、瓶蓋
教學過程
一、討論探索活動導入
1、展示實物籃球、瓶蓋、硬幣
揭示主題:圓的周長
2、提問:正方形、長方形的邊長是4條邊相加就是周長,那圓的周長也和它們一樣嗎?
3、引導學生利用身邊的工具測量出籃球的周長(分小組討論探索)
4、提問:圓是沒有邊長的,它只是一條曲線,你們能利用手中的工具將圓的周長測量出來嗎?你們能想幾種方法出來?
5、分享測量的方法
方法:化曲線為直線、滾動、軟皮尺測、繩繞圓一周
二、了解圓周率
1、提問:觀察一下籃球和硬幣的直徑和周長,你們得出什麼結論?
結論:
圓的周長與它的直徑有關,直徑越大,周長越大
一個圓的周長總是它的直徑的3倍多一點
2、提問:有誰知道圓周率是多少嗎?
圓周率3.1415926535
3、大家猜一猜圓周率有多少小小數點?
(展示祖沖之圖片以及圓周率的發展史)
中國古代數學家祖沖之比外國早1000年第一個把圓周率的值精確到7位小數
圓周率是任意一個圓的周長與它的直徑的比值,這個直徑是一個固定的數,用字母π表示,它是一個無限不循環小數,π=3.1415926535......取近似值π=3.14
3、播放視頻:歌曲名3.1415
三、利用公式計算圓的周長
1、根據圓的周長和直徑的關系可以推導出一個圓的周長計算公式,在書上,告訴我是什麼?
公式:C=πd或C=2πr
2、提問:求圓的周長需要知道哪些條件?
條件:直徑或者半徑、π=3.14
3、例題講解
書上第64頁例題
4、做練習題
(展示ppt)
課後小結
圓的周長與它的直徑有關,直徑越大,周長越大
圓周率π是一個無限不循環小數,π=3.1415926535......取近似值π=3.14
圓的周長公式:C=πd或C=2πr
課後習題
同樣的小組成員,測量一個學校圓形的周長,小組的形式合作完成
『伍』 人教版小學六年級數學上冊概念都是有哪些
人教版小學六年級數學上冊概念如下:
第一單元位置:
1、找位置:先列後行。格式為:(列,行)。例如:(a,b)。
2、位置的表示方法:兩邊小括弧,中間是逗號,先寫列,再寫行。
3、平移方法:左右平移,列變行不變;上下平移,行變列不變。
第二單元分數乘法:
1、分數乘整數的意義和整數乘法的意義相同:就是求幾個相同加數的和的簡便運算。
2、分數乘整數的計演算法則:分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
3、整數乘分數:分數乘以整數,可以看作是求幾個分數相加的和是多少。整數乘以分數,可以看作是求整數的幾分之幾是多少。
4、分數乘分數的計演算法則:分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。
5、乘積是1的兩個數叫互為倒數。
6、求一個數(0除外)的倒數的方法:把這個分數的分子、分母調換位置。1的倒數是1。0沒有倒數。真分數的倒數大於1;假分數的倒數小於或等於1;帶分數的倒數小於1。
7、一個數(0除外)乘以一個真分數,所得的積小於它本身。
8、一個數(0除外)乘以一個假分數,所得的積等於或大於它本身。
9、一個數(0除外)乘以一個帶分數,所得的積大於它本身。
第三單元分數除法:
1、分數除法的意義:分數除法的意義與整數除法的意義相同,都是已知兩個因數的積與其中一個因數,求另一個因數的運算。
2、分數除以整數(0除外),等於分數乘這個整數的倒數。
3、整數除以分數等於整數乘以這個分數的倒數。
4、分數除法的計演算法則:甲數除以乙數(0除外),等於甲數乘乙數的倒數。
5、兩個數相除又叫做兩個數的比。
6、「:」是比號,讀做「比」。比號前面的數叫做比的前項,比號後面的數叫做比的後項。比的前項除以後項所得的商,叫做比值。
7、比同除法比較:比的前項相當於被除數,後項相當於除數,比值相當於商。
8、根據分數與除法的關系,比的前項相當於分子,比的後項相當於分母,比值相當於分數的值。
9、比的基本性質:比的前項和後項同時乘上或者同時除以相同的數(0除外),比值不變。
10、在工農業生產中和日常生活中,常常需要把一個數量按照一定的比來進行分配。這種方法通常叫做按比例分配。
11、一個數(0除外)除以一個真分數,所得的商大於它本身。
12、一個數(0除外)除以一個假分數,所得的商小於或等於它本身。
13、一個數(0除外)除以一個帶分數,所得的商小於它本身。
第四單元圓
1、圓的定義:平面上的一種曲線圖形。
2、將一張圓形紙片對折兩次,摺痕相交於圓中心的一點,這一點叫做圓心。圓心一般用字母O表示。它到圓上任意一點的距離都相等。
3、半徑:連接圓心到圓上任意一點的線段叫做半徑。半徑一般用字母r表示。把圓規兩腳分開,兩腳之間的距離就是圓的半徑。
4、圓心確定圓的位置,半徑確定圓的大小。
5、直徑:通過圓心並且兩端都在圓上的線段叫做直徑。直徑一般用字母d表示。
6、在同一個圓內,所有的半徑都相等,所有的直徑都相等。
7、在同一個圓內,有無數條半徑,有無數條直徑。
8、在同一個圓內,直徑的長度是半徑的2倍,半徑的長度是直徑的一半。
9、圓的周長:圍成圓的曲線的長度叫做圓的周長,用「C」表示。
10、圓的周長總是直徑的3倍多一些,這個比值是一個固定的數。我們把圓的周長和直徑的比值叫做圓周率,用字母「π」表示。圓周率是一個無限不循環小數。在計算時,取π≈3.14。
11、圓的周長公式:C=πd或C=2πr
12、圓的面積:圓所佔面積的大小叫圓的面積。
