当前位置:首页 » 语数英语 » 数学分析总

数学分析总

发布时间: 2022-05-14 04:37:02

数学分析怎么学习啊

数学分析课程有一个特点是重要、枯燥。重要是显而易见的,数学分析作为专业基础课程,对其它后继课程的学习至关重要;同时它又是枯燥乏味的,这似乎是一对矛盾,要处理这对矛盾,就要解决一个数学分析学习当中的技巧性问题和心理问题。当然不可能人人都能把数学分析学好,由于各人的性向不同,有的人倾向于人文学科,有的人倾向于逻辑思维,有的人倾向于空间思维,有的人则倾向于动手能力….各人的倾向性不一样,擅长的方 面也各不相同,对数学分析能达到的程度也不一样。一. 数学分析中关于概念的问题?? 概念的形成需要一个过程。与人生哲理等概念不同,数学分析概念具有叠加性,也就是说新概念是在旧概念叠加的基础上来认识的。概念是数学分析中的一个根本问 题,不是靠背,而是在不断地运用中逐渐形成的,须经过比较、实践、摸索、总结、归纳等过程,最后建立一个完整的概念。这个过程甚至可以说是痛苦的,漫长的 一个阶 段。?? 概念具有长期性。每个概念都有一个失败— 认识 —再失败的过程,伴随着你对这个概念的错误理解,在挫折中不断加深的。?? 概念是随着一个人知识的增加而不断深入的。学数学分析对一个人建立完整的思维方式很重要,随着对不同数学分析概念的深入理解,人们处理问题的方式可以越来越趋于严谨。?? 要建立一个数学分析的概念网。数学分析是一个个概念的点阵,所有的相关的、从属的概念要在头脑中形成一个网络。学概念要把不能纳入其中的或相关概念认识清楚。总概念中各相关概念是怎样发展的要有一个清晰的脉络。?? 从不同的层面上来理解一个数学概念。有比较才有认识,对于一个数学分析概念要擅于从正面、侧面、上面、下面等各个层面上来认识它。对于相似的、类似的概念或概念的内部关系认识不清,不利于理解概念,这说明数学分析末学深入。二. 运算能力 符号化、模式化是数学分析的一大特点,对这点我们应该有深刻的认识。1. 模式化。数学分析的一些定理、原理、公理都有一定的模式,“因为……所以…”即最简单的一种模式,对各种数学模式的理解认识也是对人的逻辑思维能力的训练。符号化。数学分析的符号与表达性符号不同,文学艺术中的表达性符号是需要我们仔细体会其中的含义的;而数学分析 中的符号是一种替代性符号,它无需我们想其含义,作用就在于推导,它只是一个替身,帮助我们进行数学思维,所以我们不可以在它的含义上耗费太多的精力。数 学就是符号游戏,我们对符号必须精通,才能进行迅速变形。三. 做题技巧?? 从做题方式来分,平时作业可分为硬作业和软作业两种:硬作业是指每天需要认认真真做的作业,这类作业要按正规的步骤一丝不苟地做,旨在训练自己的笔头功夫 和书写能力;软作业是指每日需抽出一定的时间来浏览若干习题,这类题主要是用来锻炼自己的思维能力的,具体做法是无需动笔,眼睛看着习题,大脑中迅速掠过 这道题的思路、做法,整个过程有点类似空对空。所以在平日做题中两种方式要搭配使用,认真做的题和浏览的题要相济并用。?? 做题要有节奏,难易结合。做题要讲质量,不能把精力都放在做偏、难、怪的题型上,若平时将重心放在难题上,基础知识难免会偏失,所以平时适度地做一些中等难度的题即可,关键是要学好基础知识,循序渐进。?? 做题要留下体会,留下痕迹,学习分为三个过程:模仿、品味、迁移。模仿是初始阶段经常作用的一种方式,以老师或教科书为参照,按部就班地做。经过一次次地 模仿,我们自己对这些记忆中的题型在大脑中进一步地加工、体会,形成自己对这类题的成型的理解。经过前两个阶段的积累,最后达到将原知识体系与现有知识的 相互融合,就实现了对新、旧知识的最新体会。四. 数学分析学习方法 常见的数学方法有如下几种:?? 化归法。将复杂化问题化为若干个简单的问题的一种思想。?? 注意经常对知识进行归纳、整理、总结,促进学过的知识更加系统化、条理化,解题时就能比较顺利地将内在关系理顺。?? 做题时应树立一种次序和关联的思想。数学的题干中各要素一般都是按一定的次序和关系排放的,做题前要审清题意,分先后,分主次,各个击破。

