5年级下册数学书内容
1. 人教版五年级下册数学复习资料
五年级下期数学期末综合卷
姓名 班级 座号 成绩
一、我会填 (24分)
1、 在括号里填上合适的数,
%
2.5700立方分米 = ( ) 立方米 9.12升 = ( ) 毫升
3.长方体和正方体都有( )个面,( )条棱, ( )个顶点.
4、在括号里填上适当的单位名称
旗杆高15( ) 教室面积80( )
油箱容积16( ) 一瓶墨水60( )
5、一个正方体的棱长总和是48厘米,它的体积是( )。
将棱长为2厘米的小正方体按左图方式摆放在地上
6、 露在外面的面积是( ),这个图的体积是( )
7. 10、15、18、25、32、25、48、25这组数据的众数是( )中位数是( )。
8.一辆汽车每小时行驶45千米,这辆汽车 小时行驶多少千米,应列式( )
9. 吨的 是( )吨 ; 小时的 是( )小时。
10.五(2)班有50人,今天有2人请假,该班今天的出勤率是( )
11.当水成冰时,它的体积增加了 ,现有水1.1米3,结成冰的体积是( )
12、用棱2厘米的正方体切成棱长1厘米的小正方体,可以切成( )块。
二、我会判断。(正确的在括号里打“√ ”,错误的打“×” )(10分)
1. 因为1的倒数是1,所以2的倒数是2,零的倒数是零。 ( )
2. 做101个零件,全部合格,合格率是100 % ( )
3. 一盒糖,小明取走了 ,小红取走余下的 ,两人取走的糖一样多。( )
4、棱长是6厘米的正方体的表面积和它的体积是相等的。 ( )
5.学校植树节期间栽的树的成活率为99%,只有2棵树没有成活,植树节期间栽的树共有200棵。 ( )
三、我会选(选一个正确的答案序号填在题后的括号内)(10分)
1.3吨的 与1吨的 比较 ( )
A 3吨的 重 B 1吨的 重 C 同样重
2.把10克盐溶解在40克水中,盐的重量是水重量的 ( )
A 25% B 20% C 80%
3.一件商品打八折后按50元售出,原价是 ( )
A 40元 B 62.5元 C 60元
4.把 米长的铁丝剪成相等的3段,每段是全长的( )
A 米 B C 415
5、长方体(不含正方体)的6个面中,最多有( )个正方形。
A.2 B.4 C.6
四、我会算 ( 8分+18分+9分)
1、口算我能行
×4 = 6 - = ÷ = + × =
× = ÷ = × = 10 - × =
2. 脱式计算我能行
+ × - +( - )× ( - )×( + )
( × )×24 45× - ×45 27× +27÷5
3、我会解方程。
45 χ = 1825 4χ+ χ= 9 χ- =
五、求下面正方体的体积和表面积。(单位:分米) (8分)
六、回答问题: (5分)(单位:分米)
如图:
1、小红要包装上面的礼品,怎样包装最省纸?为什么?
。
七、我会解决问题 (28分)
1.同乐学校五年级有故事书200本,科技书的本数是故事书的 ,文艺书的本数是科技书的 ,文艺书有多少本?
2.五(2)班的学生用一条长4米的绳子捆扎收聚的废品,用去了它的 , 还剩下多少米?
3.小红看一本书,每天看15页,4天后还剩全书的60%没看,这本书有多少页?
4、如图是一个长方体的空心管,掏空部分的长方体的长为10厘米,宽为7厘米。求这根空心管的体积是多少?如果每立分米重7.8千克,这根管子重多少千克?(单位:厘米)
5、下图是一个成年人每天体内水的获得情况统计图. 看图回答问题:
(1)一个成年人每天靠体内氧化释放的水占百分之几?
(2)如果一个成年人每天需要水2.5千克,那么一个成年人每天大约在喝水多少千克?
6.用纸皮做一个长1.2米、宽20分米、高60厘米无盖的长方体箱子用来堆放同学们收聚的矿泉水空瓶。
(1)至少要用多少平方分米的纸皮?
(2)如果把这个箱子最多能装下的东西倒入另一只长2.5米,宽0.8米的长方体箱子中,这个箱子的高最小是多少厘米?
