當前位置:首頁 » 語數英語 » 數學手抄報內容

數學手抄報內容

發布時間: 2020-11-18 17:31:14

數學手抄報內容怎麼

格式:一般是中間上方寫標題,或者左側寫大標題,如果喜歡一些張揚個性的呢,可以從中間傾斜橫跨整個紙張。內容可以分為概述,具體內容,圖片,花邊設計按需要改進。手抄報要細致,可以用熒光筆,細的那種,和中性筆一樣細的那種,大標題則可用粗一點的,顏色的選取要大膽,顯眼,如果喜歡黑色背景的話,可以直接買黑色的卡紙,大小顏色都不錯。厚度也不錯。比a4那類的列印紙要好點。要有創意,不拘一格內容:學習內容咯,分為這樣的幾個模塊,首先寫學習數學的精神性東西,比如態度咯,方法咯,然後寫具體的東西,數學的知識,還可以一套題哦,說出自己的方法和感觸哦,在寫點繼續性的東東,要好好學習嘍~呵呵,祝你學習進步咯~筆:可以有熒光筆,可以有蠟筆,彩筆,或者用改正液往黑色背景上寫咯。
數學趣味小故事:高斯念小學的時候,有一次在老師教完加法後,因為老師想要休息,所以便出了一道題目要同學們算算看,題目是:
1+2+3+
.....
+97+98+99+100
=
?
老師心裡正想,這下子小朋友一定要算到下課了吧!正要借口出去時,卻被
高斯叫住了!!
原來呀,高斯已經算出來了,小朋友你可知道他是如何算的嗎?
高斯告訴大家他是如何算出的:把
1加

100

100
加至
1
排成兩排相加,也就是說:
1+2+3+4+
.....
+96+97+98+99+100
100+99+98+97+96+
.....
+4+3+2+1
=101+101+101+
.....
+101+101+101+101
共有一百個101相加,但算式重復了兩次,所以把10100
除以
2便得到答案等於
<5050>
從此以後高斯小學的學習過程早已經超越了其它的同學,也因此奠定了他以後的數學基礎,更讓他成為——數學天才!

❷ 數學手抄報內容

第一寫關於數學的名言
羅素說:「數學是符號加邏輯」
畢達哥拉斯說:「數支配著宇宙」
哈爾莫斯說:「數學是一種別具匠心的藝術」
米斯拉說:「數學是人類的思考中最高的成就」
培根(英國哲學家)說:「數學是打開科學大門的鑰匙」
布爾巴基學派(法國數學研究團體)認為:「數學是研究抽象結構的理論」
黑格爾說:「數學是上帝描述自然的符號」
魏爾德(美國數學學會主席)說:「數學是一種會不斷進化的文化」
柏拉圖說:「數學是一切知識中的最高形式」
考特說:「數學是人類智慧皇冠上最燦爛的明珠」
第二寫關於數學的意義
數學,作為人類思維的表達形式,反映了人們積極進取的意志、縝密周詳的邏輯推理及對完美境界的追求。它的基本要素是:邏輯和直觀、分析和推理、共性和個性。雖然不同的傳統學派可以強調不同的側面,然而正是這些互相對立的力量的相互作用,以及它們綜合起來的努力,才構成了數學科學的生命力、可用性和它的崇高價值。
第三寫關於數學的小故事
數學名人小故事-康托爾
由於研究無窮時往往推出一些合乎邏輯的但又荒謬的結果(稱為「悖論」),許多大數學家唯恐陷進去而採取退避三舍的態度。在1874—1876年期間,不到30歲的年輕德國數學家康托爾向神秘的無窮宣戰。他靠著辛勤的汗水,成功地證明了一條直線上的點能夠和一個平面上的點一一對應,也能和空間中的點一一對應。這樣看起來,1厘米長的線段內的點與太平洋面上的點,以及整個地球內部的點都「一樣多」,後來幾年,康托爾對這類「無窮集合」問題發表了一系列文章,通過嚴格證明得出了許多驚人的結論。康托爾的創造性工作與傳統的數學觀念發生了尖銳沖突,遭到一些人的反對、攻擊甚至謾罵。有人說,康托爾的集合論是一種「疾病」,康托爾的概念是「霧中之霧」,甚至說康托爾是「瘋子」。來自數學權威們的巨大精神壓力終於摧垮了康托爾,使他心力交瘁,患了精神分裂症,被送進精神病醫院。
真金不怕火煉,康托爾的思想終於大放光彩。1897年舉行的第一次國際數學家會議上,他的成就得到承認,偉大的哲學家、數學家羅素稱贊康托爾的工作「可能是這個時代所能誇耀的最巨大的工作。」可是這時康托爾仍然神志恍惚,不能從人們的崇敬中得到安慰和喜悅。1918年1月6日,康托爾在一家精神病院去世。
最後,可以寫關於數學的笑話
小明小學數學考試,回來後他媽問他考得怎麼樣.小明說:"我基本上會做,但有一題3乘7,我怎麼也想不出來.最後打鈴了,我不管三七二十一就寫了個18."

