初中數學手抄報內容
『壹』 數學手抄報內容
第一寫關於數學的名言
羅素說:「數學是符號加邏輯」
畢達哥拉斯說:「數支配著宇宙」
哈爾莫斯說:「數學是一種別具匠心的藝術」
米斯拉說:「數學是人類的思考中最高的成就」
培根(英國哲學家)說:「數學是打開科學大門的鑰匙」
布爾巴基學派(法國數學研究團體)認為:「數學是研究抽象結構的理論」
黑格爾說:「數學是上帝描述自然的符號」
魏爾德(美國數學學會主席)說:「數學是一種會不斷進化的文化」
柏拉圖說:「數學是一切知識中的最高形式」
考特說:「數學是人類智慧皇冠上最燦爛的明珠」
第二寫關於數學的意義
數學,作為人類思維的表達形式,反映了人們積極進取的意志、縝密周詳的邏輯推理及對完美境界的追求。它的基本要素是:邏輯和直觀、分析和推理、共性和個性。雖然不同的傳統學派可以強調不同的側面,然而正是這些互相對立的力量的相互作用,以及它們綜合起來的努力,才構成了數學科學的生命力、可用性和它的崇高價值。
第三寫關於數學的小故事
數學名人小故事-康托爾
由於研究無窮時往往推出一些合乎邏輯的但又荒謬的結果(稱為「悖論」),許多大數學家唯恐陷進去而採取退避三舍的態度。在1874—1876年期間,不到30歲的年輕德國數學家康托爾向神秘的無窮宣戰。他靠著辛勤的汗水,成功地證明了一條直線上的點能夠和一個平面上的點一一對應,也能和空間中的點一一對應。這樣看起來,1厘米長的線段內的點與太平洋面上的點,以及整個地球內部的點都「一樣多」,後來幾年,康托爾對這類「無窮集合」問題發表了一系列文章,通過嚴格證明得出了許多驚人的結論。康托爾的創造性工作與傳統的數學觀念發生了尖銳沖突,遭到一些人的反對、攻擊甚至謾罵。有人說,康托爾的集合論是一種「疾病」,康托爾的概念是「霧中之霧」,甚至說康托爾是「瘋子」。來自數學權威們的巨大精神壓力終於摧垮了康托爾,使他心力交瘁,患了精神分裂症,被送進精神病醫院。
真金不怕火煉,康托爾的思想終於大放光彩。1897年舉行的第一次國際數學家會議上,他的成就得到承認,偉大的哲學家、數學家羅素稱贊康托爾的工作「可能是這個時代所能誇耀的最巨大的工作。」可是這時康托爾仍然神志恍惚,不能從人們的崇敬中得到安慰和喜悅。1918年1月6日,康托爾在一家精神病院去世。
最後,可以寫關於數學的笑話
小明小學數學考試,回來後他媽問他考得怎麼樣.小明說:"我基本上會做,但有一題3乘7,我怎麼也想不出來.最後打鈴了,我不管三七二十一就寫了個18."
『貳』 初中數學手抄報的資料
初一數學手抄報資料
一、幽默數學
誰最吝嗇
「你說,世界上誰最吝嗇?」 「當然是數學家。」 「為什麼?」
「他們是毫釐必爭呀!」
短方形
"這是什麼形?"父親指著長方形圖案問兒子。 "長方形。"兒子答道。
"這是什麼形?"父親又指著一正方形圖案問兒子。 "短方形。"兒子很認真地回答著。
無理算術
算術老師道:「這里有梨10隻,吃去了6隻,還剩多少?」一個貪食的學生答道:「我看把剩下的也一起吃掉吧。」
四捨五入
仔仔興高采烈地從學校里回來,問媽媽:「爸爸呢?」媽媽看到仔仔興奮的樣子,奇怪地問:「爸爸在家,你找爸爸做什麼?」「我向爸爸要5角錢。」「為什麼?」媽媽問道。「在考數學以前,爸爸對我說『如果考了100分,就給我1元錢,考80分給8角。』今天,我數學考了45分。「仔仔回答說。媽媽吃驚地問:「什麼!數學才考45分?」仔仔得意地說:「是呀,數學上要4舍5入,因此,爸爸必須付5角錢。」
月亮的直徑
初一晚上,爸爸考問兒子:「你說,月亮的直徑有多大?」 兒子答道:「1738公里。」 「不對,」爸爸糾正說,「我給你講過,是3476公里。」 「但是„„」兒子辯解說,
「爸爸你忘了,今天的月亮只有一半呀!」
二、數學故事
數學家高斯小時候的故事
小朋友你們可知道數學天才高斯小時候的故事呢?
