大學物理祝之光第四版
❶ 物理學博士論文
物理學作為研究其他自然科學不可缺少的基礎,其長期發展形成的科學研究 方法 已廣泛應用到各學科當中。下面是我為大家整理的物理學博士論文,供大家參考。
物理學博士論文篇一
《 物理學在科技創新中的效用 》
摘要:論述了X射線的發現,不僅對醫學診斷有重大影響,還直接影響20世紀許多重大發現;半導體的發明,使微電子產業稱雄20世紀,並促進信息技術的高速發展,物理學是計算機硬體的基礎;原子能理論的提出,使原子能逐步取代石化能源,給人類提供巨大的清潔能源;激光理論的提出及激光器的發明,使激光在工農業生產、醫療、通信、軍事上得到廣泛應用;藍光LED的發明,將點亮整個21世紀.事實告訴我們,是物理學推動科技創新,由此得出結論:物理學是科技創新的源泉.昭示人們,高校作為培養人才的場所,理工科要重視大學物理課程.
關鍵詞:X射線;半導體;原子能;激光;藍光LED;科技創新;大學物理
1引言
物理學是一門研究物質世界最基本的結構、最普遍的相互作用以及最一般的運動規律的科學[1-3],其內容廣博、精深,研究方法多樣、巧妙,被視為一切自然科學的基礎.縱觀物理學發展歷史可以發現:其蘊含的科學思維和科學方法能夠有效促進學生能力的培養和知識的形成,同時,其每一次新的發現都會帶動人類社會的科技創新和科技發展.正因如此,大學物理成為了高等學校理、工科專業必修的一門基礎課程.按照 教育 部頒發的相關文件要求[4-5],大學物理課程最低學時數為126學時,其中理科、師范類非物理專業不少於144學時;大學物理實驗最低學時數為54學時,其中工科、師范類非物理專業不少於64學時.然而調查顯示,眾多高校(尤其是新建本科院校)並沒有嚴格按照教育部頒發的課程基本要求開設大學物理及其實驗課程.他們往往打著“寬口徑、應用型”的晃子,大幅壓縮大學物理和大學物理實驗課程的學時,如今,大學物理及其實驗課程的總學時數實際僅為32-96學時,遠遠低於教育部要求的最低標准(180學時).試問這么少的課時怎麼講豐富、深奧的大學物理?怎麼能夠真正發揮出大學物理的作用?於是有的院、系要求只講力學,有的要求只講熱學,有的則要求只講電磁學,…面對這種情況,大學物理的授課教師在無奈狀態下講授大學物理.從《大學物理課程 報告 論壇》上獲悉,這不是個別學校的做法,在全國具有普遍性.殊不知,力、熱、光、電磁、原子是一個完整的體系,相互聯系,缺一不可.這種以消減教學內容為代價,解決課時不足的做法,就如同削足適履,是對教育規律不尊重,是管理者思想意識落後的一種體現.本文且不論述物理學是理工科必修的一門基礎課,只論及物理學是科技創新的源泉這一命題,以期提高教育管理者對大學物理課程重要性的認識.
