数学期望和方差
① 数学期望与方差的关系
1.E(X)=2,D(X)=2
2.E(Z)=E(2X+5)=2E(X)+5=9;D(Z)=D(2X+5)=4D(X)=8
3.D(2X-3Y)=D(2X)+D(-3Y)+Cov(2X,-3Y)=4D(X)+9D(Y)-6Cov(X,Y)=4*2+9*3-6*4=11
注意制,这里用到的公式有:
E(aX)=aE(X),E(a)=a,D(aX)=a^2D(X),D(a)=0,Cov(aX,bY)=abCov(X,Y)
若有不明白的,请追问;若满意,请采纳,谢谢
② 期望和方差怎么求
期望公式:
(2)数学期望和方差扩展阅读:
在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。
统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。
方差刻画了随机变量的取值对于其数学期望的离散程度。(标准差、方差越大,离散程度越大)
若X的取值比较集中,则方差D(X)较小,若X的取值比较分散,则方差D(X)较大。因此,D(X)是刻画X取值分散程度的一个量,它是衡量取值分散程度的一个尺度。
③ 方差与数学期望的关系公式DX=EX^2-(EX)^2 不太清楚是什么意思 举例说下。谢谢
将第一个公式中括号内的完全平方打开得到
DX=E(X^2-2XEX+(EX)^2)
=E(X^2)-E(2XEX)+(EX)^2
=E(X^2)-2(EX)^2+(EX)^2
=E(X^2)-(EX)^2
若随机变量X的分布函数F(x)可表示成一个非负可积函数f(x)的积分,则称X为连续性随机变量,f(x)称为X的概率密度函数(分布密度函数)。
数学期望来估计X的方差,并且把它叫做“样本方差”。
④ 数学期望和方差公式是什么
方程D(X)=E{[X-E(X)]^2}=E(X^2) - [ E(X)]^2,其中 E(X)表示数学期望。
对于连续型随机变量X,若其定义域为(a,b),概率密度函数为f(x),连续型随机变量X方差计算公式:D(X)=(x-μ)^2 f(x) dx。
在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)为试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
(4)数学期望和方差扩展阅读:
设C为常数,则D(C) = 0(常数无波动);
D(CX )=C2D(X ) (常数平方提取,C为常数,X为随机变量);
证:特别地 D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值)
若X 、Y 相互独立,则证:记则
前面两项恰为 D(X)和D(Y),第三项展开后为
当X、Y 相互独立时,
故第三项为零。
⑤ 高中数学期望与方差公式汇总有什么
方差公式:S^2=〈(M-x1)^2+(M-x2)^2+(M-x3)^2+…+(M-xn)^2〉╱n
平均数:M=(x1+x2+x3+…+xn)/n (n表示这组数据个数,x1、x2、x3……xn表示这组数据具体数值)。
期望的公式:E=X1*P1+X2*P2+X3*P3+.+Xn*Pn
需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。
大数定律规定,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。
⑥ 数学期望的作用是什么方差的作用是什么
在概率论和统计学中,数学期望是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。
方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。
统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。
(6)数学期望和方差扩展阅读:
变量取值只能取离散型的自然数,就是离散型随机变量。例如,一次掷20个硬币,k个硬币正面朝上,k是随机变量。k的取值只能是自然数0,1,2,…,20,而不能取小数3.5、无理数,因而k是离散型随机变量。
如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量。例如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量,x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3.5、无理数等,因而称这随机变量是连续型随机变量。
⑦ 数学期望和方差的关系
方差=E(x²)-E(x)²,E(X)是数学期望。
在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
方差在概率论和统计学中,一个随机变量的方差描述的是它的离散程度,也就是该变量离其期望值的距离。一个实随机变量的方差也称为它的二阶矩或二阶中心动差,恰巧也是它的二阶累积量。这就是将各个误差将之平方,相加之后再除以总数,透过这样的方式来算出各个数据分布、零散的程度。
(7)数学期望和方差扩展阅读:
期望值像是随机试验在同样的机会下重复多次,所有那些可能状态平均的结果,便基本上等同“期望值”所期望的数。期望值可能与每一个结果都不相等。换句话说,期望值是该变量输出值的加权平均。期望值并不一定包含于其分布值域,也并不一定等于值域平均值。
赌博是期望值的一种常见应用。例如,美国的轮盘中常用的轮盘上有38个数字,每一个数字被选中的概率都是相等的。赌注一般押在其中某一个数字上,如果轮盘的输出值和这个数字相等,那么下赌者可以获得相当于赌注35倍的奖金(原注不包含在内),若输出值和下压数字不同,则赌注就输掉了。
考虑到38种所有的可能结果,然后这里我们的设定的期望目标是“赢钱”,则因此,讨论赢或输两种预想状态的话,以1美元赌注押一个数字上,则获利的期望值为:赢的“概率38分之1,能获得35元”,加上“输1元的情况37种”,结果约等于-0.0526美元。也就是说,平均起来每赌1美元就会输掉0.0526美元,即美式轮盘以1美元作赌注的期望值为负0.0526美元。
⑧ 怎么理解数学期望和方差是什么意思,有啥实际意义
这些本身是为了在分析现实生活中统计得到的数据的时候有用 数学期望,是为了准确地预期某件事未来可能的发展
方差,是为了分析一组数据中的差异情况,方差越小越“整齐”
⑨ 方差 标准差 数学期望之间有什么区别
一、性质不同
1、方差性质:在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。
2、标准差性质:离均差平方的算术平均数的平方根,用σ表示。
3、数学期望性质:试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。
二、特点不同
1、方差特点:在概率论中,方差用来衡量随机变量与其数学期望值(即均值)之间的偏差程度。统计学中的方差(样本方差)是每个样本值与所有样本值的平均值之差平方的平均值。在许多实际问题中,研究方差即偏离度具有重要意义。
2、标准差特点:在概率统计中,标准差最常用来衡量统计分布的程度。标准差是方差的算术平方根。标准差可以反映数据集的分散程度。对于具有相同平均值的两组数据,标准差可能不相同。
3、数学期望特点:期望值不一定等于一般意义上的期望值。期望值是变量输出值的平均值。期望值不一定包含在变量的输出值集中。
(9)数学期望和方差扩展阅读:
标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。
方差用来计算每一个变量(观察值)与总体均数之间的差异。为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。
期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值为该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。
⑩ 高中数学期望与方差公式有哪些
数学期望和方差公式有:DX=E(X)^2-(EX)^2;EX=1/P,DX=p^2/q;EX=np,DX=np(1-p)等等。
对于2项分布(例子:在n次试验中有K次成功,每次成功概率为P,其分布列求数学期望和方差)有EX=np,DX=np(1-p)。
n为试验次数 p为成功的概率。
对于几何分布(每次试验成功概率为P,一直试验到成功为止)有EX=1/P,DX=p^2/q。
还有任何分布列都通用的。
DX=E(X)^2-(EX)^2。
在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
高中数学期望与方差公式应用:
1)随机炒股。
随机炒股也就是闭着眼睛在股市中挑一只股票,并且假设止损和止盈线都为10%,因为是随机选股,那么胜率=败率,由于印花税、佣金和手续费的存在,胜率=败率<50%,最后的数学期望一定为负,可见随机炒股,长期的后果,必输无疑。
2)趋势炒股。
趋势炒股是建立在惯性理论上的,胜率跟经验有很大关系,基本上平均胜率可以假定为60%,则败率为40%,一般趋势投资者本着赚点就跑,亏了套死不卖的原则,如涨10%止盈,跌50%止损,数学期望为EP=60%*10%-40%*50%=-0.14,必输无疑。