❸ 數學手抄報內容!

數學手抄報內容!

初一數學上冊知識點

一、 知識梳理

知識點1:正、負數的概念:我們把像3、2、+0.5、0.03%這樣的數叫做正數,它們都是比0大的數;像-3、-2、-0.5、
-0.03%這樣數叫做負數。它們都是比0小的數。0既不是正數也不是負數。我們可以用正數與負數表示具有相反意義的量。

知識點2:有理數的概念和分類:整數和分數統稱有理數。有理數的分類主要有兩種:

註:有限小數和無限循環小數都可看作分數。

知識點3:數軸的概念:像下面這樣規定了原點、正方向和單位長度的直線叫做數軸。

知識點4:絕對值的概念:

(1) 幾何意義:數軸上表示a的點與原點的距離叫做數a的絕對值,記作|a|;

(2) 代數意義:一個正數的絕對值是它的本身;一個負數的絕對值是它的相反數;零的絕對值是零。

註:任何一個數的絕對值均大於或等於0(即非負數).

知識點5:相反數的概念:

(1) 幾何意義:在數軸上分別位於原點的兩旁,到原點的距離相等的兩個點所表示的數,叫做互為相反數;

(2) 代數意義:符號不同但絕對值相等的兩個數叫做互為相反數。0的相反數是0。

知識點6:有理數大小的比較:

有理數大小比較的基本法則:正數都大於零,負數都小於零,正數大於負數。

數軸上有理數大小的比較:在數軸上表示的兩個數,右邊的數總比左邊的大。

用絕對值進行有理數大小的比較:兩個正數,絕對值大的正數大;兩個負數,絕對值大的負數反而小。

❹ 數學手抄報資料

幫你想一個欄目
數學泡泡屋
【1】平行四邊形的面積=底×高
梯形的面積=(上底+下底)×高÷2
直徑=2
r
圓的周長=πd=
2πr
圓的面積=
πr^2
長方體的表面積=
(長×寬+長×高+寬×高)×2
長方體的體積
=長×寬×高
正方體的表面積=棱長×棱長×6
正方體的體積=棱長×棱長×棱長
圓柱的側面積=底面圓的周長×高
圓柱的表面積=上下底面面積+側面積
圓柱的體積=底面積×高
圓錐的體積=底面積×高÷3
柱體體積=底面積×高
平面圖形
名稱
符號
周長C和面積S
正方形
a—邊長
C=4a
S=a2
長方形
a和b-邊長
C=2(a+b)
S=ab
【2】1
過兩點有且只有一條直線
2
兩點之間線段最短
3
同角或等角的補角相等
4
同角或等角的餘角相等
5
過一點有且只有一條直線和已知直線垂直
6
直線外一點與直線上各點連接的所有線段中,垂線段最短
7
平行公理
經過直線外一點,有且只有一條直線與這條直線平行
8
如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9
同位角相等,兩直線平行
10
內錯角相等,兩直線平行
11
同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13
兩直線平行,內錯角相等
14
兩直線平行,同旁內角互補
15
定理
三角形兩邊的和大於第三邊
16
推論
三角形兩邊的差小於第三邊
17
三角形內角和定理
三角形三個內角的和等於180°
18
推論1
直角三角形的兩個銳角互余
19
推論2
三角形的一個外角等於和它不相鄰的兩個內角的和
20
推論3
三角形的一個外角大於任何一個和它不相鄰的內角
21
全等三角形的對應邊、對應角相等
22邊角邊公理(sas)
有兩邊和它們的夾角對應相等的兩個三角形全等
23
角邊角公理(
asa)有兩角和它們的夾邊對應相等的兩個三角形全等
24
推論(aas)
有兩角和其中一角的對邊對應相等的兩個三角形全等
25
邊邊邊公理(sss)
有三邊對應相等的兩個三角形全等
26
斜邊、直角邊公理(hl)
有斜邊和一條直角邊對應相等的兩個直角三角形全等
27
定理1
在角的平分線上的點到這個角的兩邊的距離相等
28
定理2
到一個角的兩邊的距離相同的點,在這個角的平分線上

❺ 數學手抄報內容怎麼寫

羅素說:「數學是符號加邏輯」

畢達哥拉斯說:「數支配著宇宙」

哈爾莫斯說:「數學是一種別具匠心的藝術」

米斯拉說:「數學是人類的思考中最高的成就」

培根(英國哲學家)說:「數學是打開科學大門的鑰匙」

布爾巴基學派(法國數學研究團體)認為:「數學是研究抽象結構的理論」

黑格爾說:「數學是上帝描述自然的符號」

魏爾德(美國數學學會主席)說:「數學是一種會不斷進化的文化」

柏拉圖說:「數學是一切知識中的最高形式」

考特說:「數學是人類智慧皇冠上最燦爛的明珠」
第二寫關於數學的意義
數學,作為人類思維的表達形式,反映了人們積極進取的意志、縝密周詳的邏輯推理及對完美境界的追求。它的基本要素是:邏輯和直觀、分析和推理、共性和個性。雖然不同的傳統學派可以強調不同的側面,然而正是這些互相對立的力量的相互作用,以及它們綜合起來的努力,才構成了數學科學的生命力、可用性和它的崇高價值。
第三寫關於數學的小故事
數學名人小故事-康托爾
由於研究無窮時往往推出一些合乎邏輯的但又荒謬的結果(稱為「悖論」),許多大數學家唯恐陷進去而採取退避三舍的態度。在1874—1876年期間,不到30歲的年輕德國數學家康托爾向神秘的無窮宣戰。他靠著辛勤的汗水,成功地證明了一條直線上的點能夠和一個平面上的點一一對應,也能和空間中的點一一對應。這樣看起來,1厘米長的線段內的點與太平洋面上的點,以及整個地球內部的點都「一樣多」,後來幾年,康托爾對這類「無窮集合」問題發表了一系列文章,通過嚴格證明得出了許多驚人的結論。康托爾的創造性工作與傳統的數學觀念發生了尖銳沖突,遭到一些人的反對、攻擊甚至謾罵。有人說,康托爾的集合論是一種「疾病」,康托爾的概念是「霧中之霧」,甚至說康托爾是「瘋子」。來自數學權威們的巨大精神壓力終於摧垮了康托爾,使他心力交瘁,患了精神分裂症,被送進精神病醫院。
真金不怕火煉,康托爾的思想終於大放光彩。1897年舉行的第一次國際數學家會議上,他的成就得到承認,偉大的哲學家、數學家羅素稱贊康托爾的工作「可能是這個時代所能誇耀的最巨大的工作。」可是這時康托爾仍然神志恍惚,不能從人們的崇敬中得到安慰和喜悅。1918年1月6日,康托爾在一家精神病院去世。
最後,可以寫關於數學的笑話
小明小學數學考試,回來後他媽問他考得怎麼樣.小明說:"我基本上會做,但有一題3乘7,我怎麼也想不出來.最後打鈴了,我不管三七二十一就寫了個18."