❷ 学习《数学分析课程》的心得及其领悟到的方法。

我们应用数学系的分析类课程有如下三门:数学分析、复变函数和实变函数。这三门中,以数学分析为基础,同时,它也是大家刚进大学学的第一门数学基础课,所以比较重要,学好它,对日后学习复变函数是大有裨益的。所以我就先从数学分析开始入手介绍。 数学分析:大家用的教材想必是华东师大的第三版吧!这套教材总的来说还是不错的,对于我们数学系的学生而言,大家应该首先看透课本,比如一提到某一概念,大家应在脑海中立马反映出它的定义以及与之相关的定理和推论,并且能够知晓定理和推论的证明,这是第一步;第二步,那就是习题了,习题分为三个部分:文中的习题、课后的横线上的习题和课后横线下的习题。对于社会型或恋爱型或学习型中将来不研究数学的同学,文中的习题和课后的横线上的习题是最好全做,这样就对数学分析的课程有了一个大致的了解,这就足够了;对于学习型中立志于学数学的人来说,那么横线下的题目就得要做了,尽量全做。大家手头上都有参考答案,如实在做不出,就看看参考答案,但切记千万别单纯一味的背答案,要理解的看答案,发掘答案中有没有什么新的技巧和方法,然后将它融会贯通,成为自己的东西。其实大家在解题目时,就是搜索自己在脑海中储备的解法有没有适于这道题目,如有,此题就迎刃而解;若无,此题就无从下手,所以大家看参考答案就是应当想着增加自己脑海中解法的储备,从而通过题目来加深对书中概念的理解。在学好我们的教材后,大家有兴趣的话,我推荐几本额外的教材,供大家学习: 1、《数学分析新讲》共三册张筑生编北大出版社 2、《数学分析教材》共两册常庚哲史济怀编高教出版社 3、《数学分析解题指南》林源渠方企勤编北大出版社 4、《数学分析习题课讲义》共两册有四个人编高教出版社 5、《数学分析的典型例题和方法》第二版裴礼文编高教出版社 6、《Principles of Mathematical Analysis》 3rd by Walter Rudin 机械工业出版社影印 7、《Mathematical Analysis》 by Zorich 世界图书出版社影印 以上我推荐的图书有中文有英文,看透它们,那你的数学分析可真是学到家了,其中第7本中还有实变函数的知识,所以在此推荐它们。特别不推荐吉米多维奇的习题集,哪怕你去网吧包夜也别做它,除非你很无聊。 复变函数:一般来说复变函数可以看成数学分析课程的延伸,所以这门课的学习方法与数学分析基本一致,在此我就推荐几本书吧: 1、《复变函数论》第三版钟玉泉编高教出版社 2、《复变函数教程》方企勤编北大出版社 3、《简明复分析》龚升编北大出版社(此书观点较高,可在看完前两本再看) 4、《Complex Analysis》3rd by Lars Ahlfors机械工业出版社影印 实变函数:这门课是比较难的一门课,但并非不可逾越。我们用的教材实程其襄编的《实变函数与泛函分析基础》,这本书的难度偏低,很适合于自学和入门的新手,要好好读一读,并努力的完成课后习题(该书有习题解答,不会做时,可以参考一下),完成了这本书,你的实变函数的水平就已经达到中等的水平了,若要继续学习,可以参见一下几本书: 1、《实变函数论》第二版周民强编北大出版社 2、《实变函数论》第二版徐森林编中科大出版社(这本书有不少测度论的知识,可以加深大家对概率论的理解) 3、《Real Analysis》 3rdby H.L. Royden机械工业出版社影印 另外有一些推荐书目: 1、《常微分方程教程》第二版丁同仁李承治编高教出版社

