物理三二
⑴ 物理選修3-2的所有公式
電磁學常用公式
庫侖定律:f=kqq/r²
電場強度:e=f/q
點電荷電場強度:e=kq/r²
勻強電場:e=u/d
電勢能:e₁
=qφ
電勢差:u₁
₂=φ₁-φ₂
靜電力做功:w₁₂=qu₁₂
電容定義式:c=q/u
電容:c=εs/4πkd
帶電粒子在勻強電場中的運動
加速勻強電場:1/2*mv²
=qu
v²
=2qu/m
偏轉勻強電場:
運動時間:t=x/v₀
垂直加速度:a=qu/md
垂直位移:y=1/2*at₂
=1/2*(qu/md)*(x/v₀)²
偏轉角:θ=v⊥/v₀=qux/md(v₀)²
微觀電流:i=nesv
電源非靜電力做功:w=εq
歐姆定律:i=u/r
串聯電路
電流:i₁
=i₂
=i₃
=
……
電壓:u
=u₁
u₂
u₃
……
並聯電路
電壓:u₁=u₂=u₃=
……
電流:i
=i₁
i₂
i₃
……
電阻串聯:r
=r₁
r₂
r₃
……
電阻並聯:1/r
=1/r₁
1/r₂
1/r₃
……
焦耳定律:q=i²
rt
p=i²
r
p=u²
/r
電功率:w=uit
電功:p=ui
電阻定律:r=ρl/s
全電路歐姆定律:ε=i(r
r)
ε=u外
u內
安培力:f=ilbsinθ
磁通量:φ=bs
電磁感應
感應電動勢:e=nδφ/δt
導線切割磁感線:δs=lvδt
e=blv*sinθ
感生電動勢:e=lδi/δt
⑵ 高中物理選修3-2知識點(完整的)
56.電磁感應現象Ⅰ
只要穿過閉合迴路中的磁通量發生變化,閉合迴路中就會產生感應電流,如果電路不閉合只會產生感應電動勢。
這種利用磁場產生電流的現象叫電磁感應,是1831年法拉第發現的。
57.感應電流的產生條件Ⅱ
1、迴路中產生感應電動勢和感應電流的條件是迴路所圍面積中的磁通量變化,因此研究磁通量的變化是關鍵,由磁通量的廣義公式中 ( 是B與S的夾角)看,磁通量的變化 可由面積的變化 引起;可由磁感應強度B的變化 引起;可由B與S的夾角 的變化 引起;也可由B、S、 中的兩個量的變化,或三個量的同時變化引起。
2、閉合迴路中的一部分導體在磁場中作切割磁感線運動時,可以產生感應電動勢,感應電流,這是初中學過的,其本質也是閉合迴路中磁通量發生變化。
3、產生感應電動勢、感應電流的條件:穿過閉合電路的磁通量發生變化。
58.法拉第電磁感應定律 楞次定律Ⅱ
①電磁感應規律:感應電動勢的大小由法拉第電磁感應定律確定。
——當長L的導線,以速度 ,在勻強磁場B中,垂直切割磁感線,其兩端間感應電動勢的大小為 。
如圖所示。設產生的感應電流強度為I,MN間電動勢為 ,則MN受向左的安培力 ,要保持MN以 勻速向右運動,所施外力 ,當行進位移為S時,外力功 。 為所用時間。
而在 時間內,電流做功 ,據能量轉化關系, ,則 。
∴ ,M點電勢高,N點電勢低。
此公式使用條件是 方向相互垂直,如不垂直,則向垂直方向作投影。
,
公式 。注意: 1)該式普遍適用於求平均感應電動勢。2) 只與穿過電路的磁通量的變化率 有關, 而與磁通的產生、磁通的大小及變化方式、電路是否閉合、電路的結構與材料等因素無關。
公式二: 。要注意: 1)該式通常用於導體切割磁感線時, 且導線與磁感線互相垂直(lB )。2) 為v與B的夾角。l為導體切割磁感線的有效長度(即l為導體實際長度在垂直於B方向上的投影)。 公式 中涉及到磁通量的變化量 的計算, 對 的計算, 一般遇到有兩種情況: 1)迴路與磁場垂直的面積S不變, 磁感應強度發生變化, 由 , 此時 , 此式中的 叫磁感應強度的變化率, 若 是恆定的, 即磁場變化是均勻的, 那麼產生的感應電動勢是恆定電動勢。2)磁感應強度B 不變, 迴路與磁場垂直的面積發生變化, 則 , 線圈繞垂直於勻強磁場的軸勻速轉動產生交變電動勢就屬這種情況。
嚴格區別磁通量 , 磁通量的變化量 磁通量的變化率 , 磁通量 , 表示穿過研究平面的磁感線的條數, 磁通量的變化量 , 表示磁通量變化的多少, 磁通量的變化率 表示磁通量變化的快慢,
公式 一般用於導體各部分切割磁感線的速度相同, 對有些導體各部分切割磁感線的速度不相同的情況, 如何求感應電動勢?
