初中数学说课教案
⑴ 寻求初中数学说课稿
怎样说课 袁占舵
我觉得说课一般要回答以下问题:
一、 新课内容分析:
本节课的主要内容是什么?
本节课内容所处的位置、作用及前后知识的内在联系是什么?
本节课的重点是什么?
(我觉得不必说难点,因为对不同学生难点不一样,尖子生可以没有难点,落后生基础知识也是难点)
二、学情分析
学生学习的知识基础、接受新知学习能力与情感态度的状况怎样?
三、教学目标
根据新课教学内容和学生实际确定教学的三维教学目标是什么?
确定目标的依据及理由是什么?
四、教法学法
选用什么教学方法?
准备什么教具与学具?
选择教学方法的理论依据是什么?
选择的教法为什么实用高效?
学生用什么样的方法学习?
培养学生哪些方面的能力?
如何调动学生的积极性?
指导学法的理论依据是什么?
学法为什么实用高效?
具体生成细节预先思考怎样的处理方法?
五、教学准备
课前老师与学生各做什么准备?
(主要是预习反馈)
六、 教学环节设计(教学程序、达标过程或师生双边活动的设计)
不同层次的学生分别树立怎样的学习目标?
预设学生自学会提出什么样的问题?
哪些问题会在讨论环节中小组内解决?
预设学生会提出哪些小组内、小组间中不能解决的问题?
全班解决学生的问题后,指导(或帮助)学生提出更进一步的问题是什么?
用什么方式方法或手段探究、合作解决更进一步的问题?
课堂中间会穿插什么样的开放作业?
用什么方式检测本节的目标达成情况?
为什么这样的方式有效?
怎样及时反馈?
学生反思互助达到满分的手段是什么?
怎样让不同层次的学生做好自结?
留什么省时高效的巩固作业(当堂清后可以不留)?
让学生带着急切学习的渴望怎样留好以后的预习作业?
以下是《中心对称与中心对称图形》一节说课稿:
一、说教材
1、地位与重要性
这一节是八年级几何重要内容之一,这一节课与图形的三种运动(平移、翻折、旋转)之一的“旋转”有着不可分割的联系,通过对这一节课的学习,既可以让学生认识图形的三种基本运动中“旋转”在几何知识中的重要体现,同时也完善了初中部分对“对称图形”(轴对称图形、中心对称图形)的知识讲授,它不但起到了承上启下的作用,为后面学习“平行四边形”等内容做了充分准备。
2、教学目标
根据中心对称图形在初中几何教学中的地位与作用,我制订了如下教学目标:
(1)了解中心对称及中心对称图形的概念,并知道两者之间的区别与联系;
(2)能运用定义判断两图形是否成中心对称和一个图形是否是中心对称图形;
(3)掌握中心对称的性质,并能利用性质画简单的中心对称图形
(4)培养学生运用定义和性质分析、处理问题的能力
(5)能设计简单的对称图形,培养学生的创新能力,体验中心对称图形的美感。
3、教学重难点
重点是中心对称图形与中心对称概念、性质与简单运用。掌握概念及性质是应用的基础,只有充分理解了概念,才能更进一步的判定图形是否为中心对称图形,才能画出已知图形关于某一点的对称图形。
难点是中心对称图形与中心对称概念、性质的理解与接受,以及怎样用其概念与性质来具体运用。为了让学生突破难点,授课时采取以学生自主运用其概念与性质来绘制中心对称图形。
二、说教法
本节课将以教师为主导,学生为主体,训练为主线的指导思想,采用引导发现法为主和多媒体辅助教学为辅的方法。教学中,教师精心设计一个又一个带有启发性和思考性的问题,引导学生思考、操作,教师适时地演示,并运用电教媒体化静为动,这样做使得问题具有梯度,既锻炼学生的思维,又不超出学生的思维能力。通过问题带动学生的思考,培养学生几何的识图能力、绘图能力以及创新能力。
利用电脑多媒体来展示一些生活中的对称图案,让学生从生活中感受数学的存在,从而激发学生学习数学的兴趣,这是用黑板、粉笔所不能达到的效果。
三、说学法
在解决问题时,要抓住概念和性质。学生在遇到识别型的问题时,要能够回归到定义,看看图形是否具备定义所指的特征,如,判断等边三角形是否为中心对称图形,那就按定义将它旋转180°,看它是否和本身重合,如果重合,说明它符合定义所述的特征,它就是中心对称图形,否则则不是。很多学生在学的过程中,忽视数学概念运用。还有一点就是运用型的问题,遇到运用型的问题不妨多考虑性质,如作一点关于某点的对称点,要想到中心对称的性质:对称点连线经过对称中心。说明要作的这个点在已知点和对称点的连线上,从而想到,连结已知点和对称点并延长,由性质告诉我们,对称点的连线被对称中心平分,所以延长时应该延长一倍距离。运用性质还可解决已知两对称点,求作对称中心的问题。
四、说过程
整个流程是操作à概念à问题à性质à问题à练习à总结
(一)导入阶段
直接让学生做书上面的操作,将学生的注意力引到“旋转”上来,从而很自然的引出两图形关于某点成中心对称的概念。能够从“做”的过程中引出感念,学生对概念的接受会更容易一些,也更深刻一些。如果直接让学生从图中观察,学生可能不会想到旋转上去。
(二)讲授阶段
1、指导观察,掌握新知。
概念引出后,为了让学生体会概念所述的内容,用多媒体展示一些成中心对称的图形,再加深印象。然后让他们说出一些点的对称点及对称中心。接下来让学生观察两个对称点和对称中心的关系(数量关系和位置特征),从而引出中心对称的性质。