❸ 数学分析与实分析(实变函数)有什么关系

一、数学分析是基础课,涉及极限、积分、微分,都是一些较为基础的理论,积分主要讲黎曼积分,涉及实数、复数等;

数学分析的主要内容是微积分学,微积分学的理论基础是极限理论,极限理论的理论基础是实数理论。微积分学是微分学(Differential Calculus)和积分学(Integral Calculus)的统称,英语简称Calculus,意为计算,这是因为早期微积分主要用于天文、力学、几何中的计算问题。

二、实分析讲的是实数域(包括高维)上的测度与积分,此处的测度积分主要是勒贝格测度与积分,是一种使用更为广泛的积分。

实变函数论是以实变函数作为研究对象的数学分支,是数学分析的深入与推广,研究函数的表示与逼近问题以及它们的局部与整体性质。在经典分析中主要研究具有一定阶光滑性的函数。但在 19 世纪下半叶,一些问题被明确提出,期望能解答并涉及更宽泛的函数类。

(3)数学分析总扩展阅读:

1、数学分析的研究对象:

数学分析的研究对象是函数,它从局部和整体这两个方面研究函数的基本形态,从而形成微分学和积分学的基本内容。微分学研究变化率等函数的局部特征,导数和微分是它的主要概念,求导数的过程就是微分法。围绕着导数与微分的性质、计算和直接应用,形成微分学的主要内容。

积分学则从总体上研究微小变化(尤其是非均匀变化)积累的总效果,其基本概念是原函数(反导数)和定积分,求积分的过程就是积分法。积分的性质、计算、推广与直接应用构成积分学的全部内容

2、数学分析的基本方法:

数学分析的基本方法是极限的方法,或者说是无穷小分析。洛比达于1696年在巴黎出版的世界上第一本微积分教科书,欧拉于1748年出版的两卷本沟通微积分与初等分析的书,书名中都出现过无穷小分析这个词。在微积分学发展的初期,这种新的方法显示出巨大的力量,因而得到大批重要的成果。

❹ 数学分析主要讲什么内容

数学分析的主要来内容是微自积分学,微积分学的理论基础是极限理论,极限理论的理论基础是实数理论。

微积分学是微分学(Differential Calculus)和积分学(Integral Calculus)的统称,英语简称Calculus,意为计算,这是因为早期微积分主要用于天文、力学、几何中的计算问题。

后来人们也将微积分学称为分析学(Analysis),或称无穷小分析,专指运用无穷小或无穷大等极限过程分析处理计算问题的学问。

(4)数学分析总扩展阅读:

数学分析又称高级微积分,分析学中最古老、最基本的分支。一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。

数学中的分析分支是专门研究实数与复数及其函数的数学分支。它的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。

❺ 数学分析能干什么

数学分析的作用:
数学分析(英语:mathematical analysis)区别于其他非数学类学生的高等数学内容,是分析学中最古老、最基本的分支,一般指以微积分学、无穷级数和解析函数等的一般理论为主要内容,并包括它们的理论基础(实数、函数、测度和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。 数学分析研究的内容包括实数、复数、实函数及复变函数。
数学分析是由微积分演进而来,在微积分发展至现代阶段中,从应用中的方法总结升华为一类综合性分析方法,且初等微积分中也包括许多数学分析的基础概念及技巧,可以认为这些应用方法是高等微积分生成的前提。数学分析的方式和其几何有关,不过只要任一数学空间有定义邻域(拓扑空间)或是有针对两物件距离的定义(度量空间),就可以用数学分析的方式进行分析。

如何学好数学分析

关于如何学好《数学分析》

一、如何听课

大学课程课堂教学学时一般比较少,一节课的知识容量较大,讲课的节奏也较快,如何有效地掌握课堂教学内容,提几点建议:

1、课前预习

适当预习,可使听课有的放矢、重点、难点明确,从而提高听课效率。预习的目的不是看懂全部内容(当然,能看懂的决不放过),主要是要对教材的内容有一个大概的了解,要了解预习内容需要已学过的那些知识,是否掌握,那些内容能看懂,那些看不懂,并对各种情况用不同的标记标出,以便在听课时分别弄懂。

2、听懂概念是重点

要了解概念的来龙去脉,搞清各概念间的关系,尤其是教师强调的地方,要引起注意,这往往是容易出错的地方。

3、不要拘泥于细节

听定理证明讲授时,要听其证明的思路和方法,注意教师的分析,而不要过于拘泥证明过程中的每一个细小步骤,但对主要步骤要听懂,下课之后再自行补充,更不要在某一地方卡住之后,中止听课。

4、要学会合理安排听课的精力和体力

整堂课上精力集中做不到,建议同学们把主要精力放在概念讲述,定理证明方法,易出错的地方的介绍等。

5、要养成听课记笔记的习惯

在听课的同时做好笔记,这对集中注意力听好课以及复习巩固听课内容、掌握知识要点,培养独立思考深入钻研的良好学风,扥都有一定的作用。

二、如何看书

大学的学习主要靠自学,而看书是自学的重要的环节,若仅把书上的那些简洁的不能再简洁的文字、符号,由此及彼看懂了,是起不到看书的作用,达不到看书的目的,学不好数学。对此,尽管是老生常谈,但强调几点:

1、多则惑,少则得。建议在读书中始终抓住每一节、每一章的几个主要概念、定理,尝试着用它们派生其它概念与结论,这即为常说的,把书读“薄”,将知识分类、浓缩。

2、加进去,写出来。书读薄后,应尝试把它变“厚”,这就是说,把你的体会,从别的书上学来的例子、新的证明方法加进去,使之丰富起来,使书变成像你“写出来”的一样。这一过程是读书的高级阶段,常常要去猜想、去探索,是真正学习数学方法,掌握数学技巧的主要来源。

3、合理选择参考书。建议同学们,要适当的阅读参考书,选定一本你认适合自己的数学分析辅助读物作为重点参考书,对提高学习效果不无益处。

三、关于做题

要学好数学分析,最好的办法莫过于经常动手去做题。解题能力的培养在数学分析学习中占有很重要的地位,这一点要特别提醒大家,有的同学做题时眼高手低,根源在此。

1、对概念题的练习应该受到重视,建议多花点时间;

2、对基本的运算题应多练习,并注意准确性与速度,少看书后的参考答案,有时参考答案也不是百分之百正确,靠答案的辅助提示做题容易在考试时栽根斗;

3、对做错的题,不要轻易放过,找出原因,引以为戒;

4、切记眼高手低,数学分析证明题多,详细写出解答过程,这样可以训练语言组织和表达能力;

5、当你做完一道题之后,请思考以下几个问题:

① 该题主要检测那方面的概念和知识;

② 部分地改变题目的条件,能得出什么新结论;

③ 该题的解答方法是否具有普遍性,是否能成为一种程序化解题方法;

④ 解题中所用的技巧是如何想出来的。

学习是一种复杂的脑力劳动,要想在学习上取得进步,理想、勤奋、毅力、方法缺一不可。理想是力量的源泉,勤奋是取得成功的前提,毅力是克服困难的关键,方法选择正确,事半功倍,方法不当事倍功半。我们说,对学习目的明确,学习态度端正的同学,要想少走弯路,提高学习效果,关键是讲究学习方法。



❼ 通俗易懂的数学分析

数学系的初级课程之一。

数学系的初级课程最大的特点就是,不需要你有什么基础,拿来一本书就能看懂,只要你花功夫下去啃。数分主要还是将关注点放在实数系性质,基本的函数性质,级数性质,函数积分性质等等,属于实函数空间的基础理论。难度不是很大,但需要至少一年时间来体会。

如果是大一并且高中有一定的基础,推荐自学,中文书目推荐:

1《数学分析》(上下)陈纪修 复旦数院教材:我本科时候就学的这本,总的来说脉络非常清晰,证明也很翔实。习题较简单,入门可以作为主要参考书。

2《数学分析教程》(上下)史济怀、常庚哲 科大数院教材:也是我当年的主要参考书之一,这本书作为入门相对来说会难一些,书中的一些习题具有较高的难度和技巧要求。

3《数学分析新讲》(123)张筑生 北大教材:这套教材相对来说切入点会新一些,里面涉及很多其他教材没有的知识点,证明的思路简洁,可以作为补充教材。

4《数学中的反例系列》:有很多很多本,什么数学分析中的反例,实分析中的反例……网上都可以下到pdf版本的。数分要学好,反例不可少。这句话是真理,忘谨记。

❽ 初三学生数学分析总结作文

一转眼我们的九年级的学习生活都要结束了,也就是说,再有半年,我们就要完成初中时代的学生生活了。现在回想刚刚过去的这一个学期,我在各方面都有新的变化,新的进步,我自己小结一下: 在政治思想上,我通过在学校的学习与生活,各方面变得成熟,热爱祖国,热爱集体,严格要求自己,努力提高自己的觉悟和适应能力,遵守学校的规章制度,注意团结同学,认真完成学校布置的各项工作,尊重老师,尊重家长,以一个健康向上的中学生标准来要求自己。
在学习上,学习态度端正,努力学好每门功课,上课前认真预习,做好课前准备,上课时认真听讲,力求当堂课吸收,自觉遵守课堂纪律,课上积极发言,对于没有领会的问题,要敢于向老师与同学请教。课后作业自己都能认真完成,并注意补充自己知识上的不足。这学期自己在自觉学习与独立学习方面有很大进步。学会合理安排时间,分配好学习时间,在学习中注重提高学习效率和方法,收到较好效果。
对数学的学习,我注意了基本知识与习题的对应关系,平时注意学习要点的积累和举一反三的作用,这学期在这方面有一定进步。语文课中,注意了课上内容的消化,在作文上也特别加深了平时的训练。外语学习这学期也有较大进步,特别是在听力训练方面提高很快。物理课中,注意基本知识的活学活用,学会了举一反三式的学习,收到很好效果。 在这学期的期中考试中,尽管取得一些成绩,但离心中的目标还很远,仍需继续努力,抓紧自己的学习,知识无止境,我还有很多的知识需要学习,需要不断完善和提高。 回顾这个学期的工作,我在各方面都取得不同程度的进步,也存在着许多需要改进的地方。总的来说,我认为自己还是比较努力的。
在剩余的初中半年生活中,我将继续以不断向上进取的学习态度,争取在升学考试中取得优异成绩。

我们认为初三总复习是重要的教学阶段,是学生再学习的过程,也是全面提高学生文化素质,发展学生思维能力,培养学生分析问题解决问题能力的“收获季节”,是学生继续学习和参加工作的准备阶段,每位教师应负起责任,让学生满载着素质教育的丰硕果实结束义务教育。
一、总复习工作要面向全体学生
具体做法是:
一教师的板书与学生的板演
教师的板书应体现知识的发生过程,知识之间的纵横联系,对问题的解答要让学生看解题思路及学生参与情况,教师的板书布局要合理,层次要分明,电教手段运用要和谐。
化学生板演作用,让不同层次学生都有机会表现,因为学生板演可为教师提供反馈信息,如暴露知识上的缺欠,可弥补讲课中的不足,同时,学生板演中出现的优秀解题方法,为教师提供向学生学习的良好机会;另外也可以培养学生胆识,培养学生独立思考能力,促进记忆。
二注重学生解题中的错误分析
在总复习中,学生在解题中出现错误是不可避免,教师针对错误进行系统分析是重要的,首先教师可以通过错误来发现教学中的不足,从而采取措施进行补救;错误从一个特定角度揭示了学生掌握知识的过程,是学生在学习中对所学知识不断尝试的结果,教师认真总结,可以成为学生知识宝库中的重要组成部分,使学生领略解决问题中的探索、调试过程,这对学生能力的培养会产生有益影响。