如圖1所示, 一長為l的導體桿AC繞A點在紙面內以角速度 勻速轉動, 轉動的區域的有垂直紙面向里的勻強磁場, 磁感應強度為B, 求AC產生的感應電動勢, 顯然, AC各部分切割磁感線的速度不相等, , 且AC上各點的線速度大小與半徑成正比, 所以AC切割的速度可用其平均切割速 , 故 。
(超經典的,我們有次考試考到過關於這個、)
——當長為L的導線,以其一端為軸,在垂直勻強磁場B的平面內,以角速度 勻速轉動時,其兩端感應電動勢為 。
如圖所示,AO導線長L,以O端為軸,以 角速度勻速轉動一周,所用時間 ,描過面積 ,(認為面積變化由0增到 )則磁通變化 。
在AO間產生的感應電動勢 且用右手定則制定A端電勢高,O端電勢低。
——面積為S的紙圈,共 匝,在勻強磁場B中,以角速度 勻速轉坳,其轉軸與磁場方向垂直,則當線圈平面與磁場方向平行時,線圈兩端有最大有感應電動勢 。
如圖所示,設線框長為L,寬為d,以 轉到圖示位置時, 邊垂直磁場方向向紙外運動,切割磁感線,速度為 (圓運動半徑為寬邊d的一半)產生感應電動勢
, 端電勢高於 端電勢。
邊垂直磁場方向切割磁感線向紙里運動,同理產生感應電動熱勢 。 端電勢高於 端電勢。
邊, 邊不切割,不產生感應電動勢, . 兩端等電勢,則輸出端M.N電動勢為 。
如果線圈 匝,則 ,M端電勢高,N端電勢低。
參照俯示圖,這位置由於線圈長邊是垂直切割磁感線,所以有感應電動勢最大值 ,如從圖示位置轉過一個角度 ,則圓運動線速度 ,在垂直磁場方向的分量應為 ,則此時線圈的產生感應電動勢的瞬時值即作最大值 .即作最大值方向的投影, ( 是線圈平面與磁場方向的夾角)。
當線圈平面垂直磁場方向時,線速度方向與磁場方向平行,不切割磁感線,感應電動勢為零。
總結:計算感應電動勢公式:
( 是線圈平面與磁場方向的夾角)。
注意:公式中字母的含義,公式的適用條件及使用圖景。
區分感應電量與感應電流, 迴路中發生磁通變化時, 由於感應電場的作用使電荷發生定向移動而形成感應電流, 在 內遷移的電量(感應電量)為
, 僅由迴路電阻和磁通量的變化量決定, 與發生磁通量變化的時間無關。因此, 當用一磁棒先後兩次從同一處用不同速度插至線圈中同一位置時, 線圈裡聚積的感應電量相等, 但快插與慢插時產生的感應電動勢、感應電流不同, 外力做功也不同。
②楞次定律:
1、1834年德國物理學家楞次通過實驗總結出:感應電流的方向總是要使感應電流的磁場阻礙引起感應電流的磁通量的變化。
即磁通量變化 感應電流 感應電流磁場 磁通量變化。
2、當閉合電路中的磁通量發生變化引起感應電流時,用楞次定律判斷感應電流的方向。
楞次定律的內容:感應電流的磁場總是阻礙引起感應電流為磁通量變化。
楞次定律是判斷感應電動勢方向的定律,但它是通過感應電流方向來表述的。通過感應電流的磁場方向和原磁通的方向的相同或相反,來達到「阻礙」原磁通的「變化」即減或增。。這樣一個復雜的過程,可以用圖表理順如下:
(這個不太好理解、不過很好用 口訣:增縮減擴,來拒去留)
楞次定律也可以理解為:感應電流的效果總是要反抗(或阻礙)產生感應電流的原因,即只要有某種可能的過程使磁通量的變化受到阻礙,閉合電路就會努力實現這種過程:
(1)阻礙原磁通的變化(原始表述);
(2)阻礙相對運動,可理解為「來拒去留」,具體表現為:若產生感應電流的迴路或其某些部分可以自由運動,則它會以它的運動來阻礙穿過路的磁通的變化;若引起原磁通變化為磁體與產生感應電流的可動迴路發生相對運動,而迴路的面積又不可變,則迴路得以它的運動來阻礙磁體與迴路的相對運動,而迴路將發生與磁體同方向的運動;
(3)使線圈面積有擴大或縮小的趨勢;
(4)阻礙原電流的變化(自感現象)。
利用上述規律分析問題可獨辟蹊徑,達到快速准確的效果。如圖1所示,在O點懸掛一輕質導線環,拿一條形磁鐵沿導線環的軸線方向突然向環內插入,判斷在插入過程中導環如何運動。若按常規方法,應先由楞次定律 判斷出環內感應電流的方向,再由安培定則確定環形電流對應的磁極,由磁極的相互作用確定導線環的運動方向。若直接從感應電流的效果來分析:條形磁鐵向環內插入過程中,環內磁通量增加,環內感應電流的效果將阻礙磁通量的增加,由磁通量減小的方向運動。因此環將向右擺動。顯然,用第二種方法判斷更簡捷。
應用楞次定律判斷感應電流方向的具體步驟:
(1)查明原磁場的方向及磁通量的變化情況;
(2)根據楞次定律中的「阻礙」確定感應電流產生的磁場方向;
(3)由感應電流產生的磁場方向用安培表判斷出感應電流的方向。
3、當閉合電路中的一部分導體做切割磁感線運動時,用右手定則可判定感應電流的方向。
運動切割產生感應電流是磁通量發生變化引起感應電流的特例,所以判定電流方向的右手定則也是楞次定律的特例。用右手定則能判定的,一定也能用楞次定律判定,只是不少情況下,不如用右手定則判定的方便簡單。反過來,用楞次定律能判定的,並不是用右手定則都能判定出來。如圖2所示,閉合圖形導線中的磁場逐漸增強,因為看不到切割,用右手定則就難以判定感應電流的方向,而用楞次定律就很容易判定。
(「因電而動」用左手,「因動而電」用右手)
59.互感 自感 渦流Ⅰ
互感:由於線圈A中電流的變化,它產生的磁通量發生變化,磁通量的變化在線圈B中激發了感應電動勢。這種現象叫互感。
自感現象是指由於導體本身的電流發生變化而產生的電磁感應現象。所產生的感應電動勢叫做自感電動勢。自感系數簡稱自感或電感, 它是反映線圈特性的物理量。線圈越長, 單位長度上的匝數越多, 截面積越大, 它的自感系數就越大。另外, 有鐵心的線圈的自感系數比沒有鐵心時要大得多。
自感現象分通電自感和斷電自感兩種, 其中斷電自感中「小燈泡在熄滅之前是否要閃亮一下」的問題, 如圖2所示, 原來電路閉合處於穩定狀態, L與 並聯, 其電流分別為 , 方向都是從左到右。在斷開S的瞬間, 燈A中原來的從左向右的電流 立即消失, 但是燈A與線圈L構成一閉合迴路, 由於L的自感作用, 其中的電流
不會立即消失, 而是在迴路中逐斷減弱維持暫短的時間, 在這個時間內燈A中有從右向左的電流通過, 此時通過燈A的電流是從 開始減弱的, 如果原來 , 則在燈A熄滅之前要閃亮一下; 如果原來 , 則燈A是逐斷熄滅不再閃亮一下。原來 哪一個大, 要由L的直流電阻 和A的電阻 的大小來決定, 如果 , 如果 。