2物理學是科技創新的源泉
且不說力學和熱力學的發展,以蒸汽機為標志引發了第一次工業革命,歐洲實現了機械化;且不說庫倫、法拉第、楞次、安培、麥克斯韋等創立的電磁學的發展,以電動機為標志引發了第二次工業革命,歐美實現了電氣化.這兩次工業革命沒有發生在中國,使中國近代落後了.本文著重論述近代物理學的發展對科學技術的巨大推動作用,從而得出結論:物理學是科技創新的源泉.1895年,威廉•倫琴(WilhelmR魻ntgen)發現X射線,這種射線在電場、磁場中不發生偏轉,穿透能力很強,由於當時不知道它是什麼,故取名X射線.直到1912年,勞厄(MaxvonLaue)用晶體中的點陣作為衍射光柵,確定它是一種光波,波長為10-10m的數量級[6].倫琴獲1901年諾貝爾物理學獎,他發現的X射線開創了醫學影像技術,利用X光機探測骨骼的病變,胸腔X光片診斷肺部病變,腹腔X光片檢測腸道梗塞.CT成像也是利用X射線成像,CT成像既可以提供二維(2D)橫切面又可以提供三維(3D)立體表現圖像,它可以清楚地展示被檢測部位的內部結構,可以准確確定病變位置.當今,各醫院都設置放射科,X射線在醫學上得到充分利用.X射線的發現不僅對醫學診斷有重大影響,還直接影響20世紀許多重大科學發現.1913-1914年,威廉•享利•布拉格(willianHenrgBragg)和威廉•勞侖斯•布拉格(WillianLawrenceBragg)提供布拉格方程[6,P140]2dsinα=kλ(k=1,2,3…)式中d為晶格常數,α為入射光與晶面夾角,λ為X射線波長.布拉格父子提出使用X射線衍射研究晶體原子、分子結構,創立了X射線晶體結構分析這一學科,布拉格父子獲1915年諾貝爾物理學獎.當今,X射線衍射儀不僅在物理學研究,而且在化學、生物、地質、礦產、材料等學科得到廣泛應用,所有從事自然科學研究的科研院所和大多數高等學校都有X射線衍射儀,它是研究物質結構的必備儀器.1907年,威廉•湯姆孫(W•Thomson)發現電子,電子質量me=9.11×10-31kg,電子荷電e=-1.602×10-19C.電子的荷電性引發了20世紀產生革命.1947年,美國的巴丁、布萊頓和肖克利研究半導體材料時,發現Ge晶體具有放大作用,發明了晶體三極體,很快取代電子管,隨後晶體管電路不斷向微型化發展.1958年,美國的工程師基爾比製成第一批集成電路.1971年,英特爾公司的霍夫把計算機的中央處理器的全部功能集成在一塊晶元上,製成世界上第一個微處理器.80年代末,晶元上集成的元件數已突破1000萬大關.微電子技術改變了人類生活,微電子技術稱雄20世紀,進入21世紀微電子產業仍繼續稱雄.到各個工業區看看,發現電子廠比比皆是,這真是小小電子轉動了整個地球啊!電子不僅具有荷電性,還具有荷磁性.
1925年,烏倫貝克—哥德斯密脫(Uhlenbeck-Goudsmit)提出自旋假說,每個電子都具有自旋角動量S軋,它在空間任意方向上的投影只可能取兩個數值,Sz=±h2;電子具有荷磁性,每個電子的磁矩為MSz=芎μB(μB為玻爾磁子)[7].電子的荷磁性沉睡了半個多世紀,直到1988年阿貝爾•費爾(AlberFert)和彼得•格林貝格爾(PeterGrünberg)發現在Fe/Cr多層膜中,材料的電阻率受材料磁化狀態的變化呈顯著改變,其機理是相臨鐵磁層間通過非磁性Cr產生反鐵磁耦合,不加磁場時電阻率大,當外加磁場時,相鄰鐵磁層的磁矩方向排列一致,對電子的散射弱,電阻率小.利用磁性控制電子的輸運,提出巨磁電阻效應(giantmagnetoresistance,GMR),磁電阻MR定義MR=ρ(0)+ρ(H)ρ(0)×100%式中ρ(0)為零場下的電阻率,ρ(H)為加場下的電阻率[8].GMR效應的發現引起科技界強烈關注,1994年IBM公司依據巨磁電阻效應原理,研製出“新型讀出磁頭”,此前的磁頭是用錳鐵磁體,磁電阻MR只有1%-2%,而新型讀出磁頭的MR約50%,將磁碟記錄密度提高了17倍,有利於器件小型化,利用新型讀出磁頭的MR才出現 筆記本 電腦、MP3等,GMR效應在磁感測器、數控機庫、非接觸開關、旋轉編碼器等方面得到廣泛應用.