望您采纳
2. 小学五年级的数学书内容
小学五年级的内容主要有一下几个方面:
上册:
第一单元 小数乘法
第二单元 小数除法
第三单元 观察物体
第四单元 简易方程
量一量 找规律
第五单元 多边形的面积
第六单元 统计与可能性
第七单元 数学广角
第八单元 总复习
下册:
第一单元 图形的变换
第二单元 因数和倍数
第三单元 长方体和正方体
第四单元 分数的意义和性质
第五单元 分数的加法和减法
第六单元 统计
第七单元 数学广角 逻辑推理
3. 2017年五年级下册数学书答案《完整版》
第一题:
(3)5年级下册数学书内容扩展阅读
这部分内容主要考察的是倍数的知识点:
一个整数能够被另一个整数整除,这个整数就是另一整数的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。
一个数除以另一数所得的商。如a÷b=c,就是说,a是b的倍数。例如:A÷B=C,就可以说A是B的C倍。
一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集。 注意:不能把一个数单独叫做倍数,只能说谁是谁的倍数。
若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
4. 五年级下册数学课本内容是什么
一、图形的变换
1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
2、成轴对称图形的特征和性质:
①对称点到对称轴的距离相等;
②对称点的连线与对称轴垂直;
③对称轴两边的图形大小形状完全相同。
3、物体旋转时应抓住三点:
①旋转中心;
②旋转方向;
③旋转角度。
旋转只改变物体的位置,不改变物体的形状、大小。
二、分数的加法和减法
1、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减。
2、异分母分数的加减法:异分母分数相加、减,先通分,再按照同分母分数加减法的方法进行计算。
3、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。在一个算式中,如果含有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。
三、长方体和正方体
1、长方体和正方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。
2、长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
3、长方体的棱长总和=(长+宽+高)×4正方体的棱长总和=棱长×12
4、表面积:长方体或正方体6个面的总面积叫做它的表面积。
5、长方体的表面积=(长×宽+长×高+宽×高)×2 S=(ab+ah+bh)×2
正方体的表面积=棱长×棱长×6用字母表示:S=
6、表面积单位:平方厘米、平方分米、平方米相邻单位的进率为100
7、体积:物体所占空间的大小叫做物体的体积。
8、长方体的体积=长×宽×高用字母表示:V=abh长=体积÷(宽×高)宽=体积÷(长×高)
高=体积÷(长×宽)
正方体的体积=棱长×棱长×棱长用字母表示:V= a×a×a
9、体积单位:立方厘米、立方分米和立方米相邻单位的进率为1000
10、长方体和正方体的体积统一公式:长方体或正方体的体积=底面积×高V=Sh
11、体积单位的互化:把高级单位化成低级单位,用高级单位数乘以进率;
四、因数与倍数
1、因数和倍数:如果整数a能被b整除,那么a就是b的倍数,b就是a的因数。
2、一个数的因数的求法:一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找。
3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法时依次乘以自然数。
4、2、5、3的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数。个位上是0或5的数,是5的倍数。一个数各位上的数的和是3的倍数,这个数就是3的倍数。
五、打电话
1、逐个法:所需时间最多;
2、分组法:相对节约时间;
3、同时进行法:最节约时间。
5. 五年级下册数学内容是什么
五年级下册数学内容是:
一、第一部分:《分数乘法》
1、分数乘整数的意义:分数乘整数的意义同整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2、分数乘整数的计算方法:分母不变,分子和整数相乘的积作分子。能约分的要约成最简分数。
3、计算时,可以先约分再计算。
4、理解打折的含义。例如:九折,是指现价是原价的十分之九;九五折,是指现价是原价的百分之九十五。
5、分数乘分数的计算方法:分子相乘做分子,分母相乘做分母,能约分的可以先约分。计算结果要求是最简分数。
二、第二部分:《分数除法》
1、倒数。如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。倒数是对两个数来说的,并不是孤立存在的。
2、1的倒数仍是1;0没有倒数。0没有倒数,是因为在分数中,0不能做分母。
3、一个数除以分数的意义与整数除法的意义相同;一个数除以分数等于乘这个数的倒数。
三、第三部分 《长方体》
1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。在一个长方体中,相对的面完全相同,相对的棱长度相等。
2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。正方体有12条棱,它们的长度都相等,所有的面都完全相同。
3、长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
四、第四部分:《分数的混合运算》
分数混合运算的运算顺序与整数混合运算的运算顺序相同。先乘除后加减,有括号的先算括号里面的。最后结果是最简分数。
五、第五部分:《百分数》
1、百分数的意义。百分数表示一个数另一个数的百分之几。百分数也叫百分比、百分率。
2、小数化成百分数的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把分数化成百分数:可以先把分数化成小数(除不尽时,通常保留三位小数),再写成百分数;也可以把分子分母同时乘一个数将其化成一百分之几的数,再写成百分数。
六、第六部分《统计》