2、由於線圈(導體)本身電流的變化而產生的電磁感應現象叫自感現象。在自感現象中產生感應電動勢叫自感電動勢。
由上例分析可知:自感電動勢總量阻礙線圈(導體)中原電流的變化。
3、自感電動勢的大小跟電流變化率成正比。
L是線圈的自感系數,是線圈自身性質,線圈越長,單位長度上的匝數越多,截面積越大,有鐵芯則線圈的自感系數L越大。單位是亨利(H)。
如是線圈的電流每秒鍾變化1A,在線圈可以產生1V 的自感電動勢,則線圈的自感系數為1H。還有毫亨(mH),微亨( H)。
渦流及其應用
1.變壓器在工作時,除了在原、副線圈產生感應電動勢外,變化的磁通量也會在鐵芯中產生感應電流。一般來說,只要空間有變化的磁通量,其中的導體就會產生感應電流,我們把這種感應電流叫做渦流
2.應用:
(1)新型爐灶——電磁爐。
(2)金屬探測器:飛機場、火車站安全檢查、掃雷、探礦。
60.交變電流 描述交變電流的物理量和圖象Ⅰ
一、交流電的產生及變化規律:
(1)產生:強度和方向都隨時間作周期性變化的電流叫交流電。
矩形線圈在勻強磁場中,繞垂直於勻強磁場的線圈的對稱軸作勻速轉動時,如圖5—1所示,產生正弦(或餘弦)交流電動勢。當外電路閉合時形成正弦(或餘弦)交流電流。
圖5—1
(2)變化規律:
(1)中性面:與磁力線垂直的平面叫中性面。
線圈平面位於中性面位置時,如圖5—2(A)所示,穿過線圈的磁通量最大,但磁通量變化率為零。因此,感應電動勢為零 。
圖5—2
當線圈平面勻速轉到垂直於中性面的位置時(即線圈平面與磁力線平行時)如圖5—2(C)所示,穿過線圈的磁通量雖然為零,但線圈平面內磁通量變化率最大。因此,感應電動勢值最大。
(伏) (N為匝數)
(2)感應電動勢瞬時值表達式:
若從中性面開始,感應電動勢的瞬時值表達式: (伏)如圖5—2(B)所示。
感應電流瞬時值表達式: (安)
若從線圈平面與磁力線平行開始計時,則感應電動勢瞬時值表達式為: (伏)如圖5—2(D)所示。
感應電流瞬時值表達式: (安)
二、表徵交流電的物理量:
(1)瞬時值、最大值和有效值:
交流電在任一時刻的值叫瞬時值。
瞬時值中最大的值叫最大值又稱峰值。
交流電的有效值是根據電流的熱效應規定的:讓交流電和恆定直流分別通過同樣阻值的電阻,如果二者熱效應相等(即在相同時間內產生相等的熱量)則此等效的直流電壓,電流值叫做該交流電的電壓,電流有效值。
正弦(或餘弦)交流電電動勢的有效值 和最大值 的關系為:
交流電壓有效值 ; 交流電流有效值 。
注意:通常交流電表測出的值就是交流電的有效值。用電器上標明的額定值等都是指有效值。用電器上說明的耐壓值是指最大值。
(2)周期、頻率和角頻率
交流電完成一次周期性變化所需的時間叫周期。以T表示,單位是秒。
交流電在1秒內完成周期性變化的次數叫頻率。以f表示,單位是赫茲。
周期和頻率互為倒數,即 。
我國市電頻率為50赫茲,周期為0.02秒。
角頻率 : 單位:弧度/秒
交流電的圖象:
圖象如圖5—3所示。
圖象如圖5—4所示。
61。正弦交變電流的函數表達式Ⅰ
u=Umsinωt
i=Imsinωt
62.電感和電容對交變電流的影響Ⅰ
①電感對交變電流有阻礙作用,阻礙作用大小用感抗表示。
低頻扼流圈,線圈的自感系數L很大,作用是「通直流,阻交流」;
高頻扼流圈,線圈的自感系數L很小,作用是「通低頻,阻高頻」.
②電容對交變電流有阻礙作用,阻礙作用大小用容抗表示
耦合電容,容量較大,隔直流、通交流
高頻旁路電容,容量很小,隔直流、阻低頻、通高頻
63.變壓器Ⅰ
變壓器是可以用來改變交流電壓和電流的大小的設備。
理想變壓器的效率為1,即輸入功率等於輸出功率。對於原、副線圈各一組的變壓器來說(如圖5—6),原、副線圈上的電壓與它們的匝數成正。
即
因為有 ,因而通過原、副線圈的電流強度與它們的匝數成反比。
即
注意:1.理想變壓器各物理量的決定因素
輸入電壓U1決定輸出電壓U2,輸出電流I2決定輸入電流I1,輸入功率隨輸出功率的變化而變化直到達到變壓器的最大功率(負載電阻減小,輸入功率增大;負載電阻增大,輸入功率減小)。
2.一個原線圈多個副線圈的理想變壓器的電壓、電流的關系
U1:U2:U3:…=n1:n2:n3:… I1n1=I2n2+I3n3+…
因為 ,即 ,所以變壓器中高壓線圈電流小,繞制的導線較細,低電壓的線圈電流大,繞制的導線較粗。
上述各公式中的I、U、P均指有效值,不能用瞬時值。
(3)電壓互感器和電流互感器
電壓互感器是將高電壓變為低電壓,故其原線圈並聯在待測高壓電路中;電流互感器是將大電流變為小電流,故其原線圈串聯在待測的高電流電路中。
(二)解決變壓器問題的常用方法
思路1 電壓思路。變壓器原、副線圈的電壓之比為U1/U2=n1/n2;當變壓器有多個副繞組時U1/n1=U2/n2=U3/n3=……
思路2 功率思路。理想變壓器的輸入、輸出功率為P入=P出,即P1=P2;當變壓器有多個副繞組時P1=P2+P3+……
思路3 電流思路。由I=P/U知,對只有一個副繞組的變壓器有I1/I2=n2/n1;當變壓器有多個副繞組時n1I1=n2I2+n3I3+……
思路4 (變壓器動態問題)制約思路。
(1)電壓制約:當變壓器原、副線圈的匝數比(n1/n2)一定時,輸出電壓U2由輸入電壓決定,即U2=n2U1/n1,可簡述為「原制約副」.
(2)電流制約:當變壓器原、副線圈的匝數比(n1/n2)一定,且輸入電壓U1確定時,原線圈中的電流I1由副線圈中的輸出電流I2決定,即I1=n2I2/n1,可簡述為「副制約原」.
(3)負載制約:①變壓器副線圈中的功率P2由用戶負載決定,P2=P負1+P負2+…;②變壓器副線圈中的電流I2由用戶負載及電壓U2確定,I2=P2/U2;③總功率P總=P線+P2.
動態分析問題的思路程序可表示為:
U1 P1
思路5 原理思路。變壓器原線圈中磁通量發生變化,鐵芯中ΔΦ/Δt相等;當遇到「 」型變壓器時有
ΔΦ1/Δt=ΔΦ2/Δt+ΔΦ3/Δt,
此式適用於交流電或電壓(電流)變化的直流電,但不適用於穩壓或恆定電流的情況.