2、巩固练习,加深认识。
设置一些基本问题,如作一点关于某点的对称点,已知对称点求作对称中心等基本问题。接下来再设置一些练习,让学生独立完成。
设置一些开放型练习,让学生自己设计中心对称图案。并互相交流。
设置一个游戏——圆形棋盘上放棋子,一个利用中心对称的策略游戏,旨在提高学生的学习兴趣,提高学生的学习热情。
(三)终结阶段
1、学生总结,教师评价。
2、布置课后作业。
五、板书设计
对于大部分内容均在多媒体上显示,有些操作题,有必要在黑板上演示。
您可以在搜索中输入“初中数学说课稿”自己下载参考。
在网络搜索中输入“袁占舵”,能看到我的很多关于新课改的文章。
希望能起到帮助作用, 祝说课成功!
⑵ 初中数学说课包括那些儿方面
一次函数与二元一次方程(组)
一、教材分析
1、教材的地位和作用
函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。
2、教学重难点
重点:一次函数与二元一次方程(组)关系的探索。
难点:综合运用方程(组)、不等式和函数的知识解决实际问题。
3、教学目标
知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。
数学思考:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去认识问题。
解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。
情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。
二、教法说明
对于认知主体——学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快地学习。
三、教学过程
(一)感知身边数学
多媒体播放一段发生在电信公司里的情景:一顾客准备办理上网业务,发现有两种收费方式:方式A以每分钟0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分钟0.05元的价格按上网时间计费。顾客说他每月上网的费用按这两种收费方式计算都是一样多。求这位顾客打算每月上网多长时间?多少费用?
学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程 或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:“一次函数与二元一次方程组之间是否也有联系呢?”,从而揭示课题。
[设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。因此,用“上网收费”这一生活实际创设情境,并用问题启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成“心求通而未能得,口欲言而不能说”的情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到探索活动中来。
(二)享受探究乐趣
1、探究一次函数与二元一次方程的关系
填空:二元一次方程 可以转化为 ________。
思考:(1)直线 上任意一点 一定是方程 的解吗?(2)是否任意的二元一次方程都可以转化为这种一次函数的形式?
(3)是否直线上任意一点的坐标都是它所对应的二元一次方程的解?
[设计意图]用一连串的问题引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。
2、探究一次函数与二元一次方程组的关系
(1)在同一坐标系中画出一次函数 和 的图象,观察两直线的交点坐标是否是方程组 的解?并探索:是否任意两个一次函数的交点坐标都是它们所对应的二元一次方程组的解?
此时教师留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予帮助,师生共同归纳出:从“形”的角度看,解方程组相当于确定两条直线交点的坐标。
(2)当自变量 取何值时,函数 与 的值相等?这个函数值是什么?这一问题与解方程组 是同一问题吗?
进一步归纳出:从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值。
[设计意图] 学生经过自主探索、合作交流,从数和形两个角度认识一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯地记忆,使学习过程成为一种再创造的过程。此时教师及时对学生进行鼓励,充分肯定学生的探究成果,关注学生的情感体验。
(三)乘坐智慧快车
例题:我市一家电信公司给顾客提供两种上网收费方式:方式A以每分0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分0 .05元的价格按上网时间计费。如何选择收费方式能使上网者更合算?