阿爾貝?費爾和彼得?格林貝格爾獲2007年諾貝爾物理學獎.1993年,Helmolt等人[9]在La2/3Ba1/3MnO3薄膜中觀察到MR高達105%,稱為龐磁電阻(Colossalmagnetoresistance,CMR),鈣鈦礦氧化物中有如此高的磁電阻,在磁感測、磁存儲、自旋晶體管、磁製冷等方面有著誘人的應用前景,引起凝聚態物理和材料科學科研人員的極大關注[10-12].然而,CMR效應還沒有得到實際應用,原因是要實現大的MR需要特斯拉量級的外磁場,問題出在CMR產生的物理機制還沒有真正弄清楚.1905年,愛因斯坦提出[13]:“就一個粒子來說,如果由於自身內部的過程使它的能量減小了,它的靜質量也將相應地減小.”提出著名的質能關系式△E=△m莓C2式中△m.表示經過反應後粒子的總靜質量的減小,△E表示核反應釋放的能量.愛因斯坦又提出實現熱核反應的途徑:“用那些所含能量是高度可變的物體(比如用鐳鹽)來驗證這個理論,不是不可能成功的.”按照愛因斯坦的這一重大物理學理論,1938年物理學家發現重原子核裂變.核裂變首先被用於戰爭,1945年8月6日和9日,美國對日本的廣島和長崎各投下一顆原子彈,迫使日本接受《波茨坦公告》,於8月15日宣布無條件投降.後來原子能很快得到和平利用,1954年莫斯科附近的奧布寧斯克原子能發電站投入運行.2009年,美國有104座核電站,核電站發電量占本國發電總量的20%,法國有59台機組,佔80%;日本有55座核電站,佔30%.截至2015年4月,我國運行的核電站有23座,在建核電站有26座,產能為21.4千兆瓦,核電站發電量占我國發電總量不足3%,所以我國提出大力發展核電,制定了到2020年核電裝機總容量達到58千兆瓦的目標.核能的利用,一方面減少了化石能源的消耗,從而減少了產生溫室效應的氣體———二氧化碳的排放,另一方面有力地解決能源危機.利用海水中的氘和氚發生核聚變可以產生巨大能量,受控核聚變正在研究中,若受控核聚變研究成功將為人類提供取之不盡用之不竭的能量.那時,能源危機徹底解除.
20世紀最傑出的成果是計算機,物理學是計算機硬體的基礎.從1946年計算機問世以來,經歷了第一至第五代,計算機硬體中的電子元件隨著物理學的進步,依次經歷了電子管、晶體管、中小規模集成電路、大規模集成電路、超大規模集成電路;主存儲器用的是磁性材料,隨著物理學的進步,磁性材料的性能越來越高,計算機的硬碟越來越小.近日在第十六屆全國磁學和磁性材料會議(2015年10月21—25日)上獲悉,中科院強磁場中心、中科院物理所等,正在對斯格明子(skyrmions)進行攻關,斯格明子具有拓撲納米磁結構,將來的筆記本電腦的硬碟只有花生大小,ipod平板電腦的硬碟縮小到米粒大小.量子力學催生出隧道二極體,量子力學指導著研究電子器件大小的極限,光學纖維的發明為計算機網路提供數據通道.
1916年,愛因斯坦提出光受激輻射原理,時隔44年,哥倫比亞大學的希奧多•梅曼(TheodoreMaiman)於1960製成第一台激光器[14].由於激光具有單色性好,相乾性好,方向性好和亮度高等特點,在醫療、農業、通訊、金屬微加工,軍事等方面得到廣泛應用.激光在其他方面的應用暫不展開論述,只談談激光加工技術在工業生產上的應用.激光加工技術對材料進行切割、焊接、表面處理、微加工等,激光加工技術具有突出特點:不接觸加工工件,對工件無污染;光點小,能量集中;激光束容易聚焦、導向,便於自動化控制;安全可靠,不會對材料造成機械擠壓或機械應力;切割面光滑、無毛刺;切割面細小,割縫一般在0.1-0.2mm;適合大件產品的加工等.在汽車、飛機、微電子、鋼鐵等行業得到廣泛應用.2014年,僅我國激光加工產業總收入約270億人民幣,其中激光加工設備銷售額達215億人民幣.