1、将一组数据从小到大(或从大到小)排列,中间的数称为这组数据的中位数。
2、一组数据中出现次数最多的数称为这组数据的众数。
3、中位数的求法:将一组数据按大小的顺序排列,如果是奇数个数据,中间的数就为这组数据的中位数,如果是偶数个数据,中间两个数的平均数为这组数据的中位数。
4、众数:在一组数据中,出现次数最多的数,是这组数据的众数。在一组数据中,众数可能不止一个,也可能没有众数。
6. 五年级下册数学书周一对什么是第几面
1.轴对称
如果一个图形沿一条直线折叠,直线两侧的图形能够互相重合,这个图形就叫做轴对称图形,这时,我们也说这个图形关于这条直线(成轴)对称。
2.轴对称图形的性质
把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点。轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。
3.轴对称的性质
经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。这样我们就得到了以下性质:
(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
(2)类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(3)线段的垂直平分线上的点与这条线段的两个端点的距离相等。
(4)对称轴是到线段两端距离相等的点的集合。
4.轴对称图形的作用
(1)可以通过对称轴的一边从而画出另一边;
(2)可以通过画对称轴得出的两个图形全等。
5.因数
整数B能整除整数A,A叫作B的倍数,B就叫做A的因数或约数。在自然数的范围内例:在算式6÷2=3中,2、3就是6的因数。
6.自然数的因数(举例)
6的因数有:1和6,2和3。
10的因数有:1和10,2和5。
15的因数有:1和15,3和5。
25的因数有:1和25,5。
7.因数的分类
除法里,如果被除数除以除数,所得的商都是自然数而没有余数,就说被除数是除数的倍数,除数和商是被除数的因数。
我们将一个合数分成几个质数相乘的形式,这样的几个质数叫做这个合数的质因数。
8.倍数
对于整数m,能被n整除(n/m),那么m就是n的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。
一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集。注意:不能把一个数单独叫做倍数,只能说谁是谁的倍数。
9.完全数
完全数又称完美数或完备数,是一些特殊的自然数。它所有的真因子(即除了自身以外的约数)的和(即因子函数),恰好等于它本身。
10.偶数
整数中,能够被2整除的数,叫做偶数。
11.奇数
整数中,能被2整除的数是偶数,不能被2整除的数是奇数,
12.奇数偶数的性质
关于奇数和偶数,有下面的性质:
(1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数;
(2)奇数跟奇数和是偶数;偶数跟奇数的和是奇数;任意多个偶数的和都是偶数;
(3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数;
(4)除2外所有的正偶数均为合数;
(5)相邻偶数最大公约数为2,最小公倍数为它们乘积的一半。
(6)奇数的积是奇数;偶数的积是偶数;奇数与偶数的积是偶数;
(7) 偶数的个位上一定是0、2、4、6、8;奇数的个位上是1、3、5、7、9。
13.质数
指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。
14.合数
比1大但不是素数的数称为合数。1和0既非素数也非合数。合数是由若干个质数相乘而得到的。
质数是合数的基础,没有质数就没有合数。
15.长方体
由六个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫长方体.长方体的任意一个面的对面都与它完全相同。
16.长、宽、高
长方体的每一个矩形都叫做长方体的面,面与面相交的线叫做长方体的棱,三条棱相交的点叫做长方体的顶点,相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
17.长方体的特征
(1)长方体有6个面,每个面都是长方形,至少有两个相对的两个面完全相同。特殊情况时有两个面是正方形,其他四个面都是长方形,并且完全相同。
(2)长方体有12条棱,相对的棱长度相等。可分为三组,每一组有4条棱。还可分为四组,每一组有3条棱。
(3)长方体有8个顶点。每个顶点连接三条棱。
(4) 长方体相邻的两条棱互相(相互)垂直。
18.长方体的表面积
因为相对的2个面相等,所以先算上下两个面,再算前后两个面,最后算左右两个面。
设一个长方体的长、宽、高分别为a、b、c,则它的表面积S:
S = 2ab + 2bc+ 2ca
= 2 ( ab + bc + ca)
19.长方体的体积
长方体的体积=长×宽×高
设一个长方体的长、宽、高分别为a、b、c,则它的体积V:
V = abc=Sh
20.长方体的棱长
长方体的棱长之和=(长+宽+高)×4
长方体棱长字母公式C=4(a+b+c)
相对的棱长长度相等
长方体棱长分为3组,每组4条棱。每一组的棱长度相等
21.正方体
侧面和底面均为正方形的直平行六面体叫正方体,即棱长都相等的六面体,又称“立方体”、“正六面体”。正方体是特殊的长方体。
22.正方体的特征
(1)有6个面,每个面完全相同。
(2)有8个顶点。
(3)有12条棱,每条棱长度相等。
(4)相邻的两条棱互相(相互)垂直。
23.正方体的表面积
因为6个面全部相等,所以正方体的表面积=一个面的面积×6=棱长×棱长×6
设一个正方体的棱长为a,则它的表面积S:
S=6×a×a或等于S=6a2
24.正方体的体积
正方体的体积=棱长×棱长×棱长;设一个正方体的棱长为a,则它的体积为:
V=a×a×a
25.正方体的展开图
正方体的平面展开图一共有11种。
26.分数
把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。表示这样的一份的数叫分数单位。
27.分数分类
分数可以分成:真分数,假分数,带分数,百分数
28.真分数
分子比分母小的分数,叫做真分数。真分数小于一。如:1/2,3/5,8/9等等。真分数一般是在正数的范围内研究的。
29.假分数
分子大于或者等于分母的分数叫假分数,假分数大于1或等于1.