解法1:设上网时间为 分,若按方式A则收 元;若按方式B则收 元。然后在同一坐标系中分别画出这两个函数的图象,计算出交点坐标 ,结合图象,利用直线上点位置的高低直观地比较函数值的大小,得到当一个月内上网时间少于400分时,选择方式A省钱;当上网时间等于400分时,选择方式A、B没有区别;当上网时间多于400分时,选择方式B省钱。
解法2:设上网时间为 分,方式B与方式A两种计费的差额为 元,得到一次函数: ,即 ,然后画出函数的图象,计算出直线与 轴的交点坐标,类似地用点位置的高低直观地找到答案。
注意:所画的函数图象都是射线。
[设计意图]为培养学生的发散思维和规范解题的习惯,引导学生将上网问题延伸为例题,并用问题:“你家选择的上网收费方式好吗?”再次激起学生强烈的求知欲望和主人翁的学习姿态。通过此问题的探究,使学生有效地理解本节课的难点,体会数形结合这一思想方法的应用。
(四)体验成功喜悦
1、抢答题
(1)、以方程 的解为坐标的所有点都在一次函数 _____的图象上。
(2)、方程组 的解是________,由此可知,一次函数 与 的图象必有一个交点,且交点坐标是________。
2、旅游问题
古城荆州历史悠久,文化灿烂。
今年,大型历史剧《万历首辅张居正》在荆州封镜后,来荆州的游客更是络绎不绝。据悉,张居正纪念馆门票标价20元/张,近期正在进行优惠活动,购买时有两种方式:方式A是团队中每位游客按8折购买;方式B是团队中除5张按标价购买外,其余按7折购买。如果你是团队的负责人,你会如何选择购买方式使整个团队更合算?
[设计意图]抓住学生对竞争充满兴趣的心理特征,用抢答题使学生的眼、耳、脑、口得到充分的调动,并在抢答中品味成功的快乐,提高思维的速度。在学生感兴趣的旅游问题中,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。
(五)分享你我收获
在课堂临近尾声时,向学生提出:通过今天的学习,你有什么收获?你印象最深的是什么?
[设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。
(六)开拓崭新天地
1、数学日记
姓 名
日 期
今天数学课的课题
所学的重要数学知识
理解得最好的地方
疑惑(或还需进一步理解的地方)
对课堂表现的评价(包括对自己、同学、老师)
所学内容在日常生活中的应用举例
2、布置作业
(1)、当自变量 取何值时,函数 与 的值相等?这个函数值是什么? (必做)
(2)、北京2008奥运的理念是“科技奥运、人文奥运、绿色奥运”。为了响应号召,某校甲、乙两班同学参加植树活动。已知甲班每小时植树20棵,乙班每小时植树24棵。由于某些原因,甲班植完8棵后,乙班才开始。你认为哪个班植树棵数多?(必做)
(3)、结合一次函数,就“如何选择最佳方案”这一话题写一份调查报告。(选做)
[设计意图]新课程强调发展学生数学交流的能力,用数学日记给学生提供一种表达数学思想方法和情感的方式,以体现评价体系的多元化,并使学生尝试用数学的眼睛观察事物,体验数学的价值。作业由必做题和选做题组成,体现分层教学,让“不同的人在数学上得到不同的发展”。
四、教学设计反思
1、贯穿一个原则——以学生为主体的原则
2、突出一个思想——数形结合的思想
3、体现一个价值——数学建模的价值
4、渗透一个意识——应用数学的意识
《一次函数与二元一次方程(组)》说课教案设计说明
本节课是人教版八年级上册第十一章第三节第三课时。此前,学生已经探究过一次函数、一元一次方程及一元一次不等式的联系。通过本节课的学习,学生不仅能从函数的角度动态地分析方程(组)、不等式,提高认识问题的水平,而且能感受数学的统一美。
考虑学生已有的认知结构,我用“上网收费”这一生活实际创设情境,引出方程模型,使学生主动投入到一次函数与二元一次方程(组)关系的探索活动中;紧接着,用一连串的问题引导学生自主探索、合作交流,从数和形两个角度认识它们的关系,使学生真正掌握本节课的重点知识。在探究过程中,教师应把握好自己组织者、引导者和合作者的身份,及时对学生进行鼓励,关注学生的情感体验。
为培养学生的发散思维和规范解题的习惯,我引导学生将“上网收费”问题延伸为例题,前后呼应,使学生有效地理解本节课的难点。此例题涉及函数、方程(组)和不等式等知识,是本大节内容的集中体现,它能使学生提高综合应用知识的能力,感受图象法的优越性。为进一步培养学生应用数学的意识,作业中我设计了数学日记、必做题和选做题,让“不同的人在数学上得到不同的发展”。
本教案的设计力求通过“感知身边数学、享受探究乐趣、乘坐智慧快车、体验成功喜悦、分享你我收获、开拓崭新天地”等六个环节,贯彻数学课程标准的精神,贯彻“以学生发展为本”的科学教育观。
⑶ 初中数学如何说课
讲课是吗...作为一个刚毕业的初中生..我说说我想听的讲课。
一般初中生很少会去课前预习的,所以,留个3-5min给同学自己看看书吧。然后可以提问同学有什么不懂的,之后再讲讲课上你有什么要讲的,接着就是练习之类的,做练习可以请几个同学上去做,比如成绩好的去后黑板做,差一点点的去前黑板做...做完可以叫同学上去改。
初中数学不算难,但也要多练习拉,讲考卷什么之类的,可以先说自己想讲的,然后提问同学有什么不会的!
