一年级数学竞赛题
A. 60道数学竞赛题
1.在凸4n+2边形A1A2A3 …… A[sub]4n+2 中,每一个内角都是30度的整数倍,且A1 =A2 =A3 =90度,则n=?
2.不等边三角形ABC的两条高的长度分别是4和12,若第三条高及三边均为整数,求当第三条高取得最大值时,三角形ABC的周长的最小值
3.锐角三角形用度数来表示时,所有角的度数为正整数,最小角的度数是最大角度数的1/4,求满足此条件的所有锐角三角形
4.周长为30,各边长互不相等且都是整数的三角形有多少个?(注明每个三角形的各边长)
5.用正方形的地砖不重叠,无缝隙地铺满一块地,选用边长为x cm规格的地砖,恰需n块;若选用边长为y cm规格的地砖,则要比前一种刚好多用124块,已知x、y、n都是整数,且x、y互质,试问这块地有多少平方米?
参考答案
1、在凸多边形,其每个内角小于180度,由于它是30度的整数倍,所以其内角最大为150度。
题中要求的4n+2边形,其内角和就小于:90*3+(4n+2-3)*150
而4n+2边形的内角和等于:(4n+2-2)*180度,所以有:
(4n+2-2)*180≤90*3+(4n+2-3)*150
解得n≤1.
而n<1时,4n+2边不成为凸多边形,所以n=1.
2、设三角形三条边分别是a、b、c,第三个高是h。
三角形的面积S=1/2*4*a=1/2*12*b=1/2*c*h
由:1/2*4*a=1/2*12*b,得a=3b
三角形两边之和大于第三边,两边之差小于第三边,a-b<c<a+b,得2b<c<4b
再由1/2*12*b=1/2*c*h,得3<h<6。当h为整数时,其最大值是5。
再由:S=4a=12b=5c,由于a、b、c都是整数,4、5、12的最小公倍数是60,所以,面积S的最小值是60。这时,a=15,b=5,c=12,这时的周长就是周长的最小值,等于32。
3、设三个角的度数分别是x、y、z,且x≤y≤z<90度。
由题意,z=4x<90,所以x≤22度。
而x+y+z=180,得5x+y=180.所以y=180-5x≤z=4x,得x≥20度。
所以,满足此条件的所有锐角三角形的度数是:(20,80,80),(21,75,84),(22,70,88)三种。
4、
(3,13,14),
(4,12,14),
(5,12,13),(5,11,14),
(6,11,13),(6,10,14),
(7,11,12),(7,10,13),(7,9,14),
(8,10,12),(8,9,13)
(9,10,11)
共12种。
5、由题意,有:
n*x^2=(n+124)*y^2
得:n=124*y^2/(x^2-y^2)
由于x、y互质,所以x^2、y^2也互质,同时y^2和(x^2-y^2)也互质。
所以,要y是整数,124必须能整除(x^2-y^2).
124只有124、62、31、4、2、1几个因素,分别来看:
1)x^2-y^2=124,(x+y)*(x-y)=124=2*2*31,x+y=62,x-y=2,x=32,y=30。这时xy不互质数,不和题意。
2)x^2-y^2=62,无整数解
3)x^2-y^2=4,无整数解
4)x^2-y^2=2,无整数解
5)x^2-y^2=1,无整数解
最后,只能是x^2-y^2=31,(x+y)(x-y)=1*31,x+y=31,x-y=1,x=16,y=15.
n=124*y^2/(x^2-y^2)=124*15^2/31=900
面积就是900*16*16=(900+124)*15*15=230400平方厘米=23.04平方米。
B. 初一年级数学题
1.已知关于x的方程2a(x-1)=(5-a)x+3b有无数多个解,那么a=_____,b=_____.
答:2a(x-1)=(5-a)x+3b
2ax-2a=5x-ax+3b
3ax-5x=2a+3b
x(3a-5)=2a+3b
关于x的方程2a(x-1)=(5-a)x+3b有无数多个解
所以无论X取何值,总成立
所以此方程与X无关
所以 3a-5=0 , 2a+3b=0
a=5/3 , b= -10/9
2.由自然数1~9组成的一切可能的没有重复数字的四位数,这些四位数之和是多少?
