數學模型
數學建模就是根據實際問題來建立數學模型,對數學模型來進行求解,然後根據結果去解決實際問題。
當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調查研究、了解對象信息、作出簡化假設、分析內在規律等工作的基礎上,用數學的符號和語言作表述來建立數學模型。
數學建模就是建立數學模型,建立數學模型的過程就是數學建模的過程。數學建模是一種數學的思考方法,是運用數學的語言和方法,通過抽象、簡化建立能近似刻畫並"解決"實際問題的一種強有力的數學手段。
(1)數學模型擴展閱讀:
從基本物理定律以及系統的結構數據來推導出模型。
1. 比例分析法--建立變數之間函數關系的最基本最常用的方法。
2. 代數方法--求解離散問題(離散的數據、符號、圖形)的主要方法。
3. 邏輯方法--是數學理論研究的重要方法,對社會學和經濟學等領域的實際問題,在決策,對策等學科中得到廣泛應用。
4. 常微分方程--解決兩個變數之間的變化規律,關鍵是建立"瞬時變化率"的表達式。
5. 偏微分方程--解決因變數與兩個以上自變數之間的變化規律。
從大量的觀測數據利用統計方法建立數學模型。
1. 回歸分析法--用於對函數f(x)的一組觀測值(xi, fi)i=1,2…n,確定函數的表達式,由於處理的是靜態的獨立數據,故稱為數理統計方法。
2. 時序分析法--處理的是動態的相關數據,又稱為過程統計方法。
3. 回歸分析法--用於對函數f(x)的一組觀測值(xi, fi)i=1,2…n,確定函數的表達式,由於處理的是靜態的獨立數據,故稱為數理統計方法。
4. 時序分析法--處理的是動態的相關數據,又稱為過程統計方法。
B. 數學模型有哪些
模型種類
用字母、數字和其他數學符號構成的等式或不等式,或用圖表、圖像、框圖、數理邏輯等來描述系統的特徵及其內部聯系或與外界聯系的模型。它是真實系統的一種抽象。數學模型是研究和掌握系統運動規律的有力工具,它是分析、設計、預報或預測、控制實際系統的基礎。數學模型的種類很多,而且有多種不同的分類方法。
靜態和動態模型
靜態模型是指要描述的系統各量之間的關系是不隨時間的變化而變化的,一般都用代數方程來表達。動態模型是指描述系統各量之間隨時間變化而變化的規律的數學表達式,一般用微分方程或差分方程來表示。經典控制理論中常用的系統的傳遞函數也是動態模型,因為它是從描述系統的微分方程變換而來的(見拉普拉斯變換)。
分布參數和集中參數模型
分布參數模型是用各類偏微分方程描述系統的動態特性,而集中參數模型是用線性或非線性常微分方程來描述系統的動態特性。在許多情況下,分布參數模型藉助於空間離散化的方法,可簡化為復雜程度較低的集中參數模型。
連續時間和離散時間模型
模型中的時間變數是在一定區間內變化的模型稱為連續時間模型,上述各類用微分方程描述的模型都是連續時間模型。在處理集中參數模型時,也可以將時間變數離散化,所獲得的模型稱為離散時間模型。離散時間模型是用差分方程描述的。
隨機性和確定性模型
隨機性模型中變數之間關系是以統計值或概率分布的形式給出的,而在確定性模型中變數間的關系是確定的。
參數與非參數模型
用代數方程、微分方程、微分方程組以及傳遞函數等描述的模型都是參數模型。建立參數模型就在於確定已知模型結構中的各個參數。通過理論分析總是得出參數模型。非參數模型是直接或間接地從實際系統的實驗分析中得到的響應,例如通過實驗記錄到的系統脈沖響應或階躍響應就是非參數模型。運用各種系統辨識的方法,可由非參數模型得到參數模型。如果實驗前可以決定系統的結構,則通過實驗辨識可以直接得到參數模型。
線性和非線性模型
線性模型中各量之間的關系是線性的,可以應用疊加原理,即幾個不同的輸入量同時作用於系統的響應,等於幾個輸入量單獨作用的響應之和。線性模型簡單,應用廣泛。非線性模型中各量之間的關系不是線性的,不滿足疊加原理。在允許的情況下,非線性模型往往可以線性化為線性模型,方法是把非線性模型在工作點鄰域內展成泰勒級數,保留一階項,略去高階項,就可得到近似的線性模型。