2014年,諾貝爾物理學獎授予赤崎勇、天野浩、中山修二等三位科學家,是因為他們發明了藍色發光二極體(LED),幫助人們以更節能的方式獲得白光光源.他們的突出貢獻在於,在三基色紅、綠、藍中,紅光LED和綠光LED早已發明,但製造藍光LED長期以來是個難題,他們三人於20世紀90年代發明了藍光LED,這樣三基色LED全被找到了,製造出來的LED燈用於照明使消費者感到舒適.這種LED燈耗能很低,耗能不到普通燈泡的1/20,全世界發的電40%用於照明,若把普通燈泡都換成LED燈,全世界每個節省的電能數字驚人!物理學研究給人類帶來不可估量的益處.2010年,英國曼徹斯特大學科學家安德烈•海姆(AndreGeim)和康斯坦丁•諾沃肖洛夫(Kon-stantinNovoselov),因發明石墨烯材料,獲得諾貝爾物理學獎.目前,集成電路晶體管普遍採用硅材料製造,當硅材料尺寸小於10納米時,用它製造出的晶體管穩定性變差.而石墨烯可以被刻成尺寸不到1個分子大小的單電子晶體管.此外,石墨烯高度穩定,即使被切成1納米寬的元件,導電性也很好.因此,石墨烯被普遍認為會最終替代硅,從而引發電子工業革命[14].2012年,法國科學家沙吉•哈羅徹(SergeHaroche)與美國科學家大衛•溫蘭德(DavidJ.win-land),在“突破性的試驗方法使得測量和操縱單個量子系統成為可能”.他們的突破性的方法,使得這一領域的研究朝著基於量子物理學而建造一種新型超快計算機邁出了第一步[16].
2013年,由清華大學薛其坤院士領銜、清華大學物理系和中科院物理研究所組成的實驗團隊從實驗上首次觀測到量子反常霍爾效應.早在2010年,我國理論物理學家方忠、戴希等與張首晟教授合作,提出磁性摻雜的三維拓撲絕緣體有可能是實現量子化反常霍爾效應的最佳體系,薛其坤等在這一理論指導下開展實驗研究,從實驗上首次觀測到量子反常霍爾效應.我們使用計算機的時候,會遇到計算機發熱、能量損耗、速度變慢等問題.這是因為常態下晶元中的電子運動沒有特定的軌道、相互碰撞從而發生能量損耗.而量子霍爾效應則可以對電子的運動制定一個規則,電子自旋向上的在一個跑道上,自旋向下的在另一個跑道上,猶如在高速公路上,它們在各自的跑道上“一往無前”地前進,不產生電子相互碰撞,不會產生熱能損耗.通過密度集成,將來計算機的體積也將大大縮小,千億次的超級計算機有望做成現在的iPad那麼大.因此,這一科研成果的應用前景十分廣闊[17].物理學的每一個重大發現、重大發明,都會開辟一塊新天地,帶來產業革命,推動社會進步,創造巨大物質財富.縱觀科學與技術發展史,可以看出物理學是科技創新的源泉.
3結語
論述了X射線,電子、半導體、原子能、激光、藍光LED等的發現或發明對人類進步的巨大推動作用,自然得出結論,物理學是科技創新的源泉.打開國門看一看,美國的著名大學非常注重大學物理,加州理工大學所有一、二年級的公共物理課程總學時為540,英、法、德也在400-500學時[18].國內高校只有中國科學技術大學的大學物理課程做到了與國際接軌,以他們的數學與應用數學為例,大一開設:力學與熱學80學時,大學物理—基礎實驗54學時;大二開設:電磁學80學時,光學與原子物理80學時,大學物理—綜合實驗54學時;大三開設:理論力學60學時,大學物理及實驗總計408學時.在大力倡導全民創業萬眾創新的今天,高等學校理所應當重視物理學教學.各高校的理工科要按照教育部高等學校非物理類專業物理基礎課程教學指導委員會頒發的《非物理類理工學科大學物理課程/實驗教學基本要求》給足大學物理課程及大學物理實驗課時.