高斯念小學的時候,有一次在老師教完加法後,因為老師想要休息,所以便出了一道題目要同學們算算看,題目是:
1+2+3+ ..... +97+98+99+100 = ?
老師心裡正想,這下子小朋友一定要算到下課了吧!正要借口出去時,卻被 高斯叫住了!! 原來呀,高斯已經算出來了,小朋友你可知道他是如何算的嗎?
高斯告訴大家他是如何算出的:把 1加 至 100 與 100 加至 1 排成兩排相加,也就是說:
1+2+3+4+ ..... +96+97+98+99+100
100+99+98+97+96+ ..... +4+3+2+1
=101+101+101+ ..... +101+101+101+101
共有一百個101相加,但算式重復了兩次,所以把10100 除以 2便得到答案等於 <5050>
從此以後高斯小學的學習過程早已經超越了其它的同學,也因此奠定了他以後的數學基礎,更讓他成為——數學天才!
數學小故事——唐僧取經
一天,唐僧想考考三個徒弟的數學水平,於是他把徒弟們叫到面前,說:「徒兒們,現在我在地上寫3個數,你們誰能准確讀出來,我就把真經傳給他。」 唐僧首先寫出:23456。豬八戒迫不及待地說:「這個讀二三四五六!」唐僧搖了搖頭,說:「八戒,多位數的讀法是有規律的。每個數字從右到左依次為個位、十位、百位、千位和萬位。只要從左到右把每個數字讀出來,並在後面加上萬、千、百、十就可以了,只是需要注意,最後一個數字不要讀『個』。所以,23456讀作二萬三千四百五十六。」
唐僧又寫出:130567。孫悟空馬上說:「這太容易了,讀作十三萬零千五百六十七。」唐僧又搖了搖頭,說:「遇到0,要特別注意,當一串數中間有0時,只要讀零就可以了,它後面的數位不要讀出來。所以這個數應該讀作十三萬零五百六十七。」
第三個數是120034。沙和尚想了想說:「應該讀作十二萬零零三十四。」唐僧嘆了口氣,說:「如果一串數中有連續的幾個零,讀一個就可以了。所以這個數要讀成十二萬零三十四。徒兒們,你們的數學都學得不太好,還得繼續努力呀,真經暫時不能傳給你們呀!」
阿拉伯數字的由來
小明是個喜歡提問的孩子。一天,他對0—9這幾個數字產生興趣:為什麼它們被稱為「阿拉伯數字」呢?於是,他就去問媽媽:「0—9既然叫『阿拉伯數字』,那肯定是阿拉伯人發明的了,對嗎媽媽?」
媽媽搖搖頭說:「阿拉伯數字實際上是印度人發明的。大約在1500年前,印度人就用一種特殊的字來表示數目,這些字有10個,只要一筆兩筆就能寫成。後來,這些數字傳入阿拉伯,阿拉伯人覺得這些數字簡單、實用,就在自己的國家廣泛使用,並又傳到了歐洲。就這樣,慢慢變成了我們今天使用的數字。因為阿拉伯人在傳播這些數字發揮了很大的作用,人們就習慣了稱這種數字為『阿拉伯數字』。」
小明聽了說:「原來是這樣。媽媽,這可不可以叫做『將錯就錯』呢?」媽媽笑了。
『叄』 初中數學手抄報內容
課本某個知識的延伸介紹;
課外知識介紹:數學小故事,數字謎語,與其他學科的交叉;生活中的數學等;
『肆』 初中數學手抄報資料
分蘋果
小咪家裡來了5位同學。小咪的爸爸想用蘋果來招待這6位小朋友,可是家裡只有5個蘋果。怎麼辦呢?只好把蘋果切開了,可是又不能切成碎塊,小咪的爸爸希望每個蘋果最多切成3塊。這就成了又一道題目:給6個孩子平均分配5個蘋果,每個蘋果都不許切成3塊以上。
小咪的爸爸是怎樣做的呢?