C. 常見的數學模型有哪些
1、生物學數學模型
2、醫學數學模型
3、地質學數學模型
4、氣象學數學模型
5、經濟學數學模型
6、社會學數學模型
7、物理學數學模型
8、化學數學模型
9、天文學數學模型
10、工程學數學模型
11、管理學數學模型
(3)數學模型擴展閱讀
數學模型的歷史可以追溯到人類開始使用數字的時代。隨著人類使用數字,就不斷地建立各種數學模型,以解決各種各樣的實際問題。
數學模型這種數學結構是藉助於數學符號刻劃出來的某種系統的純關系結構。從廣義理解,數學模型包括數學中的各種概念,各種公式和各種理論。
因為它們都是由現實世界的原型抽象出來的,從這意義上講,整個數學也可以說是一門關於數學模型的科學。從狹義理解,數學模型只指那些反映了特定問題或特定的具體事物系統的數學關系結構,這個意義上也可理解為聯系一個系統中各變數間內的關系的數學表達。
D. 什麼是數學模型思想
數學建模思想,本質土是要培養學生靈活運用數學知識解決實際中的問題的能力。在這一過程中,我們需要培養學生的抽象思維、簡化思維、批判性思維等數學能力。
1數學建模需要抽象思維
分析上面模型的建立與求解過程,我們可以發現,解決問題時,離不開抽象思維,離不開對高等數學基本概念的深入理解和透徹分析。
當解決問題1時,我們緊密結合「絕對湧出量」與「相對湧出量」的概念,解剖概念所包含的每一點信息,找到了「絕對湧出量」與「相對湧出量」的計算公式,從而建立了數學模型I。
可見,我們要把紛繁蕪雜的實際問題,歸結到高等數學的相關概念和定義之中,利用定義找到計算公式,從而建立數學模型。在這種層層分析的過程中,抽象思維起到了關鍵性作用。正是這種層層分析,才使得復雜問題得以解決。所以說,數學建模需要抽象思維。
2數學建模需要簡化思維
所謂簡化思維,就是把復雜問題進行簡化,進而使本質凸顯。就像進行X光透視一樣,祛除血肉,盡剩骨架。只有迅速抓住主要矛盾,舍棄次要因素,找到問題的本質,才能「看透」問題的本質。
例如,鑒別該礦井屬於「低瓦斯礦井」還是「高瓦斯礦井」的問題,本質上是要我們先求出「絕對湧出量」與「相對湧出量」,然後把它們與標准值比大小;煤礦發生爆炸的可能性,實際上是概率問題;該煤礦所需要的最佳(總)通風量,實質上就是最優問題,即帶約束條件的線性規劃問題。
這種簡化思維具有深刻性的特點。它並不是天生就具有的,可以經過精心培養而形成,經過刻苦鍛煉而強化。在高等數學的教學過程中,需要培養學生的這種深層次的洞察能力。
3數學建模需要批判性思維
在數學模型建立、求解完成後,我們需要對所得的結果進行分析,還需要對所建立的數學模型進行評價,並及時對模型進行改進,以取得最佳結果。同時,我們還要指出所建模型的實際意義,並努力加以推廣。這些環節,都需要良好的批判性思維。
在高等數學的教學過程中,我們需要培養學生的批判性思維。在每道題解完後,我們都要進行這種解後反思的訓練,不斷地提問:結果對嗎?符合實際嗎?該解法的優缺點在哪裡?還有更好的解法嗎?如何改進?能夠推廣嗎?……在這種訓練的過程中,學生的批判性思維將得到強化和提高。
E. 1.什麼是數學模型數學建模的一般步驟是什麼 2.數學建模需要具備哪些能力和知識 答的好懸賞加
數學建模是利用數學方法解決實際問題的一種實踐.即通過抽象、簡化、假設、引進變數等處理過程後,將實際問題用數學方式表達,建立起數學模型,然後運用先進的數學方法及計算機技術進行求解.
數學建模將各種知識綜合應用於解決實際問題中,是培養和提高學生應用所學知識分析問題、解決問題的能力的必備手段之一.
數學建模的一般方法和步驟
建立數學模型的方法和步驟並沒有一定的模式,但一個理想的模型應能反映系統的全部重要特徵:模型的可靠性和模型的使用性.建模的一般方法:
機理分析:根據對現實對象特性的認識,分析其因果關系,找出反映內部機理的規律,所建立的模型常有明確的物理或現實意義.