64.電能的輸送Ⅰ
由於送電的導線有電阻,遠距離送電時,線路上損失電能較多。
在輸送的電功率和送電導線電阻一定的條件下,提高送電電壓,減小送電電流強度可以達到減少線路上電能損失的目的。
線路中電流強度I和損失電功率計算式如下:
注意:送電導線上損失的電功率,不能用 求,因為 不是全部降落在導線上。
65.感測器的及其工作原理Ⅰ
有一些元件它能夠感受諸如力、溫度、光、聲、化學成分等非電學量,並能把它們按照一定的規律轉換為電壓、電流等電學量,或轉換為電路的通斷。我們把這種元件叫做感測器。它的優點是:把非電學量轉換為電學量以後,就可以很方便地進行測量、傳輸、處理和控制了。
光敏電阻在光照射下電阻變化的原因:有些物質,例如硫化鎘,是一種半導體材料,無光照時,載流子極少,導電性能不好;隨著光照的增強,載流子增多,導電性變好。光照越強,光敏電阻阻值越小。
金屬導體的電阻隨溫度的升高而增大,熱敏電阻的阻值隨溫度的升高而減小,且阻值隨溫度變化非常明顯。
金屬熱電阻與熱敏電阻都能夠把溫度這個熱學量轉換為電阻這個電學量,金屬熱電阻的化學穩定性好,測溫范圍大,但靈敏度較差。
66.感測器的應用Ⅰ
1.光敏電阻
2.熱敏電阻和金屬熱電阻
3.電容式位移感測器
4.力感測器————將力信號轉化為電流信號的元件。
5.霍爾元件
霍爾元件是將電磁感應這個磁學量轉化為電壓這個電學量的元件。
外部磁場使運動的載流子受到洛倫茲力,在導體板的一側聚集,在導體板的另一側會出現多餘的另一種電荷,從而形成橫向電場;橫向電場對電子施加與洛倫茲力方向相反的靜電力,當靜電力與洛倫茲力達到平衡時,導體板左右兩例會形成穩定的電壓,被稱為霍爾電勢差或霍爾電壓 .
1.感測器應用的一般模式
2.感測器應用:
力感測器的應用——電子秤
聲感測器的應用——話筒
溫度感測器的應用——電熨斗、電飯鍋、測溫儀
光感測器的應用——滑鼠器、火災報警器
感測器的應用實例:1.光控開關2.溫度報警器
⑶ 物理3-2楞次定律
我猜測你的問題應該是遇到了同時存在動生和感生電動勢的題,但是兩個電動勢方向相反。其實無論哪種產生方式,都可以用楞次定律。建議可以從閉合迴路內的磁通量的總變化方向結合楞次定律來判斷總電動勢的方向。
判斷方法:判斷是否有動生,主要是從是否有切割磁感線的運動。判斷是否有感生,主要是從閉合迴路內的磁感應強度是否發生變化來判斷的。
產生的原因:動生電動勢相當於閉合迴路面積S變化導致的磁通量變化,感生相當於磁感應強度B變化導致的磁通量變化,都是因為法拉第電磁感應定律有磁生電。
⑷ 高中物理3-2公式
電磁感應
1.[感應電動勢的大小計算公式]
1)E=nΔΦ/Δt(普適公式){法拉第電磁感應定律,E:感應電動勢(V),n:感應線圈匝數,ΔΦ/Δt:磁通量的變化率}
2)E=BLV垂(切割磁感線運動) {L:有效長度(m)}
3)Em=nBSω(交流發電機最大的感應電動勢) {Em:感應電動勢峰值}
4)E=BL2ω/2(導體一端固定以ω旋轉切割)
{ω:角速度(rad/s),V:速度(m/s)}
2.磁通量Φ=BS
{Φ:磁通量(Wb),B:勻強磁場的磁感應強度(T),S:正對面積(m2)}
3.感應電動勢的正負極可利用感應電流方向判定
{電源內部的電流方向:由負極流向正極}
*4.自感電動勢E自=nΔΦ/Δt=LΔI/Δt
{L:自感系數(H)(線圈L有鐵芯比無鐵芯時要大),ΔI:變化電流,?t:所用時間,ΔI/Δt:自感電流變化率(變化的快慢)}
註:
(1)感應電流的方向可用楞次定律或右手定則判定,楞次定律應用要點;
(2)自感電流總是阻礙引起自感電動勢的電流的變化;
(3)單位換算:1H=103mH=106μH。
交變電流(正弦式交變電流)
1.電壓瞬時值e=Emsinωt 電流瞬時值i=Imsinωt;(ω=2πf)
2.電動勢峰值Em=nBSω=2BLv 電流峰值(純電阻電路中)Im=Em/R總
3.正(余)弦式交變電流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2
4.理想變壓器原副線圈中的電壓與電流及功率關系
U1/U2=n1/n2; I1/I2=n2/n2; P入=P出
5.在遠距離輸電中,採用高壓輸送電能可以減少電能在輸電線上的損失:
P損′=(P/U)2R;
(P損′:輸電線上損失的功率,P:輸送電能的總功率,U:輸送電壓,R:輸電線電阻);
6.公式1、2、3、4中物理量及單位:ω:角頻率(rad/s);t:時間(s);n:線圈匝數;B:磁感強度(T);S:線圈的面積(m2);U:(輸出)電壓(V);I:電流強度(A);P:功率(W)。
注:
(1)交變電流的變化頻率與發電機中線圈的轉動的頻率相同即:ω電=ω線,f電=f線;
(2)發電機中,線圈在中性面位置磁通量最大,感應電動勢為零,過中性面電流方向就改變;
(3)有效值是根據電流熱效應定義的,沒有特別說明的交流數值都指有效值;
(4)理想變壓器的匝數比一定時,輸出電壓由輸入電壓決定,輸入電流由輸出電流決定,輸入功率等於輸出功率,當負載的消耗的功率增大時輸入功率也增大,即P出決定P入;
(5)其它相關內容:正弦交流電圖象/電阻、電感和電容對交變電流的作用。
⑸ 高2 物理3-2
六、沖量與動量(物體的受力與動量的變化)
1.動量:p=mv {p:動量(kg/s),m:質量(kg),v:速度(m/s),方向與速度方向相同}
3.沖量:I=Ft {I:沖量(N•s),F:恆力(N),t:力的作用時間(s),方向由F決定}
4.動量定理:I=Δp或Ft=mvt–mvo {Δp:動量變化Δp=mvt–mvo,是矢量式}
5.動量守恆定律:p前總=p後總或p=p´也可以是m1v1+m2v2=m1v1´+m2v2´