最后,祝您当个好老师~
⑷ 求初中数学说课稿
说课去“精品教师”上边找,
(网络搜下“精品教师”四字,第一个就是)
上边有很多数学说课,
自己看看,抄下来
⑸ 初中数学说课稿/初中数学说课怎么说
说课就是教师口头表述具体课题的教学设想及其理论依据,也就是授课教师在备课的基础上,面对同行或教研人员,讲述自己的,然后由听者评说,达到互相交流,共同提高的目的的一种教学研究和师资培训的活动。下面我们来看看数学说课稿怎么写。
一、说教材
(一)教材的地位与作用
《顺序结构与选择结构》选自北师大版初中数学必修三第二章第二节第一课时的内容,本节课之前学生已经学习了什么是算法,算法的初步知识。本节课是在这些知识的基础上进一步介绍算法的相关知识即循序结构与选择结构的知识。这为后面学习其他的算法奠定了基础,因此本节课在高中数学中起到了承上启下的作用。
(二)教学目标
知识与技能:了解算法框图的概念,掌握各种框图符号的功能。了解顺序结构和选择结构的概念,能用算法框图表示顺序结构和选择结构。
过程与方法:通过学习算法框图的各个符号功能,培养学生对图形符号语言和数学文字语言的转换能力。通过模仿、操作、探索,经历设计算法框图表达解决问题的过程,在具体问题的解决过程中理解流程图的结构。
情感态度价值观:学生通过动手,用程序框图表示算法,进一步体会算法的基本思想,体会数学表达的准确与简洁,培养学生的数学表达能力和逻辑思维能力。
(三)教学重难点
教学重点:各种程序框图功能,算法的顺序结构与选择结构。
教学难点:选择结构的算法框图
二、说学情
学生已经具备的基本的数学基础知识,对算法已经有了初步的认识,但是对知识的深层次的理解还需要进一步的提升。这一阶段的学生求知欲与好奇心强,有了抽象思维的能力,但是由于高中数学知识复杂,需要学生多动手、多动脑、感受知识的形成于发展过程。
三、说教法
教法上,本着“教师为主导,学生为主体,问题解决为主线,能力发展为目标”的教学思想。知识的学习不是一个“授予——吸收”的过程,而是学习者主动的建构的过程,而且这一阶段学生已经具备了基础知识和技能,因此,本节课我主要采用“诱思探究”的教法。借助学生已有的知识引出新知;在知识的获得过程中,以一系列的问题为主线,采用讨论式,引导学生主动探索,自己建构新知识,通过层层深入的例题配置,使学生的思路逐步开阔,提高解决问题的能力。
四、说学法
教为了不教,在教知识的同时最关键的是要教给学生学习的方法,让学生在学中领悟、会中用法。这样才有利于学生全面素质的提高。根据本节教材的特点,采用学生课前预习、查阅资料、课堂阅读、讨论总结、梳理推导、归纳概括等学习方法,为学生提供大量参与教学活动的机会,积极思维,充分体现教学活动中学生的主体地位。
五、说教学过程
(一)直接点题,导入新课
用自然语言表示算法步骤有明确的顺序性,但是对于在一定条件下才会被执行的步骤,以及在一定条件下会被重复执行的步骤,自然语言的表示就显得困难,而且不直观、不准确。因此,本节课有必要探究使算法表达得更加直观、准确的方法。今天我们开始学习算法框图。有认知上的冲突,从而引入新知,导入本节课。
(二)引入新知,奠定基础
1.自主学习
教师提问导学案上自主学习的问题,学生回答
(1)算法和算法框图的概念
(2)程序框的名称和功能
(3)算法的结构及其算法框图
通过复习,加深了对知识的理解,为本节课的学习奠定了基础。
2.合作探究
(1)顺序结构的算法框图案例例1
(2)选择结构的算法框图案例例2
学生按分组情况合作探究,叫学生上黑板板书探究结果,同学先纠正前面学生板书的问题
教师最后纠正和评价
给学生提供合作探究的环境,培养学生动手实践的能力,纠正学生存在的问题
(三)巩固练习
遵循课本难度,设计一组习题,帮助学生全面理解概念,克服难点。并将概念中的几个要点分散到每个题目中,有利于学生掌握。
让学生体验正确运用所学知识自主探求问题的方法,激发学生获取新知识的兴趣,为进一步学习新知识作准备。
(四)总结反思
在教师启发诱导下,学生观察、归纳、总结,教师完善,让学生积极发言,归纳总结本节课的收获,教师及时点评并归纳总结,使学生对所学内容有一个整体的认识。
让学生回顾本节所学知识与方法,以逐步提高学生自我获取知识的能力,有利于发现教与学中存在的问题,并及时反馈纠正,使知识结构更系统,更完善。
(五)布置作业
为了满足不同层次学生需要,我设计了两个层次的作业,
一是必做题,课后题的1,2,巩固本节课所学的知识,学会应用
二是选做题,自己设计一个选择结构的框图
⑹ 初中数学说课!急!
初中数学说课稿模板1