測試分析方法:將研究對象視為一個「黑箱」系統,內部機理無法直接尋求,通過測量系統的輸入輸出數據,並以此為基礎運用統計分析方法,按照事先確定的准則在某一類模型中選出一個數據擬合得最好的模型.測試分析方法也叫做系統辯識.
將這兩種方法結合起來使用,即用機理分析方法建立模型的結構,用系統測試方法來確定模型的參數,也是常用的建模方法.
在實際過程中用那一種方法建模主要是根據我們對研究對象的了解程度和建模目的來決定.機理分析法建模的具體步驟大致如下:
1、 實際問題通過抽象、簡化、假設,確定變數、參數;
2、 建立數學模型並數學、數值地求解、確定參數;
3、 用實際問題的實測數據等來檢驗該數學模型;
4、 符合實際,交付使用,從而可產生經濟、社會效益;不符合實際,重新建模.
數學模型的分類:
1、 按研究方法和對象的數學特徵分:初等模型、幾何模型、優化模型、微分方程模型、圖論模型、邏輯模型、穩定性模型、統計模型等.
2、 按研究對象的實際領域(或所屬學科)分:人口模型、交通模型、環境模型、生態模型、生理模型、城鎮規劃模型、水資源模型、污染模型、經濟模型、社會模型等.
數學建模需要豐富的數學知識,涉及到高等數學,離散數學,線性代數,概率統計,復變函數等等基本的數學知識.同時,還要有廣泛的興趣,較強的邏輯思維能力,以及語言表達能力等等.
參加數學建模競賽需知道的內容
一、全國大學生數學建模競賽
二、數學建模的方法及一般步驟
三、重要的數學模型及相應案例分析
1、線性規劃模型及經濟模型案例分析
2、層次分析模型及管理模型案例分析
3、統計回歸模型及案例分析
4、圖論模型及案例分析
5、微分方程模型及案例分析
四、相關軟體
1、Matlab軟體及編程;2、Lingo軟體;3、Lindo軟體。
五、數模十大常用演算法
1. 蒙特卡羅演算法。2. 數據擬合、參數估計、插值等數據處理演算法。3. 線性規劃、整數規劃、多元規劃、二次規劃等規劃類演算法。4. 圖論演算法。5. 動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法。6. 最優化理論的三大非經典演算法。7. 網格演算法和窮舉法。8. 一些連續數據離散化方法。9. 數值分析演算法。10. 圖象處理演算法。
六、如何查閱資料
七、如何寫作論文
八、如何組織隊伍:團隊精神,配合良好,不斷的提出問題和解決問題。
九、如何才能獲獎:比較完整,有幾處創新點。
十、如何信息處理:WORD、LaTeX,飛秋、QQ。
其實主要看下例子就可以了,知道一些基本的模型,我這里也有很多例子,各個學校的講座都有要的話直接向我要
F. 數學模型有什麼用
數學模型是數學抽象的概括的產物,其原型可以是具體對象及其性質、關系,也可以是數學對象及其性質、關系。數學模型有廣義和狹義兩種解釋.廣義地說,數學概念、如數、集合、向量、方程都可稱為數學模型,狹義地說,只有反映特定問題和特定的具體事物系統的數學關系結構方數學模型大致可分為二類:(1)描述客體必然現象的確定性模型,其數學工具一般是代效方程、微分方程、積分方程和差分方程等,(2)描述客體或然現象的隨機性模型,其數學模型方法是科學研究相創新的重要方法之一。在體育實踐中常常提到優秀運動員的數學模型。如經調查統計.現代的世界級短跑運動健將模型為身高1.80米左右、體重70公斤左右,100米成績10秒左右或更好等。
用字母、數字和其他數學符號構成的等式或不等式,或用圖表、圖像、框圖、數理邏輯等來描述系統的特徵及其內部聯系或與外界聯系的模型。它是真實系統的一種抽象。數學模型是研究和掌握系統運動規律的有力工具,它是分析、設計、預報或預測、控制實際系統的基礎。數學模型的種類很多,而且有多種不同的分類方法。
靜態和動態模型 靜態模型是指要描述的系統各量之間的關系是不隨時間的變化而變化的,一般都用代數方程來表達。動態模型是指描述系統各量之間隨時間變化而變化的規律的數學表達式,一般用微分方程或差分方程來表示。經典控制理論中常用的系統的傳遞函數也是動態模型,因為它是從描述系統的微分方程變換而來的(見拉普拉斯變換)。
