根2等於多少
√2= 1.4142135623731 ……,√2 是一個無理數,不能表示成兩個整數之比。計算方法是利用平方和公式(a+b)^2=a^2+2ab+b^2的逆推計算出的,過程如下:
1^2=1
2^2=4
由此確定個位是1
(1+0.3)^2=1^2+2x1x0.3+0.3^2=1.69
(1+0.4)^2=1+0.8+0.16=1.96
(1+0.5)^2=1+1+0.25=2.25
由此可以確定第一位小數是4 。
利用這種方法不斷的逼近√2的值,但是永遠不會等於√2。
(1)根2等於多少擴展閱讀:
根號2引發的第一次數學危機
大約在公元前5世紀,畢達哥拉斯學派的希帕索斯發現了:等腰直角三角形的直角邊與其斜邊不可通約。新發現的數由於和之前的所謂「合理存在的數」——即有理數在學派內部形成了對立,所以被稱作了無理數。希帕索斯正是因為這一數學發現,而被畢達哥拉斯學派的人投進了大海,處以「淹死」的懲罰。
直角三角形的直角邊與其斜邊不可通約,這個簡單的數學事實的發現使畢達哥拉斯學派的人感到迷惑不解。它不僅違背了畢達哥拉斯派的信條,而且沖擊著當時希臘人持有的「一切量都可以用有理數表示」的信仰。所以,通常人們就把希帕索斯發現的這個矛盾,叫做希帕索斯悖論。
約在公元前370年,柏拉圖的學生攸多克薩斯(Eudoxus,約公元前408—前355)解決了關於無理數的問題。他純粹用公理化方法創立了新的比例理論,微妙地處理了可公度和不可公度。他處理不可公度的辦法,被歐幾里得《幾何原本》第二卷(比例論)收錄。並且和狄德金於1872年繪出的無理數的現代解釋基本一致。
② 根號2等於多少 怎麼計算的求過程
√2= 1.4142135623731 ……
√2 是一個無理數,它不能表示成兩個整數之比,是一個看上去毫無規律的無限不循環小數。早在古希臘時代,人們就發現了這種奇怪的數,這推翻了古希臘數學中的基本假設,直接導致了第一次數學危機。
根號二一定是介於1與2之間的數。
然後再計算1.5的平方大小……也就是一個用二分法求方程x^2=2近似解的過程。
(2)根2等於多少擴展閱讀
現代,我們都習以為常地使用根號(如 等),並感到它來既簡潔又方便。那麼,根號是怎樣產生和演變成這種樣子的呢?
古時候,埃及人用記號"┌"表示平方根。印度人在開平方時,在被開方數的前面寫上ka。阿拉伯人用 表示 。1840年前後,德國人用一個點"."來表示平方根,兩點".."表示4次方根,三個點"..."表示立方根,比如,.3、..3、...3就分別表示3的平方根、4次方根、立方根。到十六世紀初,可能是書寫快的緣故,小點上帶了一條細長的尾巴,變成" √ ̄"。
1525年,路多爾夫在他的代數著作中,首先採用了根號,比如他寫是2,是3,並用表示,但是這種寫法未得到普遍的認可與採納。
直到十七世紀,法國數學家笛卡爾(1596-1650年)第一個使用了現今用的根號"√"。在一本書中,笛卡爾寫道:"如果想求n的平方根,就寫作±√n,如果想求n的立方根,則寫作³√n。"