數學中的r是什麼意思
N全體非負整數(或自然數)組成的集合;R是實數集;是整數集;Q是有理數集;Z*是正整數集;N*是正整數集。
集合及運算的概念
集合:一般的,一定范圍內某些確定的,不同的對象的全體構成一個集合。
子集:對於兩個集合A和B,如果集合A中的任意一個元素都是集合B中的元素,我們就說這兩個集合有包含關系,稱集合A是集合B的子集,記作A⊆B讀作A包含於B。
空集:不含任何元素的集合叫做空集。記為Φ。
集合的三要素:確定性、互異性、無序性。
集合的表示方法:列舉法、描述法、視圖法、區間法。
集合的分類:(按集合中元素個數多少分為:)有限集、無限集、空集。
(1)數學中的r是什麼意思擴展閱讀:
集合的運算性質
1、A∩B=B∩A;A∩B⊆A;A∩B⊆B;A∩U=A;A∩A=A;A∩φ=φ。
2、A∪B=BUA; A⊆A∪B; B⊆A∪B;A∪U=U;A∪A=A;A∪φ=A 。
3、Cu(CuA)=A;Cuφ=U;CuU=φ;A∩CuA=φ;A∪CuA=U (摩根定律或反演律)。
4、A⊇B,B⊇A,則A=B,A⊇B,B⊇C,則A⊇C。
常用結論
1、A⊆B<=>A∩B=A;A⊆B<=>A∪B=B; A∪B=A∩B<=>A=B。
2、CuA∩CuB=Cu(A∪B),CuA∪CuB=Cu(A∩B)——德摩根律。
㈡ 數學中R*和R-表示什麼
一般來說R+表示正實數,R-表示負實數,且二者不包括0在內
但是會有一些書上把0包含在其中,這要看人家是怎麼定義的
一般在正規的書的最前面或者扉頁上會有符號定義,或者在書中第一次使用時會給出定義.你可以稍微找一下
㈢ 數學上R*是什麼意思
R表示實數,*表示正數,所以R*表示正實數。見人教版高中數學必修一編寫說明。
編寫說明中有N*或者N+表示正整數集,所以R*表示正實數。
㈣ 數學中的R+和R*是什麼意思是同一個意思嗎
R+表示正的實數,R*表示不包括零的實數
㈤ 數學中的R*是什麼意思
* 表示「除去0」,R*表示非零實數集
R+表示正實數集
㈥ 數學中R代表什麼
數學中有幾個表示數集的常用記號是可以不用說明而直接使用的:
N 自然數集內容
Z 整數集
Q 有理數集
R 實數集
C 復數集
數學首先是一種特殊的語言,嚴格的數學語言是只有符號而沒有文字的,在教科書中經常會介紹一些大家公認的重要符號,這些都是很重要的。
數學語言是很嚴格的,一般你要用一個記號表示什麼,例如用R表示園的半徑,你都必須先加以說明。除了那些大家都認同了的常用記號。這些記號很多的啦,象因為,所以,推出,等價等等,太多太多的啦。
㈦ 數學中的Z,Q,R分別是什麼…有哪些數
Z:在數學中代表的是整數集。
包括數字:
1、正整數,即大於0的整數如,1,2,3······直到n。
2、零,既不是正整數,也不是負整數,它是介於正整數和負整數的數。
3、負整數,即小於0的整數如,-1,-2,-3······直到-n。(n為正整數)
Q:在數學中代表的是有理數集。
包括數字:
1、正有理數,包括正整數和正分數,例如1,2,3······直到n,以及1/2,1/3······正分數。
2、負有理數,包括負整數和負分數,例如-1,-2,-3······直到-n,以及-1/2,-1/3······負分數。
3、零。
R:在數學中代表的是實數集。
包括數字:
1、有理數,由所有分數,整數組成,總能寫成整數、有限小數或無限循環小數,並且總能寫成兩整數之比。
2、無理數,實數范圍內不能表示成兩個整數之比的數。常見的無理數有:圓周長與其直徑的比值,歐拉數e,黃金比例φ等等。
(7)數學中的r是什麼意思擴展閱讀:
1、整數集Z的由來:
德國女數學家諾特在引入整數環概念的時候(整數集本身也是一個數環),她是德國人,德語中的整數叫做Zahlen,於是當時她將整數環記作Z,從那時候起整數集就用Z表示了。
2、有理數集可以用大寫黑正體符號Q代表。但Q並不表示有理數,有理數集與有理數是兩個不同的概念。有理數集是元素為全體有理數的集合,而有理數則為有理數集中的所有元素。
有理數的小數部分是有限或為無限循環的數。不是有理數的實數稱為無理數,即無理數的小數部分是無限不循環的數。
3、實數集通常用黑正體字母R表示。R表示n維實數空間。實數是不可數的。實數是實數理論的核心研究對象。
4、有理數集與整數集的一個重要區別是,有理數集是稠密的,而整數集是密集的。將有理數依大小順序排定後,任何兩個有理數之間必定還存在其他的有理數,這就是稠密性。整數集沒有這一特性,兩個相鄰的整數之間就沒有其他的整數了。
㈧ 數學中R表示的是什麼
R是實數,當然包括負數,也包括小數。
N是自然數,N*是不包含零的自然數即1、2、3、……
㈨ 數學中的R+和R*是什麼意思是同一個意思嗎
《九章算術》在中國古代數學發展過程中佔有非常重要的地位。它經過許多人整理而成,大約成書於東漢時期。全書共收集了246個數學問題並且提供其解法,主要內容包括分數四則和比例演算法、各種面積和體積的計算、關於勾股測量的計算等。在代數方面,《九章算術》在世界數學史上最早提出負數概念及正負數加減法法則;現在中學講授的線性方程組的解法和《九章算術》介紹的方法大體相同。注重實際應用是《九章算術》的一個顯著特點。該書的一些知識還傳播至印度和阿拉伯,甚至經過這些地區遠至歐洲。
《九章算術》標志以籌算為基礎的中國古代數學體系的!
㈩ 數學公式中的r是什麼意思
圓的半徑