小馬虎數雞
春節里,養雞專業戶小馬虎站在院子里,數了一遍雞的總數,決定留下 ,1/2外,把1/4慰問解放軍,1/3送給養老院。他把雞送走後,聽到房內有雞叫,才知道少數了10隻雞。於是把房內房外的雞重數一遍,沒有錯,不多不少,正是留下1/2的數。小馬虎奇怪了。問題出在哪裡呢?你知道小馬虎在院里數的雞是多少只嗎? 『本文由第一範文網www.DiYiFanWen.com整理,版權歸原作者、原出處所有。』
來了多少客人一天,小林正在家裡洗碗,小強看見了問道:「怎麼洗那麼多的碗 ?」「
家裡來了客人了。」「來了多少人?」小林說:「我沒有數,只知道他們每人用一個飯碗,,二人合用一個湯碗,三人合用一個菜碗,四人合用一個大酒碗,一共用了15個碗。」你知道來了多少客人嗎?
一元錢哪裡去了
三人住旅店,每人每天的價格是十元,每人付了十元錢,總共給了老闆三十元,後來老闆優惠了五元,讓服務員退給他們,結果服務員貪污了兩元,剩下三元每人退了一元錢,也就是說每人消費了9元錢。三個人總共花了27元,加上服務員貪污的2元總共29元。那一元錢到哪去了?
數學(mathematics;希臘語:μαθηματικά)這一詞在西方源自於古希臘語的μάθημα(máthēma),其有學習、學問、科學,以及另外還有個較狹意且技術性的意義-「數學研究」,即使在其語源內。其形容詞μαθηματικός(mathēmatikós),意義為和學習有關的或用功的,亦會被用來指數學的。其在英語中表面上的復數形式,及在法語中的表面復數形式les mathématiques,可溯至拉丁文的中性復數mathematica,由西塞羅譯自希臘文復數τα μαθηματικά(ta mathēmatiká),此一希臘語被亞里士多德拿來指「萬物皆數」的概念。
數學是研究數量、結構、變化以及空間模型等概念的一門學科。通過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察中產生。數學家們拓展這些概念,為了公式化新的猜想以及從合適選定的公理及定義中建立起嚴謹推導出的真理。
數學的本質是什麼?為什麼數學可以運用在所有的其它科目上?
數學是研究事物數量和形狀規律的科目
如果要深入的研究其本質及其擴展問題,就必須引入【全集然文明】專有名詞了
其實數學的本質是:一門研究【儲空】的科目
自然萬物都有其存儲的空間,這種現象稱之為【儲空】
要判斷一個事物是否為「儲空」其實很簡單:只要能夠套入「在××里」的××就是「儲空」(包括具體和抽象)。於是大家將會發現,所有的事物都可以套入其中,也就是說:自然萬物都只是不同的「儲空」而已。
於是人們也發現:【代數】就是研究【儲空量】的科目;【幾何】就是研究【儲空形狀】的科目。而既然自然萬物都只是不同的儲空而已,那麼數學當然也就可以通用於所有的科目之中了!
『伍』 初中數學手抄報該寫什麼內容
可以寫的內容很多,如,數學家的故事,智力趣題,數學在生活中的應用等等。
某店來了三位顧客,急於要買餅趕火車,限定時間不能超過16分鍾。幾個廚師都說無能為力,因為要烙熟一個餅的兩面各需要五分鍾,一口鍋一次可放兩個餅,那麼烙熟三個餅就得2O分鍾。這時來了廚師老李,他說動足腦筋只要15分鍾就行了。你知道該怎麼來烙嗎?