分布參數和集中參數模型 分布參數模型是用各類偏微分方程描述系統的動態特性,而集中參數模型是用線性或非線性常微分方程來描述系統的動態特性。在許多情況下,分布參數模型藉助於空間離散化的方法,可簡化為復雜程度較低的集中參數模型。
連續時間和離散時間模型 模型中的時間變數是在一定區間內變化的模型稱為連續時間模型,上述各類用微分方程描述的模型都是連續時間模型。在處理集中參數模型時,也可以將時間變數離散化,所獲得的模型稱為離散時間模型。離散時間模型是用差分方程描述的。
隨機性和確定性模型 隨機性模型中變數之間關系是以統計值或概率分布的形式給出的,而在確定性模型中變數間的關系是確定的。
參數與非參數模型 用代數方程、微分方程、微分方程組以及傳遞函數等描述的模型都是參數模型。建立參數模型就在於確定已知模型結構中的各個參數。通過理論分析總是得出參數模型。非參數模型是直接或間接地從實際系統的實驗分析中得到的響應,例如通過實驗記錄到的系統脈沖響應或階躍響應就是非參數模型。運用各種系統辨識的方法,可由非參數模型得到參數模型。如果實驗前可以決定系統的結構,則通過實驗辨識可以直接得到參數模型。
線性和非線性模型 線性模型中各量之間的關系是線性的,可以應用疊加原理,即幾個不同的輸入量同時作用於系統的響應,等於幾個輸入量單獨作用的響應之和。線性模型簡單,應用廣泛。非線性模型中各量之間的關系不是線性的,不滿足疊加原理。在允許的情況下,非線性模型往往可以線性化為線性模型,方法是把非線性模型在工作點鄰域內展成泰勒級數,保留一階項,略去高階項,就可得到近似的線性模型。
G. 一,什麼是數學模型
數學模型是針對參照某種事物系統的特徵或數量依存關系,採用數學語言,概括地或近似地表述出的一種數學結構,這種數學結構是藉助於數學符號刻劃出來的某種系統的純關系結構。從廣義理解,數學模型包括數學中的各種概念,各種公式和各種理論。因為它們都是由現實世界的原型抽象出來的,從這意義上講,整個數學也可以說是一門關於數學模型的科學。從狹義理解,數學模型只指那些反映了特定問題或特定的具體事物系統的數學關系結構,這個意義上也可理解為聯系一個系統中各變數間內的關系的數學表達。
數學模型所表達的內容可以是定量的,也可以是定性的,但必須以定量的方式體現出來。因此,數學模型法的操作方式偏向於定量形式。
H. 物理模型和數學模型的區別
1、數學模型是指將現實問題歸結為相應的數學問題,並在此基礎上利用數學的概念、方法和理論進行深入的分析和研究,從而從定性或定量的角度來刻畫實際問題,並為解決現實問題提供精確的數據或可靠的指導。
一句話, 就是把實際問題抽象成數學問題, 並分析解答.
分類要有分類的標准,比如按實際問題所在的領域分類,可有:
醫學數學模型
氣象學數學模型
經濟學數學模型
社會學數學模型
等等.
要是按所用到的數學學科來分類,可有
幾何模型
方程模型
圖論模型
泛函模型
等等.
分類其實五花八門.
方程是一個數學概念, 如果你的實際問題建立了方程,你的模型可以稱為一個方程模型.
★物理模型就是用物理學的概念和理論來描述抽象現實問題,特點是
舍棄次要因素,抓住主要因素,從而突出客觀事物的本質特徵,這就叫構建物理模型。構建物理模型是一種研究問題的科學的思維方法。
物理模型一般可分三類:物質模型、狀態模型、過程模型。
2、數學模型與物理模型之間究竟有何區別?
這其實就是數學和物理的區別, 數學和物理的聯系很緊密, 很多模型你不能單純地說是物理還是數學模型.當然數學模型更純粹和抽象. 自然科學的研究一般思路可以說是先建立物理模型, 再抽象成數學模型, 再由解算結果反過來反映物理意義, 進而得出實際意義.
I. ★數學模型與物理模型的區別是什麼★
★數學模型是指將現實問題歸結為相應的數學問題,並在此基礎上利用數學的概念、方法和理論進行深入的分析和研究,從而從定性或定量的角度來刻畫實際問題,並為解決現實問題提供精確的數據或可靠的指導。
一句話, 就是把實際問題抽象成數學問題, 並分析解答.