6.彈性碰撞:Δp=0;ΔEK=0 {即系統的動量和動能均守恆}
7.非彈性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:損失的動能,EKm:損失的最大動能}
8.完全非彈性碰撞Δp=0;ΔEK=ΔEKm {碰後連在一起成一整體}
9.物體m1以v1初速度與靜止的物體m2發生彈性正碰:
v1´=(m1-m2)v1/(m1+m2) v2´=2m1v1/(m1+m2)
10.由9得的推論-----等質量彈性正碰時二者交換速度(動能守恆、動量守恆)
11.子彈m水平速度vo射入靜止置於水平光滑地面的長木塊M,並嵌入其中一起運動時的機械能損失
E損=mvo2/2-(M+m)vt2/2=fs相對 {vt:共同速度,f:阻力,s相對子彈相對長木塊的位移}
註:(1)正碰又叫對心碰撞,速度方向在它們「中心」的連線上;
(2)以上表達式除動能外均為矢量運算,在一維情況下可取正方向化為代數運算;
(3)系統動量守恆的條件:合外力為零或系統不受外力,則系統動量守恆(碰撞問題、爆炸問題、反沖問題等);
(4)碰撞過程(時間極短,發生碰撞的物體構成的系統)視為動量守恆,原子核衰變時動量守恆;
(5)爆炸過程視為動量守恆,這時化學能轉化為動能,動能增加;
(6)其它相關內容:反沖運動、火箭、航天技術的發展和宇宙航行。
八、分子動理論、能量守恆定律
1.阿伏加德羅常數NA=6.02×1023/mol;分子直徑數量級10-10米
2.油膜法測分子直徑d=V/s {V:單分子油膜的體積(m3),S:油膜表面積(m2)}
3.分子動理論內容:物質是由大量分子組成的;大量分子做無規則的熱運動;分子間存在相互作用力。
4.分子間的引力和斥力 (1)r<r0,f引<f斥,F分子力表現為斥力
(2)r=r0,f引=f斥,F分子力=0,E分子勢能=Emin(最小值)
(3)r>r0,f引>f斥,F分子力表現為引力
(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子勢能≈0
5.熱力學第一定律:W+Q=ΔU
{(做功和熱傳遞,這兩種改變物體內能的方式,在效果上是等效的),W>0:外界對物體做正功(J),Q>0:物體吸收熱量(J),ΔU>0:內能增加(J),涉及到第一類永動機不可造出}
6.熱力學第二定律
克氏表述:不可能使熱量由低溫物體傳遞到高溫物體,而不引起其它變化(熱傳導的方向性);
開氏表述:不可能從單一熱源吸收熱量並把它全部用來做功,而不引起其它變化(機械能與內能轉化的方向性){涉及到第二類永動機不可造出}
7.熱力學第三定律:熱力學零度不可達到{宇宙溫度下限:-273.15攝氏度(熱力學零度)}
注:(1)布朗粒子不是分子,布朗顆粒越小,布朗運動越明顯,溫度越高越劇烈;
(2)溫度是分子平均動能的標志;
(3)分子間的引力和斥力同時存在,隨分子間距離的增大而減小,但斥力減小得比引力快;
(4)分子力做正功,分子勢能減小,在r0處F引=F斥且分子勢能最小;
(5)氣體膨脹,外界對氣體做負功 W < 0;溫度升高,內能增大ΔU > 0;吸收熱量,Q > 0;
(6)物體的內能是指物體內所有分子的分子動能和分子勢能的總和,對於理想氣體分子間作用力為零,分子勢能為零;
(7)r0為分子處於平衡狀態時,分子間的距離;
(8)其它相關內容:能的轉化和定恆定律/能源的開發與利用、環保/物體的內能、分子的動能、分子勢能。
九、氣體的性質
1.氣體的狀態參量:
溫度:宏觀上,物體的冷熱程度;微觀上,物體內部分子無規則運動的劇烈程度的標志,
熱力學溫度與攝氏溫度關系:T=t+273 K {T:熱力學溫度(K),t:攝氏溫度(℃)}
體積V:氣體分子所能占據的空間的體積,單位換算:1m3=103L=106mL
壓強p:單位面積上,大量氣體分子頻繁撞擊器壁而產生持續、均勻的壓力,
標准大氣壓:1atm =1.013×105 Pa =76cmHg ( 1Pa =1N/m2 )
2.氣體分子運動的特點:分子間空隙大;除了碰撞的瞬間外,相互作用力微弱;分子運動速率很大
*3.理想氣體的狀態方程: p1V1/T1=p2V2/T2 {PV/T=恆量,T為熱力學溫度(K)}
注:(1)理想氣體的內能與理想氣體的體積無關,與溫度和物質的量有關;
(2)公式3成立條件均為一定質量的理想氣體,使用公式時要注意溫度的單位,t為攝氏溫度(℃),而T為熱力學溫度(K)。
十、電場
1.兩種電荷、電荷守恆定律、元電荷:(e=1.60×10-19C);帶電體電荷量等於元電荷的整數倍
2.庫侖定律:F=kQ1Q2/r2 (在真空中)
{F:點電荷間的作用力(N),k:靜電力常量k=9.0×109N•m2/C2,Q1、Q2:兩點電荷的電量(C),r:兩點電荷間的距離(m),方向在它們的連線上,作用力與反作用力,同種電荷互相排斥,異種電荷互相吸引}
3.電場強度:E=F/q(定義式、計算式)
{E:電場強度(N/C),是矢量(電場的疊加原理),q:檢驗電荷的電量(C)}
4.真空點(源)電荷形成的電場E=kQ/r2 {r:源電荷到該位置的距離(m),Q:源電荷的電量}
5.勻強電場的場強E=UAB/d {UAB:AB兩點間的電壓(V),d:AB兩點在場強方向的距離(m)}
6.電場力:F=qE {F:電場力(N),q:受到電場力的電荷的電量(C),E:電場強度(N/C)}
7.電勢與電勢差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.電場力做功:WAB=qUAB=Eqd