假分数通常可以化为带分数或整数。如果分子和分母成倍数关系,就可化为整数,如不是倍数关系,则化为带分数。
30.分数的基本性质
分数的分子和分母同时乘以或除以一个不为0的数,分数的值不变。
31.约分
把一个分数化成和它相等,但分子、分母都比较小的分数,叫做约分
32.公因数
在两个或两个以上的自然数中,如果它们有相同的因数,那么这些因数就叫做它们的公因数。任何两个自然数都有公因数1.(除零以外)而这些公因数中最大的那个称为这些正整数的最大公因数。
33.通分
根据分数的基本性质,把几个异分母分数化成与原来分数相等的且分母相同的分数,叫做通分。
34.通分方法
(1)求出原来几个分数的分母的最小公倍数
(2)根据分数的基本性质,把原来分数化成以这个最小公倍数为分母的分数
35.公倍数
指在两个或两个以上的自然数中,如果它们有相同的倍数,这些倍数就是它们的公倍数。这些公倍数中最小的,称为这些整数的最小公倍数
36.分数加减法
(1)同分母分数相加减,分母不变,即分数单位不变,分子相加减,最后要化成最简分数。
(2)异分母分数相加减,先通分,即运用分数的基本性质将异分母分数转化为同分母分数,改变其分数单位而大小不变,再按同分母分数相加减法去计算,最后要化成最简分数。
37.统计图
复式折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来,以折线的上升或下降来表示统计数量增减变化。折线统计图不但可以表示出数量的多少,而且还能够清楚的表示出数量增减变化的情况。
7. 数学课本青岛版五年级下册内容分析
义务教育课程标准实验教科书(五四分段) 数学五年级下册
教材培训讲话稿
第四单元 啤酒生产中的数学——比例
一.教材地位
本单元是在学生掌握了比的知识的基础上进行教学的,它是进一步学习比例尺和其他学科知识的重要基础。通过对比例知识的学习还可以加深对数量关系的认识,使学生初步了解一种量怎样随着另一种量的变化而变化,获得初步的函数观念,并利用这些知识解决一些简单的实际问题。
二.单元教学目标
1.在具体情境中,理解比例的意义和基本性质;会解比例。
2.在具体的情境中理解正、反比例的意义,初步认识正比例图像,能够正确判断成正、反比例的量,会用比例的知识解决简单的实际问题。
3.在探索比例基本性质的过程中进一步发展合情推理能力。
4.在解决实际问题的过程中,进一步体验数学与生活的联系,感受数学的价值。
三.单元教学内容
信息窗 主题 知识点
信息窗一 运输大麦芽 比例的意义、比例的基本性质、解比例
信息窗二 生产记录情况 正比例的意义、正比例图像
信息窗三 啤酒生产计划 反比例的意义
信息窗四 装运啤酒 用正、反比例解决实际问题
四.单元编写突出特点
1.在学生已有知识经验的基础上,展开对新知识的学习。
学生在以前的学习中,已经接触过很多数量关系,本单元的教材编写力求建立在学生已有的这些知识经验基础上,使学生从比例的角度重新认识数量之间的关系。如:比例的意义是借助运输量和运输次数的关系,在比的意义的基础上进行学习的;正比例的意义是借助工作时间和工作总量的关系,在比的意义的基础上进行学习的;反比例的意义是借助每天生产的吨数和需要生产的天数之间的关系进行学习的。
2. 素材的选取贴近生活。
本单元选用学生感兴趣的生活素材引入数学知识的学习,既能将学习的内容与生活实际紧密联系起来,又能激发学生的学习兴趣和探究欲望。
五.单元课时统筹
信息窗一 信息窗二 信息窗三 信息窗四
比例的意义、练习:1课时 正比例意义、正比例图像、基本练习:1课时 反比例意义、基本练习:1课时 正、反比例知识解决问题、基本练习:1课时
比例的基本性质、解比例、练习:1课时 巩固练习:1课时 正反比例综合练习:1课时 巩固练习:1课时
回顾整理、练习:2课时
六.教学建议
信息窗一:
1、教学内容:比例的意义、比例的基本性质、解比例