參考文獻:
〔1〕祝之光.物理學[M].北京:高等教育出版社,2012.1-10.
〔2〕馬文蔚,周雨青.物理學教程[M].北京:高等教育出版社,2006.I-V1.
〔3〕倪致祥,朱永忠,袁廣宇,黃時中,大學物理學[M].合肥:中國科學技術大學出版社,2005.前言.
〔4〕教育部高等學校非物理類專業物理基礎課程教學指導分委員會.非物理類理工學科大學物理課程教學基本要求[J].物理與工程,2006,16(5)
〔5〕教育部高等學校非物理類專業物理基礎課程教學指導分委員會.非物理類理工學科大學物理實驗課程教學基本要求[J].物理與工程,2006,16(4):1-3.
〔6〕姚啟鈞,光學教程[M].北京;高等教育出版社,2002.138-139.
〔7〕張怪慈.量子力學簡明教授[M].北京:人民教育出版社,1979.182-183.
〔8〕孫陽(導師:張裕恆).鈣鈦礦結構氧化物中的超大磁電阻效應及相關物性[D].中國科學技術大學,2001.10-11.
物理學博士論文篇二《 應用物理學專業光伏技術培養方案研究 》
一、開設半導體材料及光伏技術方向的必要性
由於我校已經有材料與化學工程學院,開設了高分子、化工類材料、金屬材料等專業,應用物理、物理學專業的方向就只有往半導體材料及光伏技術方向靠,而半導體材料及光伏技術與物理聯系十分緊密。因此,我們物理系開設半導體材料及光伏技術有得天獨厚的優勢。首先,半導體材料的形成原理、制備、檢測手段都與物理有關;其次,光伏技術中的光伏現象本身就是一種物理現象,所以只有懂物理的人,才能將物理知識與這些材料的產生、運行機制完美地聯系起來,進而有利於新材料以及新的太陽能電池的研發。從半導體材料與光伏產業的產業鏈條來看,硅原料的生產、硅棒和矽片生產、太陽能電池製造、組件封裝、光伏發電系統的運行等,這些過程都包含物理現象和知識。如果從事這個職業的人懂得這些現象,就能夠清晰地把握這些知識,將對行業的發展起到很大的推動作用。綜上所述,不僅可以在我校的應用物理學專業開設半導體材料及光伏技術方向,而且應該把它發展為我校應用物理專業的特色方向。
二、專業培養方案的改革與實施
(一)應用物理學專業培養方案改革過程
我校從2004年開始招收應用物理學專業學生,當時只是粗略地分為光電子方向和感測器方向,而課程的設置大都和一般高校應用物理學專業的設置一樣,只是增設了一些光電子、感測器以及控制方面的課程,完全沒有自己的特色。隨著對學科的深入研究,周邊高校的互訪調研以及自貢和樂山相繼成為國家級新材料基地,我們逐步意識到半導體材料及光伏技術應該是一個應用物理學專業的可持續發展的方向。結合我校的實際情況,我們從2008年開始修訂專業培養方案,用半導體材料及光伏技術方向取代感測器方向,成為應用物理學專業方向之一。在此基礎上不斷修改,逐步形成了我校現有的應用物理專業的培養方案。我們的培養目標:學生具有較扎實的物理學基礎和相關應用領域的專業知識;並得到相關領域應用研究和技術開發的初步訓練;具備較強的知識更新能力和較廣泛的科學技術適應能力,使其成為具有能在應用物理學科、交叉學科以及相關科學技術領域從事應用研究、教學、新技術開發及管理工作的能力,具有時代精神及實踐能力、創新意識和適應能力的高素質復合型應用人才。為了實現這一培養目標,我們在通識教育平台、學科基礎教育平台、專業教育平台都分別設有這方面的課程,另外還在實踐教育平台也逐步安排這方面的課程。