{WAB:帶電體由A到B時電場力所做的功(J),q:帶電量(C),UAB:電場中A、B兩點間的電勢差(V)(電場力做功與路徑無關),E:勻強電場強度,d:兩點沿場強方向的距離(m)}
9.電勢能: EA=qφA {EA:帶電體在A點的電勢能(J),q:電量(C),φA:A點的電勢(V)}
10.電勢能的變化ΔEAB=EB-EA {帶電體在電場中從A位置到B位置時電勢能的差值}
11.電場力做功與電勢能變化ΔEAB=-WAB=-qUAB (電勢能的增量等於電場力做功的負值)
12.電容C=Q/U(定義式,計算式) {C:電容(F),Q:電量(C),U:電壓(兩極板電勢差)(V)}
13.平行板電容器的電容C=εS/4πkd (S:兩極板正對面積,d:兩極板間的垂直距離,ω:介電常數)
常見電容器
14.帶電粒子在電場中的加速(Vo=0):W=ΔEK 或 qU=mVt2/2, Vt=(2qU/m)1/2
15.帶電粒子沿垂直電場方向以速度Vo進入勻強電場時的偏轉(不考慮重力作用的情況下)
類平拋 垂直電場方向:勻速直線運動L=Vot(在帶等量異種電荷的平行極板中:E=U/d)
運動 平行電場方向:初速度為零的勻加速直線運動d=at2/2,a=F/m=qE/m
注:(1)兩個完全相同的帶電金屬小球接觸時,電量分配規律:原帶異種電荷的先中和後平分,原帶同種電荷的總量平分;
(2)電場線從正電荷出發終止於負電荷,電場線不相交,切線方向為場強方向,電場線密處場強大,順著電場線電勢越來越低,電場線與等勢線垂直;
(3)常見電場的電場線分布要求熟記;
(4)電場強度(矢量)與電勢(標量)均由電場本身決定,而電場力與電勢能還與帶電體帶的電量多少和電荷正負有關;
(5)處於靜電平衡導體是個等勢體,表面是個等勢面,導體外表面附近的電場線垂直於導體表面,導體內部合場強為零,導體內部沒有凈電荷,凈電荷只分布於導體外表面;
(6)電容單位換算:1F=106μF=1012pF;
(7)電子伏(eV)是能量的單位,1eV=1.60×10-19J;
(8)其它相關內容:靜電屏蔽 / 示波管、示波器及其應用 / 等勢面。
十一、恆定電流
1.電流強度:I=q/t {I:電流強度(A),q:在時間t內通過導體橫載面的電量(C),t:時間(s)}
2.歐姆定律:I=U/R {I:導體電流強度(A),U:導體兩端電壓(V),R:導體阻值(Ω)}
3.電阻、電阻定律:R=ρL/S {ρ:電阻率(Ω•m),L:導體的長度(m),S:導體橫截面積(m2)}
4.閉合電路歐姆定律:I =E /(r+R) 或 E=Ir + IR 也可以是E =U內 + U外
{I:電路中的總電流(A),E:電源電動勢(V),R:外電路電阻(Ω),r:電源內阻(Ω)}
5.電功與電功率:W=UIt,P=UI {W:電功(J),U:電壓(V),I:電流(A),t:時間(s),P:電功率(W)}
6.焦耳定律:Q=I2Rt {Q:電熱(J),I:通過導體的電流(A),R:導體的電阻值(Ω),t:通電時間(s)}
7.純電阻電路中: 由於I=U/R , W=Q,因此W=Q=UIt=I2Rt=U2t/R
8.電源總動率、電源輸出功率、電源效率:P總=IE,P出=IU,η=P出/P總
{I:電路總電流(A),E:電源電動勢(V),U:路端電壓(V),η:電源效率}
9.電路的串/並聯 串聯電路(P、U與R成正比) 並聯電路(P、I與R成反比)
電阻關系 R串=R1+R2+R3+ 1/R並=1/R1+1/R2+1/R3+
電流關系 I總=I1=I2=I3 I並=I1+I2+I3+
電壓關系 U總=U1+U2+U3+ U總=U1=U2=U3
功率分配 P總=P1+P2+P3+ P總=P1+P2+P3+
10.歐姆表測電阻
(1)電路組成 (2)測量原理
兩表筆短接後,調節Ro使電表指針滿偏,得
Ig=E /(r + Rg + Ro)
接入被測電阻Rx後通過電表的電流為
Ix=E /(r+Rg+Ro+Rx)=E/(R中+Rx)
由於Ix與Rx對應,因此可指示被測電阻大小
(3)使用方法:機械調零、選擇量程、短接歐姆調零、測量讀數
{注意擋位(倍率)}、撥off擋。
(4)注意:測量電阻時,要與原電路斷開,選擇量程使指針在中
央附近,每次換擋要重新短接歐姆調零。
11.伏安法測電阻
電流表內接法: 電流表外接法:
電壓表示數:U=UR+UA 電流表示數:I=IR+IV
Rx的測量值=U/I=(UA+UR)/IR=RA+Rx>R真 Rx的測量值=U/I=UR/(IR+IV)=RVRx/(RV+R)<R真
選用電路條件Rx>>RA [或Rx>(RARV)1/2] 選用電路條件Rx<<RV [或Rx<(RARV)1/2]
12.滑動變阻器在電路中的限流接法與分壓接法
限流接法
電壓調節范圍小,電路簡單,功耗小 電壓調節范圍大,電路復雜,功耗較大
便於調節電壓的選擇條件Rp > Rx 便於調節電壓的選擇條件Rp < Rx
注:(1)單位換算:1A=103mA=106μA; 1kV=103V=106mA; 1MΩ=103kΩ=106Ω
(2)各種材料的電阻率都隨溫度的變化而變化,金屬電阻率隨溫度升高而增大;
(3)串聯總電阻大於任何一個分電阻,並聯總電阻小於任何一個分電阻;
(4)當電源有內阻時,外電路電阻增大時,總電流減小,路端電壓增大;
(5)當外電路電阻等於電源電阻時,電源輸出功率最大,此時的輸出功率為E2/(2r);
(6)其它相關內容:電阻率與溫度的關系 / 半導體及其應用 / 超導及其應用。
十二、磁場
1.磁感應強度是用來表示磁場的強弱和方向的物理量,是矢量,單位:(T),1T=1N/A•m
2.安培力F=BIL (註:L⊥B) {B:磁感應強度(T),F:安培力(F),I:電流強度(A),L:導線長度(m)}