❾ 数学分析

不错的教材有:中科大史济怀《数学分析教程》(习题难度较大,网上有史济怀给科大少年班上这本书的视频,可以看看,很不错),
复旦陈纪修《数学分析》,
北大张筑生《数学分析新讲》(以泛函的观点来写数分,不错),
北大周民强、方企勤《数学分析》(看过周民强实变函数论的人很多,但是看过他数分的就不错了,因为他的数分教材已经没有再出版,只有北航、北大等学校用复印版,周民强老兄最喜欢玩技巧,所以这本书难度不小),
复旦欧阳光中《数学分析》(很老的教材),
南大梅加强《数学分析》(梅加强老师这本书分析味很浓,技巧性强,值得推荐),
国外的不错的有:菲赫金哥尔兹《微积分教程》(老一辈数学工作者没有不知道的),卓里奇《数学分析》(内容丰富,清华用此书作为教材,功底不够,看着书是在找虐),阿黑波夫《数学分析讲义》,Rudin《数学分析原理》(华师的教材别看了,太垃圾)
强烈推荐辛钦的《数学分析八讲》(齐民友翻译)!
辅导书:谢惠民《数学分析习题课讲义》,周民强《数学分析习题演练》,裴礼文《数学分析中的典型问题和方法》,至于吉米多维奇,建议看由谢惠民等人翻译的那套,其余的都太垃圾,特别是华科出版的那套,比起工科高数还不如

❿ 对数学分析的认识和想法

1数学分析解题思想与方法
解数学题不是要把自己当成解题的机器、解题的奴隶,而应该努力成为解题的主人,是要从解题中吸取解题的方法、思想,锻炼自己的思维,这就是所谓的“数学题要考查考生的能力”。下面小编给大家带来了数学分析解题思想与方法,希望对您们有帮助。

一、数形结合思想

“数”与“形”结合,相互渗透,把代数式的精确刻画与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合,应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决,运用这一数学思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征。

二、转化和化归思想

在研究和解决数学问题时,综合利用已掌握的知识和技能,通过某种手段,将问题转化为已有知识范围内可以解决的一种数学方法。

一般总是将复杂的问题转化为简单的问题,将较难的问题转化为容易求解的问题,将未解决的问题变换并转化为已解决的问题。可以说转化与化归思想在数学问题解决过程应用最为普遍,各类数学问题的解决无不是在不断转化中得以解决。实质上数学中常用的数形结合思想、函数与方程思想、分类讨论思想也可以理解为转化与化归思想的表现形式。

三、向量思想

通过观察问题的几何特征,挖掘代数结构的向量模型,巧妙地构造向量,把原有问题转化为向量的运算功能或向量的几何意义来解决,向量不仅可进行加、减、数乘等丰富的代数运算,同时向量提供了重要的几何意义。向量构建了代数与几何之间的桥梁,使一些难以解决的代数或几何问题运用向量的运算使问题迎刃而解,通过向量运算,可有效揭示空间(或平面)图形的位置和数量关系,由定性研究变为定量研究,是数形结合思想的深化和提高。

热点内容
金钱英语 发布:2025-03-01 06:40:49 浏览:495
师德师风演讲稿ppt 发布:2025-03-01 06:26:16 浏览:96
冠昊生物科技股份有限公司 发布:2025-03-01 06:24:07 浏览:542
北师大地理系 发布:2025-03-01 06:08:41 浏览:100
2015职称英语考试 发布:2025-03-01 06:04:26 浏览:87
江阴暨阳教育 发布:2025-03-01 05:32:29 浏览:113
实验中学朱 发布:2025-03-01 02:57:16 浏览:945
女友小依校园春情 发布:2025-03-01 01:51:08 浏览:329
海峰老师演讲 发布:2025-03-01 00:21:04 浏览:788
学科网连词 发布:2025-03-01 00:09:12 浏览:933