13、在一個正方形里畫一個最大的圓,圓的直徑等於正方形的邊長。
14、在一個長方形里畫一個最大的圓,圓的直徑等於長方形的寬。
15、一個環形,外圓的半徑是R,內圓的半徑是r,它的面積是S=πR²-πr²或S=π(R²-r²)。
16、環形的周長=外圓周長+內圓周長。
17、半圓的周長等於圓的周長的一半加直徑。半圓的周長公式:C=πd÷2+d或C=πr+2r
18、在同一個圓里,半徑擴大或縮小多少倍,直徑和周長也擴大或縮小相同的倍數。而面積擴大或縮小以上倍數的平方倍。
19、兩個圓的半徑比等於直徑比等於周長比,而面積比等於以上比的平方。
20、當一個圓的半徑增加a厘米時,它的周長就增加2πa厘米;
21、當一個圓的直徑增加a厘米時,它的周長就增加πa厘米。
22、在同一圓中,圓心角占圓周角的幾分之幾,它所在扇形面積就占圓面積的幾分之幾;所對的弧就占圓周長的幾分之幾。
23、當長方形,正方形,圓的周長相等時,圓的面積最大,長方形的面積最小。
24、軸對稱圖形:如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形就是軸對稱圖形。摺痕所在的這條直線叫做對稱軸。
25、只有1一條對稱軸的圖形有:角、等腰三角形、等腰梯形、扇形、半圓。
26、只有2條對稱軸的圖形是:長方形。
27、只有3條對稱軸的圖形是:等邊三角形。
28、只有4條對稱軸的圖形是:正方形。
29、有無數條對稱軸的圖形是:圓、圓環。
30、直徑所在的直線是圓的對稱軸。
第五單元百分數
1、百分數的定義:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
2、百分數的意義:表示一個數是另一個數的百分之幾。百分數表示兩個數之間的比率關系,不表示具體的數量,無單位名稱。
3、百分數通常不寫成分數形式,而在原來分子後面加上「%」來表示。分子部分可為小數、整數,可以大於100,小於100或等於100。
4、小數與百分數互化的方法:把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號;把百分數化成小數,只要把百分號去掉,同時把數點向左移動兩位。
5、百分數與分數互化的方法:把分數化成百分數,通常先把分數化成小數(除不盡的保留三位小數),再把小數化成百分數。
6、百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
7、百分率公式:
合格率=合格人數÷總人數100%發芽率=發芽數量÷總數量100%
出勤率=出勤人數÷總人數100%
8、應納稅額:繳納的稅款叫應納稅額。
9、應納稅額的計算:應納稅額=各種收入×稅率。
10、本金:存入銀行的錢叫做本金。
11、利息:取款時銀行多支付的錢叫做利息。
12、利率:利息與本金的比值叫做利率。
13、國債利息的計算公式:利息=本金×利率×時間。
13、本息:本金與利息的總和叫做本息。
單位換算:
1、長度單位換算
1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米
2、面積單位換算
1平方千米=100公頃1公頃10000平方米1平方米=100平方分米
1平方分米=100平方厘米
3、體(容)積單位換算
1立方米=1000立方分米1立方分米=1升1立方分米=1000立方厘米
1立方厘米=1毫升
4、重量單位換算:1噸=1000千克1千克=1000克
運算定律:
1、加法交換律:兩數相加交換加數的位置,和不變。a+b=b+a
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。如:a+b+c=a+c+b=a+(b+c)
3、乘法交換律:兩數相乘,交換因數的位置,積不變。ab=ba
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。如:a×b×c=a×c×b=a×(b×c)
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(ab)×c=acbc
6、加、減法性質:一個數連續減去幾個數,可以改寫成減去這幾個數的和。如:a-b-c=a-(b+c)
7、乘、除法性質:一個數連續除以幾個數,可以改寫成乘以這幾個數的積。a÷b÷c=a÷(b×c)
(5)小學六年級數學上冊人教版擴展閱讀:
小學六年級數學學習方法
1、抓住課堂
平日學習最重要的是課堂學習,聽課要認真,思維要跟著老師,總結老師所講的數學思想、數學方法。
2、高質量完成作業
不僅要高速度,還要高正確率。寫作業時,如果同一類型的題重復練習,就要多注意速度和准確率,並且在每做完一次要對此類題目進行思考總結,進一步提升自己,解題的規律、技巧等。
3、勤思考,多提問
對於老師給出的規律、定理,不僅要知其然還要知其所以然,對於老師的講解,課本的內容,有疑問應盡管提出,清除學習隱患。
4、總結比較,理清思緒
要進行知識點總結比較。每學完一個章節都應要本章內容在腦中過一遍,對於相似易混淆的知識點應分項歸納比較,將其區分開來。
要對題目進行比較。平時作業或者考試的錯題,選擇性地記下來,並用在一旁記下注意事項,經常翻看,這對數學學習有極大的幫助。
5、有選擇地做課外練習
課余時間並不充足,因此在做課外練習時要少而精,多反思