(二)專業培養方案的實施
為了實施新的培養方案,我們從幾個方面來入手。首先,在師資隊伍建設上。一方面,我們引入學過材料或凝聚態物理的博士,他們在半導體材料及光伏技術方面都有自己獨到的見解;另一方面,從已有的教師隊伍中選出部分教師去高校或相關的工廠、公司進行短期的進修培訓,使大家對半導體材料及光伏技術有較深的認識,為這方面的教學打下基礎。其次,在教學改革方面。一方面,在課程設置上,我們准備把物理類的課程進行重新整合,將關系緊密的課程合成一門。另一方面,我們將應用物理學專業的兩個方向有機地結合起來,在光電子技術方向的專業課程設置中,我們有意識地開設了一些課程,讓半導體材料及光伏技術方向的學生能夠去選修這些課程,讓他們能夠對光伏產業的生產、檢測、裝備有更全面的認識。最後,在實踐方面。依據學校資源共享的原則,在材料與化學工程學院開設材料科學實驗和材料專業實驗課程,使學生對材料的生產、檢測手段有比較全面的認識,並開設材料科學課程設計,讓學生能夠把理論知識與實踐聯系起來,為以後在工作崗位上更好地工作打下堅實的基礎。
三、 總結
半導體材料及光伏行業是我國大力發展的新興行業,受到國家和各省市的大力扶持,符合國家節能環保的主旋律,發展前景十分看好。由於我們國家缺乏這方面的高端人才和行業指揮人,在這個行業還沒有話語權。我們的產品大都是初級產品或者是行業的上游產品,沒有進行深加工。目前行業正處在發展的困難時期,但也正好為行業的後續發展提供調整。只要我們能夠提高技術水平和產品質量,並積極拓展國內市場,這個行業一定會有美好的前景。要提高技術水平和產品質量,就需要有這方面的技術人才,而高校作為人才培養的主要基地,有責任肩負起這個重任。由於相關人才培養還沒有形成系統模式,這就更需要高校和企業緊密聯系,共同努力,為半導體材料及光伏產業的人才培養探索出一條可持續發展的光明大道,也為我國的新能源產業發展做出自己的貢獻。
有關物理學博士論文推薦:
1. 有關物理學論文
2. 物理學論文範文
3. 物理學論文
4. 物理學教學專業畢業論文
5. 物理學實驗本科畢業論文
6. 物理學本科畢業論文
❷ 大學物理第四版習題詳解
你好,物理習題知識點 1.分子動理論的內容是:(1)物質由分子組成的,分子間回有空隙;(2)一切物體的分子都答永不停息地做無規則運動;(3)分子間存在相互作用的引力和斥力。
2.擴散:不同物質相互接觸,彼此進入對方現象。
3.固體、液體壓縮時分子間表現為斥力大於引力。 固體很難拉長是分子間表現為引力大於斥力。
4. 分子是原子組成的,原子是由原子核和核外電子 組成的,原子核是由質子和中子組成的。
5. 湯姆遜發現電子(1897年);盧瑟福發現質子(1919年);查德威克發現中子(1932年);蓋爾曼提出誇克設想(1961年)。
6. 加速器是探索微小粒子的有力武器。
7. 銀河系是由群星和彌漫物質集會而成的一個龐大天體系統,太陽只是其中一顆普通恆星。
8. 宇宙是一個有層次的天體結構系統,大多數科學家都認定:宇宙誕生於距今150億年的一次大爆炸,這種爆炸是整體的,涉及宇宙全部物質及時間、空間,爆炸導致宇宙空間處處膨脹,溫度則相應下降。
希望能幫到你。