❻ 數學手抄報內容 資料

第一寫關於數學的名言
羅素說:「數學是符號加邏輯」

畢達哥拉斯說:「數支配著宇宙」

哈爾莫斯說:「數學是一種別具匠心的藝術」

米斯拉說:「數學是人類的思考中最高的成就」

培根(英國哲學家)說:「數學是打開科學大門的鑰匙」

布爾巴基學派(法國數學研究團體)認為:「數學是研究抽象結構的理論」

黑格爾說:「數學是上帝描述自然的符號」

魏爾德(美國數學學會主席)說:「數學是一種會不斷進化的文化」

柏拉圖說:「數學是一切知識中的最高形式」

考特說:「數學是人類智慧皇冠上最燦爛的明珠」
第二寫關於數學的意義
數學,作為人類思維的表達形式,反映了人們積極進取的意志、縝密周詳的邏輯推理及對完美境界的追求。它的基本要素是:邏輯和直觀、分析和推理、共性和個性。雖然不同的傳統學派可以強調不同的側面,然而正是這些互相對立的力量的相互作用,以及它們綜合起來的努力,才構成了數學科學的生命力、可用性和它的崇高價值。
第三寫關於數學的小故事
數學名人小故事-康托爾
由於研究無窮時往往推出一些合乎邏輯的但又荒謬的結果(稱為「悖論」),許多大數學家唯恐陷進去而採取退避三舍的態度。在1874—1876年期間,不到30歲的年輕德國數學家康托爾向神秘的無窮宣戰。他靠著辛勤的汗水,成功地證明了一條直線上的點能夠和一個平面上的點一一對應,也能和空間中的點一一對應。這樣看起來,1厘米長的線段內的點與太平洋面上的點,以及整個地球內部的點都「一樣多」,後來幾年,康托爾對這類「無窮集合」問題發表了一系列文章,通過嚴格證明得出了許多驚人的結論。康托爾的創造性工作與傳統的數學觀念發生了尖銳沖突,遭到一些人的反對、攻擊甚至謾罵。有人說,康托爾的集合論是一種「疾病」,康托爾的概念是「霧中之霧」,甚至說康托爾是「瘋子」。來自數學權威們的巨大精神壓力終於摧垮了康托爾,使他心力交瘁,患了精神分裂症,被送進精神病醫院。
真金不怕火煉,康托爾的思想終於大放光彩。1897年舉行的第一次國際數學家會議上,他的成就得到承認,偉大的哲學家、數學家羅素稱贊康托爾的工作「可能是這個時代所能誇耀的最巨大的工作。」可是這時康托爾仍然神志恍惚,不能從人們的崇敬中得到安慰和喜悅。1918年1月6日,康托爾在一家精神病院去世。
最後,可以寫關於數學的笑話
小明小學數學考試,回來後他媽問他考得怎麼樣.小明說:"我基本上會做,但有一題3乘7,我怎麼也想不出來.最後打鈴了,我不管三七二十一就寫了個18."