3.洛侖茲力f=qVB(註:V⊥B); 質譜儀 {f:洛侖茲力(N),q:帶電粒子電量(C),V:帶電粒子速度(m/s)}
4.在重力忽略不計(不考慮重力)的情況下,帶電粒子進入磁場的運動情況(掌握兩種):
(1)帶電粒子沿平行磁場方向進入磁場:不受洛侖茲力的作用,做勻速直線運動V=V0
(2)帶電粒子沿垂直磁場方向進入磁場:做勻速圓周運動,規律如下:
(a)F向=f洛=mV2/r=mω2r=m (2π/T)2r=qVB;r=mV/qB;T=2πm/qB;
(b)運動周期與圓周運動的半徑和線速度無關,洛侖茲力對帶電粒子不做功(任何情況下);
(c)解題關鍵:畫軌跡、找圓心、定半徑、圓心角(=二倍弦切角)。
註:(1)安培力和洛侖茲力的方向均可由左手定則判定,只是洛侖茲力要注意帶電粒子的正負;
(2)磁感線的特點及其常見磁場的磁感線分布要掌握〔見圖〕;
(3)其它相關內容:地磁場 / 磁電式電表原理 / 迴旋加速器 / 磁性材料分子電流假說。
十三、電磁感應
1.感應電動勢的大小計算公式
1)E=nΔΦ/Δt(普適公式)
⑹ 高中物理3-2知識總結
物理選修3-2知識點總結
第一章、電磁感應現象
1.電磁感應現象Ⅰ
只要穿過閉合迴路中的磁通量發生變化,閉合迴路中就會產生感應電流,如果電路不閉合只會產生感應電動勢。
這種利用磁場產生電流的現象叫電磁感應,是1831年法拉第發現的。
2感應電流的產生條件Ⅱ
1、迴路中產生感應電動勢和感應電流的條件是迴路所圍面積中的磁通量變化,因此研究磁通量的變化是關鍵,由磁通量的廣義公式中 ( 是B與S的夾角)看,磁通量的變化 可由面積的變化 引起;可由磁感應強度B的變化 引起;可由B與S的夾角 的變化 引起;也可由B、S、 中的兩個量的變化,或三個量的同時變化引起。
2、閉合迴路中的一部分導體在磁場中作切割磁感線運動時,可以產生感應電動勢,感應電流,這是初中學過的,其本質也是閉合迴路中磁通量發生變化。
3、產生感應電動勢、感應電流的條件:導體在磁場里做切割磁感線運動時,導體內就產生感應電動勢;穿過線圈的磁量發生變化時,線圈裡就產生感應電動勢。如果導體是閉合電路的一部分,或者線圈是閉合的,就產生感應電流。從本質上講,上述兩種說法是一致的,所以產生感應電流的條件可歸結為:穿過閉合電路的磁通量發生變化。
3法拉第電磁感應定律
1、電磁感應規律:感應電動勢的大小由法拉第電磁感應定律確定。
——當長L的導線,以速度 ,在勻強磁場B中,垂直切割磁感線,其兩端間感應電動勢的大小為 。
如圖所示。設產生的感應電流強度為I,MN間電動勢為 ,則MN受向左的安培力 ,要保持MN以 勻速向右運動,所施外力 ,當行進位移為S時,外力功 。 為所用時間。
而在 時間內,電流做功 ,據能量轉化關系, ,則 。
∴ ,M點電勢高,N點電勢低。
此公式使用條件是 方向相互垂直,如不垂直,則向垂直方向作投影。電路中感應電動勢的大小跟穿過這個電路的磁通變化率成正比——法拉第電磁感應定律。
如上圖中分析所用電路圖,在 迴路中面積變化 ,而迴路跌磁通變化量 ,又知 。
如果迴路是 匝串聯,則 。
公式 。注意: 1)該式普遍適用於求平均感應電動勢。2) 只與穿過電路的磁通量的變化率 有關, 而與磁通的產生、磁通的大小及變化方式、電路是否閉合、電路的結構與材料等因素無關。公式二: 。要注意: 1)該式通常用於導體切割磁感線時, 且導線與磁感線互相垂直(l^B )。2) 為v與B的夾角。l為導體切割磁感線的有效長度(即l為導體實際長度在垂直於B方向上的投影)。公式三: 。注意: 1)該公式由法拉第電磁感應定律推出。適用於自感現象。2) 與電流的變化率 成正比。
公式 中涉及到磁通量的變化量 的計算, 對 的計算, 一般遇到有兩種情況: 1)迴路與磁場垂直的面積S不變, 磁感應強度發生變化, 由 , 此時 , 此式中的 叫磁感應強度的變化率, 若 是恆定的, 即磁場變化是均勻的, 那麼產生的感應電動勢是恆定電動勢。2)磁感應強度B 不變, 迴路與磁場垂直的面積發生變化, 則 , 線圈繞垂直於勻強磁場的軸勻速轉動產生交變電動勢就屬這種情況。
嚴格區別磁通量 , 磁通量的變化量 磁通量的變化率 , 磁通量 , 表示穿過研究平面的磁感線的條數, 磁通量的變化量 , 表示磁通量變化的多少, 磁通量的變化率 表示磁通量變化的快慢, , 大, 不一定大; 大, 也不一定大, 它們的區別類似於力學中的v, 的區別, 另外I、 也有類似的區別。
公式 一般用於導體各部分切割磁感線的速度相同, 對有些導體各部分切割磁感線的速度不相同的情況, 如何求感應電動勢?如圖1所示, 一長為l的導體桿AC繞A點在紙面內以角速度 勻速轉動, 轉動的區域的有垂直紙面向里的勻強磁場, 磁感應強度為B, 求AC產生的感應電動勢, 顯然, AC各部分切割磁感線的速度不相等, , 且AC上各點的線速度大小與半徑成正比, 所以AC切割的速度可用其平均切割速度, 故 ——當長為L的導線,以其一端為軸,在垂直勻強磁場B的平面內,以角速度 勻速轉動時,其兩端感應電動勢為 。
如圖所示,AO導線長L,以O端為軸,以 角速度勻速轉動一周,所用時間 ,描過面積 ,(認為面積變化由0增到 )則磁通變化 。
在AO間產生的感應電動勢 且用右手定則制定A端電勢高,O端電勢低。
——面積為S的紙圈,共 匝,在勻強磁場B中,以角速度 勻速轉坳,其轉軸與磁場方向垂直,則當線圈平面與磁場方向平行時,線圈兩端有最大有感應電動勢 。
如圖所示,設線框長為L,寬為d,以 轉到圖示位置時, 邊垂直磁場方向向紙外運動
⑺ 物理3-2.。。。
3-2難,因為題出得難。3-3是熱學,認真出題的話也難,但是高考出得簡單。最好3-2主學,要是大學考物理系的話,3-3也要學一下,熱學在大學很難,高中打點基礎好