各位评委:
大家好!今天我说课的题目是 ,所选用的教材为浙教版义务教育课程标准实验教科书。
根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,教学目标分析,教学方法分析,教学过程分析四个方面加以说明。(或加教学评价)
一、 教材分析
1、教材的地位和作用
本节教材是初中数学 年级 第 章第 节的内容,是初中数学的重要内容之一。一方面,这是在学习了 的基础上,对 的进一步深入和拓展;另一方面,又为学习 等知识奠定了基础,是进一步研究 的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。
2、学情分析
从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,哎发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
从认知状况来说,学生在此之前已经学习了 ,对 已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于 的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。
3、教学重难点
根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:
难点确定为:
二、 教学目标分析
新课标指出,教学目标应包括只是与技能目标,过程与方法目标,情感与态度目标这三个方面,而这三维目标又应是紧密联系的一个右击整体,学生学会知识与技能的过程同时成为学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把前面两者充分体现在过程与方法中。借此,我将三维目标进行整合,确定本节课的教学目标为:
1. (了解、理解、熟记、初步掌握、会运用 对 进行 等);
2. 通过 的学习,培养学生 观察分析、类比归纳的探究 能力,加深对 函数与防城、数形结合、从特殊到一般、类比与转化、分类讨论 等数学思想的认识。
3. 通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。
三、 教学方法分析
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的知道下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
四、教学过程分析
新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:
(1) 复习就知,温故知新
设计意图:建构注意主张教学应从学生已有的知识体系出发, 是本节课深入研究 的认知基础,这样设计有利于引导学生顺利地进入学习情境。
(2) 创设情境,提出问题
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望‘
通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———
(3) 发现问题,探求新知
设计意图:现代数学教学论指出, 的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过 观察分析、独立思考、小组交流 等活动,引导学生归纳 。
(4) 分析思考,加深理解
设计意图:数学教学论指出, 数学概念(定理等) 要明确其 内涵和外延(条件、结论、应用范围等) ,通过对 定义 的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。
通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第 环节。
(5) 强化训练,巩固双基
设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。
(6) 小结归纳,拓展深化
我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主题作用,从学习的只是、方法、体验是那个方面进行归纳,我设计了这么三个问题:
① 通过本节课的学习,你学会了哪些知识;
② 通过本节课的学习,你最大的体验是什么;
③ 通过本节课的学习,你掌握了哪些学习数学的方法?