❼ 數學手抄報的內容

第一寫關於數學的名言
羅素說:「數學是符號加邏輯」

畢達哥拉斯說:「數支配著宇宙」

哈爾莫斯說:「數學是一種別具匠心的藝術」

米斯拉說:「數學是人類的思考中最高的成就」

培根(英國哲學家)說:「數學是打開科學大門的鑰匙」

布爾巴基學派(法國數學研究團體)認為:「數學是研究抽象結構的理論」

黑格爾說:「數學是上帝描述自然的符號」

魏爾德(美國數學學會主席)說:「數學是一種會不斷進化的文化」

柏拉圖說:「數學是一切知識中的最高形式」

考特說:「數學是人類智慧皇冠上最燦爛的明珠」
第二寫關於數學的意義
數學,作為人類思維的表達形式,反映了人們積極進取的意志、縝密周詳的邏輯推理及對完美境界的追求。它的基本要素是:邏輯和直觀、分析和推理、共性和個性。雖然不同的傳統學派可以強調不同的側面,然而正是這些互相對立的力量的相互作用,以及它們綜合起來的努力,才構成了數學科學的生命力、可用性和它的崇高價值。
第三寫關於數學的小故事
數學名人小故事-康托爾
由於研究無窮時往往推出一些合乎邏輯的但又荒謬的結果(稱為「悖論」),許多大數學家唯恐陷進去而採取退避三舍的態度。在1874—1876年期間,不到30歲的年輕德國數學家康托爾向神秘的無窮宣戰。他靠著辛勤的汗水,成功地證明了一條直線上的點能夠和一個平面上的點一一對應,也能和空間中的點一一對應。這樣看起來,1厘米長的線段內的點與太平洋面上的點,以及整個地球內部的點都「一樣多」,後來幾年,康托爾對這類「無窮集合」問題發表了一系列文章,通過嚴格證明得出了許多驚人的結論。康托爾的創造性工作與傳統的數學觀念發生了尖銳沖突,遭到一些人的反對、攻擊甚至謾罵。有人說,康托爾的集合論是一種「疾病」,康托爾的概念是「霧中之霧」,甚至說康托爾是「瘋子」。來自數學權威們的巨大精神壓力終於摧垮了康托爾,使他心力交瘁,患了精神分裂症,被送進精神病醫院。
真金不怕火煉,康托爾的思想終於大放光彩。1897年舉行的第一次國際數學家會議上,他的成就得到承認,偉大的哲學家、數學家羅素稱贊康托爾的工作「可能是這個時代所能誇耀的最巨大的工作。」可是這時康托爾仍然神志恍惚,不能從人們的崇敬中得到安慰和喜悅。1918年1月6日,康托爾在一家精神病院去世。

❽ 數學手抄報資料內容

數學手抄報資料內容
關於數學的笑話: 常函數和指數函數e的x次方走在街上,遠遠看到微分運算元,
常函數嚇得慌忙躲藏,說:「被它微分一下,我就什麼都沒有啦!」
指數函數不慌不忙道:「它可不能把我怎麼樣,我是e的x次方!」
指數函數與微分運算元相遇。指數函數自我介紹道:「你好,我是e的x次方。」
微分運算元道:「你好,我是『d/dy!』」

1、四捨五入
仔仔興高采烈地從學校里回來,問媽媽:「爸爸呢?」
媽媽看到仔仔興奮的樣子,奇怪地問:「爸爸在家,你找爸爸做什麼?」「我向爸爸要5角錢。」
「為什麼?」媽媽問道。
「在考數學以前,爸爸對我說『如果考了100分,就給我1元錢,考80分給8角。』今天,我數學考了45分。「仔仔回答說。
媽媽吃驚地問:「什麼!數學才考45分?」
仔仔得意地說:「是呀,數學上要四捨五入,因此,爸爸必須付5角錢。」

熱點內容
博白縣教育科研網 發布:2025-01-23 01:35:39 瀏覽:438
玄武區教育 發布:2025-01-23 00:14:34 瀏覽:262
為什麼電腦自動重啟 發布:2025-01-23 00:06:01 瀏覽:284
胡姓班主任 發布:2025-01-22 23:37:52 瀏覽:182
熬夜班主任 發布:2025-01-22 23:18:50 瀏覽:154
九年級上冊化學題 發布:2025-01-22 23:08:25 瀏覽:156
美國簽證歷史 發布:2025-01-22 19:52:18 瀏覽:68
班主任初次自我介紹 發布:2025-01-22 18:52:34 瀏覽:160
微信圖標怎麼點亮 發布:2025-01-22 17:24:14 瀏覽:861
岳西縣店前中學 發布:2025-01-22 15:54:05 瀏覽:507