⑻ 求高二物理選修3-2知識點總結(歸納)
56.電磁感應現象Ⅰ
只要穿過閉合迴路中的磁通量發生變化,閉合迴路中就會產生感應電流,如果電路不閉合只會產生感應電動勢。
這種利用磁場產生電流的現象叫電磁感應,是1831年法拉第發現的。
57.感應電流的產生條件Ⅱ
1、迴路中產生感應電動勢和感應電流的條件是迴路所圍面積中的磁通量變化,因此研究磁通量的變化是關鍵,由磁通量的廣義公式中 ( 是B與S的夾角)看,磁通量的變化 可由面積的變化 引起;可由磁感應強度B的變化 引起;可由B與S的夾角 的變化 引起;也可由B、S、 中的兩個量的變化,或三個量的同時變化引起。
2、閉合迴路中的一部分導體在磁場中作切割磁感線運動時,可以產生感應電動勢,感應電流,這是初中學過的,其本質也是閉合迴路中磁通量發生變化。
3、產生感應電動勢、感應電流的條件:導體在磁場里做切割磁感線運動時,導體內就產生感應電動勢;穿過線圈的磁量發生變化時,線圈裡就產生感應電動勢。如果導體是閉合電路的一部分,或者線圈是閉合的,就產生感應電流。從本質上講,上述兩種說法是一致的,所以產生感應電流的條件可歸結為:穿過閉合電路的磁通量發生變化。
58.法拉第電磁感應定律 楞次定律Ⅱ
①電磁感應規律:感應電動勢的大小由法拉第電磁感應定律確定。
——當長L的導線,以速度 ,在勻強磁場B中,垂直切割磁感線,其兩端間感應電動勢的大小為 。
如圖所示。設產生的感應電流強度為I,MN間電動勢為 ,則MN受向左的安培力 ,要保持MN以 勻速向右運動,所施外力 ,當行進位移為S時,外力功 。 為所用時間。
而在 時間內,電流做功 ,據能量轉化關系, ,則 。
∴ ,M點電勢高,N點電勢低。
此公式使用條件是 方向相互垂直,如不垂直,則向垂直方向作投影。
,電路中感應電動勢的大小跟穿過這個電路的磁通變化率成正比——法拉第電磁感應定律。
如上圖中分析所用電路圖,在 迴路中面積變化 ,而迴路跌磁通變化量 ,又知 。
∴
如果迴路是 匝串聯,則 。
公式 。注意: 1)該式普遍適用於求平均感應電動勢。2) 只與穿過電路的磁通量的變化率 有關, 而與磁通的產生、磁通的大小及變化方式、電路是否閉合、電路的結構與材料等因素無關。公式二: 。要注意: 1)該式通常用於導體切割磁感線時, 且導線與磁感線互相垂直(l^B )。2) 為v與B的夾角。l為導體切割磁感線的有效長度(即l為導體實際長度在垂直於B方向上的投影)。公式三: 。注意: 1)該公式由法拉第電磁感應定律推出。適用於自感現象。2) 與電流的變化率 成正比。
公式 中涉及到磁通量的變化量 的計算, 對 的計算, 一般遇到有兩種情況: 1)迴路與磁場垂直的面積S不變, 磁感應強度發生變化, 由 , 此時 , 此式中的 叫磁感應強度的變化率, 若 是恆定的, 即磁場變化是均勻的, 那麼產生的感應電動勢是恆定電動勢。2)磁感應強度B 不變, 迴路與磁場垂直的面積發生變化, 則 , 線圈繞垂直於勻強磁場的軸勻速轉動產生交變電動勢就屬這種情況。
嚴格區別磁通量 , 磁通量的變化量 磁通量的變化率 , 磁通量 , 表示穿過研究平面的磁感線的條數, 磁通量的變化量 , 表示磁通量變化的多少, 磁通量的變化率 表示磁通量變化的快慢, , 大, 不一定大; 大, 也不一定大, 它們的區別類似於力學中的v, 的區別, 另外I、 也有類似的區別。
公式 一般用於導體各部分切割磁感線的速度相同, 對有些導體各部分切割磁感線的速度不相同的情況, 如何求感應電動勢?如圖1所示, 一長為l的導體桿AC繞A點在紙面內以角速度 勻速轉動, 轉動的區域的有垂直紙面向里的勻強磁場, 磁感應強度為B, 求AC產生的感應電動勢, 顯然, AC各部分切割磁感線的速度不相等, , 且AC上各點的線速度大小與半徑成正比, 所以AC切割的速度可用其平均切割速度, 即 , 故 。
——當長為L的導線,以其一端為軸,在垂直勻強磁場B的平面內,以角速度 勻速轉動時,其兩端感應電動勢為 。
如圖所示,AO導線長L,以O端為軸,以 角速度勻速轉動一周,所用時間 ,描過面積 ,(認為面積變化由0增到 )則磁通變化 。
在AO間產生的感應電動勢 且用右手定則制定A端電勢高,O端電勢低。
——面積為S的紙圈,共 匝,在勻強磁場B中,以角速度 勻速轉坳,其轉軸與磁場方向垂直,則當線圈平面與磁場方向平行時,線圈兩端有最大有感應電動勢 。
如圖所示,設線框長為L,寬為d,以 轉到圖示位置時, 邊垂直磁場方向向紙外運動,切割磁感線,速度為 (圓運動半徑為寬邊d的一半)產生感應電動勢
, 端電勢高於 端電勢。
邊垂直磁場方向切割磁感線向紙里運動,同理產生感應電動熱勢 。 端電勢高於 端電勢。
邊, 邊不切割,不產生感應電動勢, . 兩端等電勢,則輸出端M.N電動勢為 。
如果線圈 匝,則 ,M端電勢高,N端電勢低。
參照俯示圖,這位置由於線圈長邊是垂直切割磁感線,所以有感應電動勢最大值 ,如從圖示位置轉過一個角度 ,則圓運動線速度 ,在垂直磁場方向的分量應為 ,則此時線圈的產生感應電動勢的瞬時值即作最大值 .即作最大值方向的投影, ( 是線圈平面與磁場方向的夾角)。
當線圈平面垂直磁場方向時,線速度方向與磁場方向平行,不切割磁感線,感應電動勢為零。
總結:計算感應電動勢公式:
⑼ 物理二三怎麼寫
2、選 D
A——熱脹冷縮
B——質量不變,體積變大,密度變小
C——被加熱,內能增大
3、選 A ——用控制變數法理解即可!
4、選 D
5、選 D
僅供參考!有疑再問!
⑽ 物理3-2主要講什麼
第一章是講電磁感應的,第二章是講交變電流的,重點還是第一章,找書出來看咯,遇到不懂的問老師咯