分類要有分類的標准,比如按實際問題所在的領域分類,可有:
醫學數學模型
氣象學數學模型
經濟學數學模型
社會學數學模型
等等.
要是按所用到的數學學科來分類,可有
幾何模型
方程模型
圖論模型
泛函模型
等等.
分類其實五花八門.
方程是一個數學概念, 如果你的實際問題建立了方程,你的模型可以稱為一個方程模型.
★物理模型就是用物理學的概念和理論來描述抽象現實問題,特點是
舍棄次要因素,抓住主要因素,從而突出客觀事物的本質特徵,這就叫構建物理模型。構建物理模型是一種研究問題的科學的思維方法。
物理模型一般可分三類:物質模型、狀態模型、過程模型。
★數學模型與物理模型之間究竟有何區別?
這其實就是數學和物理的區別, 數學和物理的聯系很緊密, 很多模型你不能單純地說是物理還是數學模型.當然數學模型更純粹和抽象. 自然科學的研究一般思路可以說是先建立物理模型, 再抽象成數學模型, 再由解算結果反過來反映物理意義, 進而得出實際意義.
滿意與否?
J. 什麼是數學模型
數學模型是指根據對研究對象所觀察到的現象及其實踐經驗,歸結成的一套反映對象某些主要數量關系的數學公式、邏輯准則和具體演算法。這種科學方法常用來描述對象的運動規律。
20世紀20年代,義大利數學家伏爾特拉根據捕食者種群與被捕食者種群相互關系,對捕魚建立的微分方程「捕食模型」證明:超過一定的捕撈量就會使大魚減少而小魚增加,如適當減少捕撈量則有利於大魚的生存。人們依據最佳捕撈量進行捕撈,就有利於魚的穩產和高產,從而獲得最佳的經濟效益。 諾貝爾經濟學獎獲得者、美國經濟計量學家克萊因所編制的「聯結」計劃,是世界上最大的經濟計量模型,將許多國家的經濟信息聯結在一起,可了解世界貿易情況。運用宏觀經濟計量模型,能預測經濟發展趨勢和制定經濟政策,充分顯示了數學模型方泌的巨大威力。
一.數學模型的定義
現在數學模型還沒有一個統一的准確的定義,因為站在不同的角度可以有不同的定義。不過我們可以給出如下定義。"數學模型是關於部分現實世界和為一種特殊目的而作的一個抽象的、簡化的結構。"具體來說,數學模型就是為了某種目的,用字母、數學及其它數學符號建立起來的等式或不等式以及圖表、圖象、框圖等描述客觀事物的特徵及其內在聯系的數學結構表達式。
二.建立數學模型的方法和步驟
第一、 模型准備
首先要了解問題的實際背景,明確建模目的,搜集必需的各種信息,盡量弄清對象的特徵。 第二、 模型假設
根據對象的特徵和建模目的,對問題進行必要的、合理的簡化,用精確的語言作出假設,是建模至關重要的一步。如果對問題的所有因素一概考慮,無疑是一種有勇氣但方法欠佳的行為,所以高超的建模者能充分發揮想像力、洞察力和判斷力,善於辨別主次,而且為了使處理方法簡單,應盡量使問題線性化、均勻化。
第三、 模型構成
根據所作的假設分析對象的因果關系,利用對象的內在規律和適當的數學工具,構造各個量間的等式關系或其它數學結構。這時,我們便會進入一個廣闊的應用數學天地,這里在高數、概率老人的膝下,有許多可愛的孩子們,他們是圖論、排隊論、線性規劃、對策論等許多許多,真是泱泱大國,別有洞天。不過我們應當牢記,建立數學模型是為了讓更多的人明了並能加以應用,因此工具愈簡單愈有價值。
第四、模型求解
可以採用解方程、畫圖形、證明定理、邏輯運算、數值運算等各種傳統的和近代的數學方法,特別是計算機技術。一道實際問題的解決往往需要紛繁的計算,許多時候還得將系統運行情況用計算機模擬出來,因此編程和熟悉數學軟體包能力便舉足輕重。
第五、模型分析
對模型解答進行數學上的分析。"橫看成嶺側成峰,遠近高低各不?quot;,能否對模型結果作出細致精當的分析,決定了你的模型能否達到更高的檔次。還要記住,不論那種情況都需進行誤差分析,數據穩定性分析。