2、信息窗的介绍:
该信息窗呈现的是一个运输大麦芽的特写镜头,用表格出示了运输大麦芽的有关数据,目的是让学生根据这些数据提出数学问题。通过解决“运输量和运输次数的比各是多少?它们有什么关系?”这两个问题,学习比例的意义。本单元共有3个红点。
第一个红点:比例的意义。
第二个红点:比例的基本性质。
第三个红点:解比例
3、信息窗教学建议:
第一、结合情境图,提出数学问题。
解决生活中的实际问题是新课程的一个重要理念。在教学时,要结合信息窗先和学生谈论有关啤酒话题,啤酒在我们的生活中随处可见,与我们的生活密切相关,可以从生产啤酒的主要原料这个话题引出,学生可能有的知道是粮食,是大麦芽,如果不知道可以告诉学生,所以啤酒又被人们称为是“液体面包”,从这节课开始,我们就一起了解并解决啤酒生产中的数学问题。在这里提醒老师们,教学时我们重点要引导学生关注信息窗素材中蕴含的数量关系,而对啤酒生产流程不要过多地讨论。
第二、在学生已有知识经验的基础上,展开对新知识的学习。
学生在以前的学习中,对比的认识已经有了一定的基础, 教学时可先让学生阅读信息窗中的信息,直接让学生提出有关比的数学问题。先让学生分别找出第一天和第二天运输量与运输次数的比各是多少,在此基础上,让学生观察两个比有什么关系,从而发现:两个比的比值相等,然后列出等式。教师进一步说明:表示两个比相等的式子叫做比例,比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要对“为什么”进行研究,在这里教师还要适时让学生把“比”和“比例”进行比较,明确二者的区别后再介绍比例中各部分的名称。
为了使学生进一步理解比例的意义,可以再给学生出示一些比,让学生找出哪些能组成比例;也可以借助自主练习第3、4、5题进行练习;还可以出示能组成比例的四个数,如:2、3、4、6,让学生组成不同的比例。通过这些形式的练习,加深对比例意义的理解。
第三、放手让学生自主探究,进一步发展合情推理能力。
教学第二个红点标示的问题时,教师要根据教材的编写编写意图,给予学生较大的思维空间,以“在比例里,两个外项与两个内项之间有什么关系?”这一问题作为引领,放手让学生先猜测,再通过计算进行验证, 让学生独立经历探索的过程。然后在小组交流的基础上,总结概括出比例的基本性质:在比例里,两个外项的积等于两个内项的积。在这里教师要注意给学生提供大量的素材,给足学生探究的时间,因为一个规律的得出需要大量的事例的证明才能得出。而不要“只让学生看外项与内项的乘积之间有什么关系”,给学生暗示思维方向,设置思维通道,缩小探索空间,使学生失去一次极好的锻炼思维的机会。
4、自主练习分析
“自主练习”第1题是对比例意义的巩固练习。练习时,可让学生独立思考,自主完成。交流的重点是怎样根据比例的意义判断两个比是否能组成比例。
第3、4题都是巩固比例的意义和基本性质的题目。练习时,让学生独立完成,然后组织交流。交流时,要谈谈是怎样想的。既可以根据比例的意义,也可以根据比例的基本性质去判断,只要学生说的合理,都要给予肯定。
第5题提供了一种小组活动的练习形式。练习时,可先由教师出示一组比,学生说出能与之组成比例的另一组比,并说明思考的方法。然后再放手让每一个学生都参与到练习中来,以巩固比例的意义及基本性质。
第8题是对比例的意义和基本性质灵活应用的题目。练习时,可让学生独立思考,再进行充分地交流,总结出解决问题的方法:可以先找出比值相等的两个比,再根据比例的意义写出比例;也可以先找出乘积相等的两组数,再根据比例的基本性质写出比例。
第9题练习时,教师要帮助学生弄懂题意,要让学生不受干扰因素的影响(体积)。
第*12题是一道开放题。练习时,可先引导学生根据比例的基本性质思考:如果等式一边的两个数作为比例的内项,另一边的两个数就作为比例的外项,然后写出比例。也可以让学生自己多举几个例子来完成。
信息窗二:
1、教学内容:正比例的意义、正比例图象
2、信息窗的介绍:
该情境图呈现了啤酒生产车间的一角,并用表格的形式出示了啤酒生产中工作总量和工作时间的一些数据,引导学生提出问题,引入对成正比例的量和正比例关系的学习,这个窗有两个红点。
第一个红点:正比例的意义
第二个红点:正比例图象
3、信息窗教学建议:
第一、通过对大量的现实数据进行观察,分析其数量关系,抽象出数学知识。
教学时,教师可以通过啤酒生产的话题引入,出示情境图,引导学生观察啤酒生产情况记录表,根据信息提出问题,并把学生提出的问题进行筛选整理,引入对正比例的学习。正反比例的教学内容反映的是数量间的关系,需要对大量的相关的数量进行分析、归纳、抽象,对学生的观察、分析、推理、抽象概括能力提出了较高的要求,同时也是发展学生逻辑思维能力的一个很好的教学载体。在正比例的意义的学习中可以采用“列表——观察——讨论——归纳”的方法。
第二、给学生较充分的思考和交流的空间,引导学生开展自主性的数学活动。
教学第一个红点标示的问题时,教师要创设开放的问题情境和宽松的学习氛围,让学生经历“做数学”的过程,自主建构正比例的意义。
可以先让学生观察记录表,小组内讨论交流:重点交流以下几方面:①有几种量?②如何变化?③变化规律是什么?④数量关系是什么。在学生小组探究、全班交流的基础上初步感知得出:表格中有两种量,分别是工作总量和工作时间;工作总量随着工作时间的变化而变化,而且工作时间越长工作总量越大,工作时间越短工作总量越小,根据每一组对应的数据能算出工作效率,再用列举的方式引导学生发现工作总量和工作时间的比值就是工作效率,且比值是相等的,也就是工作效率是一定的,进而归纳得出:工作总量工作时间 =工作效率(一定)。最后,由老师给学生介绍:工作时间变化,工作总量也随着变化;工作效率不变,也就是工作总量与工作时间的比值一定,我们就说工作总量和工作时间是成正比例的量,它们的关系叫做正比例关系。
第三、鼓励学生通过多个例证中找规律,增强学生对所学规律的可信度。
学习了正比例概念之后,教师可举出生活中成正比例的量的几个实例,再让学生找出生活中还有哪两种量也是成正比例关系,这里一定要引导学生抓住正比例的关键:(比值一定),通过大量的实例一方面加深学生对正比例意义的理解,增强对所学规律的可信度,另一方面也让学生感受到数学与生活的紧密联系。
第四、借助正比例图象的学习,进一步强化对正比例意义的理解,并适度进行函数思想的渗透。
第二个红点主要是对正比例图象的学习,按照《标准》的要求“根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并根据其中一个量的值估计另一个量的值”编排的,这对以后学习比例线段、函数等知识打下基础。设计的三个方面体现了教学正比例图像的三个步骤。第一步画图像。根据教材中的左边孩子的说法,也就是先去描点,要知道各点的具体含义。体会各个点都表示在一定的时间里所生产的总量,也体会这些点是根据对应的工作时间与工作总量的数据在方格纸上画出来的。再根据右边孩子的提示去连线,将各点连接起来。第二步认识图像的形状。下面的第一个问题,发现正比例关系的图像是一条直线。了解正比例图像是直线对以后画图能起两点作用:一是画正比例关系的图像(如第75页第9题),可以根据提供的各组数据描出图像的许多个点,再依次连成直线;二是如果按正比例关系画出的点不在同一条直线上,表明画点出现了错误,应及时纠正。第三步对图像进行正确的分析,也就是下面提示的第二、三个问题。估计4.5小时大约生产的啤酒数及生产80吨啤酒大约需要的时间。要指导学生利用画垂线或画平行线的技能,尽量使得数准确些。如估计4.5小时生产的吨数,要在横轴上找到表示4.5小时的点,过这点画横轴的垂线,得到垂线与图像的交点,再过交点作纵轴的垂线,根据垂足在纵轴上的位置估计生产的吨数。
注意问题:
(1)正反比例判断时是否还需要去详细地说明理由?