數學的起源:數學是一門最古老的學科,它的起源可以上溯到一萬多年以前。但是,公元1000年以前的資料留存下來的極少。迄今所知,只有在古代埃及和巴比倫發現了比較系統的數學文獻。
遠在1 萬5千年前人類就已經能相當逼真地描繪出人和動物的形象。這是萌發圖形意識的最早證據。後來就逐漸開始了對圓形和直線形的追求,因而成為數學圖形的最早的原型。在日常生活和生產實踐中又逐漸產生了計數意識和計數系統,人類摸索過多種記數方法,有開始的結繩記數,用石塊記數,語言點數進一步用符號,逐步發展到今天我們所用的數字。圖形意識和計數意識發展到一定程度,又產生了度量意識。
這一系列的發展演變逐漸形成了今天我們所熟悉的完整的數學這一門學科,它包括算術、幾何、代數、三角、微積分、統計和概率(其實它一開始是人們為了鑽研賭博而來的呢)……等等各個分支,而且還在不斷發展下去。
阿拉伯數字並不是阿拉伯人發明創造的,而是發源於古印度,後來被阿拉伯人掌握、改進,並傳到了西方,西方人便將這些數字稱為阿拉伯數字。以後,以訛傳訛,世界各地都認同了這個說法。
阿拉伯數字是古代印度人在生產和實踐中逐步創造出來的。
在古代印度,進行城市建設時需要設計和規劃,進行祭祀時需要計算日月星辰的運行,於是,數學計算就產生了。大約在公元前3000年,印度河流域居民的數字就比較先進,而且採用了十進位的計算方法。
到公元前三世紀,印度出現了整套的數字,但在各地區的寫法並不完全一致,其中最有代表性的是婆羅門式:這一組數字在當時是比較常用的。它的特點是從「1」到「9」每個數都有專字。現代數字就是由這一組數字演化而來。在這一組數字中,還沒有出現「0」(零)的符號。「0」這個數字是到了笈多王朝(公元320—550年)時期才出現的。公元四世紀完成的數學著作《太陽手冊》中,已使用「0」的符號,當時只是實心小圓點「 」。後來,小圓點演化成為小圓圈「0」。這樣,一套從「1」到「0」的數字就趨於完善了。這是古代印度人民對世界文化的巨大貢獻。
華羅庚(1910年11月12日-1985年6月12日),是中國在世界上最有影響的數學家之一,他的研究成果被國際數學界命名為「華氏定理」、「布勞威爾-加當-華定理」、「華-王方法」、「華氏運算元」、「華氏不變式」等。 (很著名的人物啊)
然後呢 找一些 數學題就可以啦
什麼笑話啊 等等
我來到菜市場,想買菜,菜場裡面的菜是1.5元一斤,我准備買2斤,可是,我又看了看菜場外邊的菜,它只有1.2元一斤,而且還比裡面的菜好,我准備再買一斤,晚上炒著吃,這樣不僅菜買得多,而且更便宜,便宜1.5×3=4.5(元)1.2×3=3.6(元)4.5-3.6=0.9(元)。
接著,我又去買肉。菜場裡面的肉,瘦肉多,4.5元一斤;而菜場外面的肉,瘦肉少也要4.5元一斤,相比之下,我當然是選擇菜場里的肉。於是,我就買了3斤肉,共花了4.5×3=13.5(元)。
『陸』 數學手抄報的內容
第一寫關於數學的名言
羅素說:「數學是符號加邏輯」
畢達哥拉斯說:「數支配著宇宙」
哈爾莫斯說:「數學是一種別具匠心的藝術」
米斯拉說:「數學是人類的思考中最高的成就」
培根(英國哲學家)說:「數學是打開科學大門的鑰匙」
布爾巴基學派(法國數學研究團體)認為:「數學是研究抽象結構的理論」
黑格爾說:「數學是上帝描述自然的符號」
魏爾德(美國數學學會主席)說:「數學是一種會不斷進化的文化」
柏拉圖說:「數學是一切知識中的最高形式」
考特說:「數學是人類智慧皇冠上最燦爛的明珠」
第二寫關於數學的意義
數學,作為人類思維的表達形式,反映了人們積極進取的意志、縝密周詳的邏輯推理及對完美境界的追求。它的基本要素是:邏輯和直觀、分析和推理、共性和個性。雖然不同的傳統學派可以強調不同的側面,然而正是這些互相對立的力量的相互作用,以及它們綜合起來的努力,才構成了數學科學的生命力、可用性和它的崇高價值。