(7) 布置作业,提高升华
以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。
以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到最佳状态。
⑺ 初中数学怎样说课
首先就是要先备课了
然后就是上课时要不断重复重点要掌握的知识
要懂得找到学生们的乐趣在哪,要把例题和实际结合起来讲 这样即能让学生好理解。你上课可也比较轻松(比如初一现在学的一次函数,对他们来说真的是很费解。他们要问 为什么两直线平行性K就一定相等?等要尽量讲解详细)
最后就是祝你上课愉快
⑻ 初中数学说课中的教法与学法有哪些
1)讲授法讲授法是教师通过口头语言向学生传授知识的方法。讲授法包括讲述法、讲解法、讲读法和讲演法。教师运用各种教学方法进行教学时,大多都伴之以讲授法。这是当前我国最经常使用的一种教学方法。
2)谈论法谈论法亦叫问答法。它是教师按一定的教学要求向学生提出问题,要求学生回答,并通过问答的形式来引导学生获取或巩固知识的方法。谈论法特别有助于激发学生的思维,调动学习的积极性,培养他们独立思考和语言表述的能力。初中,尤其是小学低年级常用谈论法。谈论法可分复习谈话和启发谈话两种。复习谈话是根据学生已学教材向学生提出一系列问题,通过师生问答形式以帮助学生复习、深化、系统化已学的知识。启发谈话则是通过向学生提出来思考过的问题,一步一步引导他们去深入思考和探取新知识。
3)演示法演示教学是教师在教学时,把实物或直观教具展示给学生看,或者作示范性的实验,通过实际观察获得感性知识以说明和印证所传授知识的方法。演示教学能使学生获得生动而直观的感性知识,加深对学习对象的印象,把书本上理论知识和实际事物联系起来,形成正确而深刻的概念;能提供一些形象的感性材料,引起学习的兴趣,集中学生的注意力,有助于对所学知识的深入理解、记忆和巩固;能使学生通过观察和思考,进行思维活动,发展观察力、想象力和思维能力。
4)练习法练习法是学生在教师的指导下,依靠自觉的控制和校正,反复地完成一定动作或活动方式,借以形成技能、技巧或行为习惯的教学方法。从生理机制上说,通过练习使学生在神经系统中形成一定的动力定型,以便顺利地、成功地完成某种活动。练习在各科教学中得到广泛的应用,尤其是工具性学科(如语文、外语、数学等)和技能性学科(如体育、音乐、美术等)。练习法对于巩固知识,引导学生把知识应用于实际,发展学生的能力以及形成学生的道德品质等方面具有重要的作用。
5)读书指导法读书指导法是教师指导学生通过阅读教科书、参考书以获取知识或巩固知识的方法。学生掌握书本知识,固然有赖于教师的讲授,但还必须靠他们自己去阅读、领会,才能消化、巩固和扩大知识。特别是只有通过学生独立阅读才能掌握读书方法,提高自学能力,养成良好的读书习惯。
6)课堂讨论法课堂讨论法是在教师的指导下,针对教材中的基础理论或主要疑难问题,在学生独立思考之后,共同进行讨论、辩论的教学组织形式及教学方法,可以全班进行,也可分大组进行
7)实验法实验法是学生在教师的指导下,使用一定的设备和材料,通过控制条件的操作过程,引起实验对象的某些变化,从观察这些现象的变化中获取新知识或验证知识的教学方法。在物理、化学、生物、地理和自然常识等学科的教学中,实验是一种重要的方法。一般实验是在实验室、生物或农业实验园地进行的。有的实验也可以在教室里进行。实验法是随着近代自然科学的发展兴起的。现代科学技术和实验手段的飞跃发展,使实验法发挥越来越大的作用。通过实验法,可以使学生把一定的直接知识同书本知识联系起来,以获得比较完全的知识,又能够培养他们的独立探索能力、实验操作能力和科学研究兴趣。它是提高自然科学有关学科教学质量不可缺少的条件。8)启发法启发教学可以由一问一答、一讲一练的形式来体现;也可以通过教师的生动讲述使学生产生联想,留下深刻印象而实现。所以说,启发性是一种对各种教学方法和教学活动都具有的指导意义的教学思想,启发式教学法就是贯彻启发性教学思想的教学法。也就是说,无论什么教学方法,只要是贯彻了启发教学思想的,都是启发式教学法,反之,就不是启发式教学法。9)实习法实习法就是教师根据教学大纲的要求,在校内外组织学生实际的学习操作活动,将书本知识应用于实际的一种教学方法。这种方法能很好地体现理论与实际相结合的精神,对培养学生分析问题和解决问题能力,特别是实际操作本领具有重要意义。实习法,在自然科学各门学科和职业教育中占有重要的地位。这种方法和实验方法比较起来,虽有很多类似的地方,但它在让学生获得直接知识,验证和巩固所学的书本知识,培养学生从事实际工作的技能和技巧以及能力等方面,却有其特殊的作用。