与传统教材相比,取消了机械的专用名词,如相关联的量。在判断两种量是否成正比例或反比例时,也不要求叙述成“时间和路程是两种相关联的量,时间变化,速度也跟着变化,速度与时间的积也就是路程一定,那么时间和路程是成反比例的量,它们的关系是反比例关系。”这样固定的格式。只要学生能够正确地判断出关系并能用自己的话说明理由即可。这里需要注意的是,应尽量给学生表述理由的机会,只要充分地表述才能够理清思维,也能够充分地反映出思维的有序性。在练习时,特别注意让学生叙述理由。如第2题是对正比例意义的巩固练习。通过此题,让学生进一步明确正比例的本质特征,即一种量随着另一种量的变化而变化,而且两种量的比值一定。第(1)题播音时间与播音字数的比值一定,所以播音时间与播音字数成正比例;第(2)题虽然已播字数和未播字数也是两个相关联的量,但是已播字数和未播字数比值不一定,所以不成正比例。
(2)、对正比例图像的学习,应把它看作是理解正比例意义的一种途径,应通过分析图像,更好地理解成正比例的两个量之间的变化规律,进行函数思想的渗透。不应该简单地停留在描点和连线等技能训练上。
4、自主练习分析:
“自主练习”第1题是正比例意义的基本练习。练习时,可引导学生先来思考,判断路程和时间是否成正比例,重要的就是要判断它们的比值是否相等。然后通过计算出每组对应数据的比值,找到不变的量是什么,再结合正比例的意义进行判断:因为路程时间 =速度(一定),所以路程和时间成正比例。
第2题是对正比例意义的巩固练习。通过此题,让学生进一步明确正比例的本质特征,即一种量随着另一种量的变化而变化,而且两种量的比值一定。第(1)题播音时间与播音字数的比值一定,所以播音时间与播音字数成正比例;第(2)题已播字数和未播字数比值不一定,所以不成正比例。同时要让学生结合实际生活中的实例多举几个这样的例子来进行判断。(教参中出现相关联的量)
第4题是一组判断题。练习时,可先让学生思考:怎样判断两个量是否成正比例?在明确思路后,让学生通过独立思考,逐一解决问题。交流时,注意让学生运用正比例的意义进行说明。关于一个人的年龄和体重,虽然体重随着年龄的变化而变化,但这种变化没有规律,所以不成比例。
第6题是一道巩固和运用正比例图像的题目。练习时,可以先让学生观察图像,了解其中的一些数据,根据对应数据的比值判断运行的周数与所用的时间是否成正比例;也可以根据图像直接判断。再引导学生根据图象进行估计:先从横轴上找到9,再从纵轴上找到对应的点,然后进行估计。运行9周所用的时间大约是16小时。
第9题是一道巩固正比例图像知识的题目,练习第二小题时,应该按照三个步骤进行:第一,首先分清横轴和纵各表示什么,第二,按照提供的数据描出相应的点。第三按顺序把各点连起来。
第10题是一道巩固正比例知识的综合题。此题涉及到半径、直径、周长、面积四个量,它们有的成正比例(如:半径和直径,半径和周长、直径和周长),而有的就不成正比例(如:半径和面积、周长和面积、直径和面积),在这里可能有的学生会分不清。要注意让学生说说理由,进一步加深对正比例意义的理解。(教参中出现相关联的量)
信息窗3:
1、教学内容:反比例的意义
2、信息窗的介绍:
该情境图呈现了啤酒生产车间的一角,以表格的形式介绍了每天生产啤酒的吨数与需要生产的天数情况,引导学生提出问题,引入对成反比例的量和反比例关系的学习。
只一个红点:反比例的意义
3、信息窗的教学建议
第一、提出挑战性的问题,让学生自主探究反比例的意义。
本节课是在学生学习了正比例意义的基础上教学的,但在学习了正比例的知识及研究方法的基础上如果仍旧采用相同的教学程序来学习反比例,势必造成学生“照搬模式”,“套用结论”,思维水平得不到进一步发展。造成学习的过程中孩子注重找出答案而不注重发展对知识的理解。在认知、理解不够充分的前提下生硬的套用正比例意义的阐述模式来定义反比例的意义,学生缺乏对知识点本质的深入理解。鉴于此,我认为可以这样设计教学:
师:这节课我们要来研究成反比例的量,你认为成反比例的量会有怎样的变化特点?(提出有挑战性的问题。)
学生可能会有一下观点:
生1“成反比例的量可能就是两种量的变化是相反的。
生2:正比例中一个量扩大若干倍,另一个量也扩大相同的倍数,他们的变化是一致的,我想,反比例中可能就是一个量扩大若干倍,另一个量反而缩小相同的倍数,他们的变化相反。
生3:成正比例的量中相对应的数的商一定,成反比例的量中可能是相对应的数的积一定。
生4:也许是和一定,一个量在增加,另一个量在减少,它们的变化也是相反的。
因为在正比例的基础上学习反比例,学生的头脑中不会一片空白,用“猜一猜”的形式,给予学生想象(猜测)的空间,调动学生积极思维,再现原有知识基础,促进新旧知识迁移互动。然后教师出示信息窗中的表格