第三寫關於數學的小故事
數學名人小故事-康托爾
由於研究無窮時往往推出一些合乎邏輯的但又荒謬的結果(稱為「悖論」),許多大數學家唯恐陷進去而採取退避三舍的態度。在1874—1876年期間,不到30歲的年輕德國數學家康托爾向神秘的無窮宣戰。他靠著辛勤的汗水,成功地證明了一條直線上的點能夠和一個平面上的點一一對應,也能和空間中的點一一對應。這樣看起來,1厘米長的線段內的點與太平洋面上的點,以及整個地球內部的點都「一樣多」,後來幾年,康托爾對這類「無窮集合」問題發表了一系列文章,通過嚴格證明得出了許多驚人的結論。康托爾的創造性工作與傳統的數學觀念發生了尖銳沖突,遭到一些人的反對、攻擊甚至謾罵。有人說,康托爾的集合論是一種「疾病」,康托爾的概念是「霧中之霧」,甚至說康托爾是「瘋子」。來自數學權威們的巨大精神壓力終於摧垮了康托爾,使他心力交瘁,患了精神分裂症,被送進精神病醫院。
真金不怕火煉,康托爾的思想終於大放光彩。1897年舉行的第一次國際數學家會議上,他的成就得到承認,偉大的哲學家、數學家羅素稱贊康托爾的工作「可能是這個時代所能誇耀的最巨大的工作。」可是這時康托爾仍然神志恍惚,不能從人們的崇敬中得到安慰和喜悅。1918年1月6日,康托爾在一家精神病院去世。
『柒』 數學手抄報資料
幫你想一個欄目
數學泡泡屋
【1】平行四邊形的面積=底×高
梯形的面積=(上底+下底)×高÷2
直徑=2
r
圓的周長=πd=
2πr
圓的面積=
πr^2
長方體的表面積=
(長×寬+長×高+寬×高)×2
長方體的體積
=長×寬×高
正方體的表面積=棱長×棱長×6
正方體的體積=棱長×棱長×棱長
圓柱的側面積=底面圓的周長×高
圓柱的表面積=上下底面面積+側面積
圓柱的體積=底面積×高
圓錐的體積=底面積×高÷3
柱體體積=底面積×高
平面圖形
名稱
符號
周長C和面積S
正方形
a—邊長
C=4a
S=a2
長方形
a和b-邊長
C=2(a+b)
S=ab
【2】1
過兩點有且只有一條直線
2
兩點之間線段最短
3
同角或等角的補角相等
4
同角或等角的餘角相等
5
過一點有且只有一條直線和已知直線垂直
6
直線外一點與直線上各點連接的所有線段中,垂線段最短
7
平行公理
經過直線外一點,有且只有一條直線與這條直線平行
8
如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9
同位角相等,兩直線平行
10
內錯角相等,兩直線平行
11
同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13
兩直線平行,內錯角相等
14
兩直線平行,同旁內角互補
15
定理
三角形兩邊的和大於第三邊
16
推論
三角形兩邊的差小於第三邊
17
三角形內角和定理
三角形三個內角的和等於180°
18
推論1
直角三角形的兩個銳角互余
19
推論2
三角形的一個外角等於和它不相鄰的兩個內角的和
20
推論3
三角形的一個外角大於任何一個和它不相鄰的內角
21
全等三角形的對應邊、對應角相等
22邊角邊公理(sas)
有兩邊和它們的夾角對應相等的兩個三角形全等
23
角邊角公理(
asa)有兩角和它們的夾邊對應相等的兩個三角形全等
24
推論(aas)
有兩角和其中一角的對邊對應相等的兩個三角形全等
25
邊邊邊公理(sss)
有三邊對應相等的兩個三角形全等
26
斜邊、直角邊公理(hl)
有斜邊和一條直角邊對應相等的兩個直角三角形全等
27
定理1
在角的平分線上的點到這個角的兩邊的距離相等
28
定理2
到一個角的兩邊的距離相同的點,在這個角的平分線上