每天生产的吨数 100 200 300 400 500 ……
需要生产的天数 60 30 20 15 12 ……
让学生小组合作探讨交流,最后教师总结反比例的意义。
第二、结合生活实例,加深概念的理解。
像正比例一样,学习了反比例概念之后,也要让学生先找出生活中还有哪两种量也是成反比例关系的,并用具体数据说明加深对反比例意义的理解。
注意的问题:
(为什么要学习正反比例呢?)(比例的知识在工农业生产和日常生活中有着广泛的应用。例如,绘制地图需要应用比例尺的知识,在生产和生活中还经常用到两种量之间成正比例关系或成反比例关系。比例的知识还是进一步学习中学数学、物理、化学等知识的基础。各行各业都要用到的知识,数学就不说了,其他学科如地理、物理等。几乎是与比例密不可分的。象气温与气压成反比关系、气温与海拔高度成反比关系、气温与纬度成反比关系、物体放出的波长与其本身的温度成反比关系、风速与水平气压梯度力成正比关系等等)
4、自主练习分析
第3题是一组判断题。练习时,可先让学生思考:怎样判断两个量是否成反比例?在明确思路后,让学生通过独立思考,逐一解决。交流时,注意让学生运用反比例的意义进行说明。关于已植的棵数和未植的棵数,虽然未植的棵数随着已植的棵数的变化而变化,并且这两个量的和也是一定的,但是它们的乘积不一定,所以已植的棵数和未植的棵数不成反比例。通过这一题的练习,要让学生明确怎样确定两个量成正比例关系还是成反比例关系。
“你知道吗?”栏目介绍了反比例图像,目的是让学生知道反比例关系也能用图像表示,教学时不必要求学生画图象。
信息窗4——装运啤酒
1、教学内容:用正反比例解决实际问题。
2、信息窗的介绍:该图用一个特写镜头呈现了汽车运输啤酒的情境。通过介绍啤酒装箱中的有关数据,引导学生提出问题,学习用比例知识解决实际问题,这个窗有两个红点。
第一个红点:用正比例知识解决实际问题。
第二个红点:用反比例知识解决实际问题。
3、信息窗教学建议:
第一、既鼓励学生解决问题策略的多样化,又重视用比例解题的教学。
教学时,可以从装运啤酒的话题引入,介绍有关信息,然后呈现情境图,引导学生观察,理解图意,提出问题
成正比例的量,在生活实际中应用很广,学生在以前的学习中,已接触过这种情况的问题,如归一应用题,只不过那时是就题论题,没有上升到一般规律。出示例题后,教师 要引导学生独立思考,用自己的方法解决问题,再组织学生进行交流。交流时,学生可能利用以前学过的知识解答。这时,教师要给予肯定,然后再引导学生用比例的知识解答,可启发学生思考:哪一个量是一定的?啤酒的总瓶数和箱数成什么比例关系?为什么?然后根据正比例的意义列出等式(方程),并让学生独立解答,然后进行交流。
教学第二个红点标示的问题时,可以仿照第一个红点的教学思路进行。
第二、及时引导学生对用正反比例解题进行比较。
两个红点问题解决之后,要引导学生加强对比,找出在解决问题方法上的相同和不同之处,让学生掌握用正、反比例知识解决问题的思路和方法。
4、自主练习分析
第5题是灵活运用反比例的知识解决实际问题的题目。练习时,要注意组织学生认真审题,使学生明确:地面的面积一定,每块方砖的面积与块数成反比例,因此,要先根据边长计算出方砖的面积,再根据反比例知识列式解决。这一题是学生最容易出问题的,有的学生会直接用边长乘以块数。要让学生分析一下数量关系。然后再解决。
8. 五年级下册数学内容有哪些
1、表示相等关系的式子叫做等式。
2、含有未知数的等式是方程。
3、方程一定是等式;等式不一定是方程。等式方程。
4、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。
等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。这也是等式的性质。
5、求方程中未知数的过程,叫做解方程。
解方程时常用的关系式:
一个加数=和-另一个加数减数=被减数-差被减数=减数+差。
一个因数=积另一个因数除数=被除数商被除数=商除数。
注意:解完方程,要养成检验的好习惯。
6、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和个数=中间数。
7、4个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和个数2(高斯求和公式)。
9. 五年级下册数学书为什么没有公约数公倍数内容了
因为五年级上册已经学过了,一个学期和一个学期学的内容不一样的。
小学数学教材五年级上册内容,小数乘法、小数除法、观察物体、简易方程、量一量,找规律、多边形的面积、统计与可能性、铺一铺、数学广角、总复习八个单元。