答:首先看看一共有多少个四位数。
千位有9种可能,百位有8种,十位有7种,个位有6种。
一共有3024个四位数。
先看个位。由于每个数字的地位是平等的,所以
有九分之一,就是有336个数的个位是1,有336个数的个位是2,有336个数的个位是3,……有336个数的个位是9。
这些所有的个位相加就是336×(1+2+...+9)×1。
再看十位。由于每个数字的地位是平等的,所以
有九分之一,就是有336个数的十位是1,有336个数的十位是2,有336个数的十位是3,……有336个数的十位是9。
这些所有的个位相加就是336×(1+2+...+9)×10。
再看百位。由上面分析可知,所有的百位相加就是336×(1+2+...+9)×100。
再看千位。由上面分析可知,所有的千位相加就是336×(1+2+...+9)×1000。
所以所有的四位数之和,就是:
336×(1+2+...+9)×1+336×(1+2+...+9)×10+336×(1+2+...+9)×100+336×(1+2+...+9)×1000
=336×(1+2+...+9)×(1+10+100+1000)
=336×45×1111
=16798320
一张方桌由一个桌面和四条腿组成,1立方米木料可制作桌面50张或桌腿300条,现在有5立方米木料,问用多少木料制作桌面,多少木料制桌腿,正好配成方桌多少张?
轮船在静水中的速度为1小时24千米,水流速度是2千米一小时,该船在甲乙两地间行驶一个来回就用了6小时,求从甲到乙顺流航行和从乙到甲逆流航行各用了多少时间,甲乙两地距离是多少?
甲仓存煤200吨,乙仓存煤70吨,若甲仓每天运出15吨,乙仓每天运进25吨,几天后乙仓存煤是甲仓的2倍?
甲车间有工人27人,乙车间有工人19人,现在新招20名工人,为使甲车间的人数是乙车间人数的2倍,应把新工人如何分配到两个车间中去?
1,设可以做x张方桌,则
需要做x张桌面,4x条桌腿
x*(1/50)+4x*(1/300)=5
解得 x=150
2,解:设甲乙两地的距离是x千米,
根据题意得: x/(24+2)+x/(24-2)=6
解得 x=71.5
则 ...........
3题
解设x天后已仓的媒是甲仓的2倍
则 2*(200-15x)=70+25x
解得 x=6
4题
解设向甲车间安排x人,则向乙车间安排20-x人
根据题意得 27+x=2*(19+20-x)
解得 x=17
1.一个两位数,十位数字是x,各位数字是x-1,把十位数字与各位数字对调后,所得到的两位数是什么?
2.小小的妈妈带m元钱上街买菜,她买肉用去了二分之一,买蔬菜用去了剩下的三分之一,那么她还剩多少元?
相关答案:
第一题:11X-10
第二题:M-m/2-m/2/3=1/3M 元
如下图,第100行的第5个数是几?
1
2 3
4 5 6
7 8 9 10
11 12 13 14 15
16 17........
答案是4955
由图的左边最外层1 2 4 7 11 16 得后面的数总是比前面的数大,
而且第2个比第1个大1....第3个比第4个大2....第4个比第3个大3..第5个比第第4个大4....第6个比第5个大5..........所以可以设左边最外层中第n个数为x 则x等于〔1加2加3加……加〈n—1〉〕.......所以第100行的第1个数为〔1加2加3加……加〈100—1〉〕等于4951
所以第100行第5个数为4955
一、计算1+3+5+7+…+1997+1999的值。
二、若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值。
三、已知
1 2 3
--- + --- + --- = 0 ①
x y z
1 6 5
--- - --- - --- =0 ②
x y z
x y z
试求 --- + --- + --- 的值
y z x
四、在1,2,3,…,1998中的每一个数的前面任意添上一个“+”或“-”那么最后计算出来的结果是奇数还是偶数?
五、某校初中一年级举行数学竞赛,参加的认识是未参加人数的3倍,如果该年级减少6人,未参加的学生增加6人,那么参加与未参加人数之比是
2:1 求参加竞赛的与未参加竞赛的认识以及初中一年级的人数
答案:一题:
原式=(1+1999)*[(1999-1)/2+1]/2
=2000*1000 /2
=1000000
二题:
2x+|4-5x|+|1-3x|+4的值恒为常数,则
4-5X≥0,1-3X≤0
所以:1/3≤X≤4/5
原式=2X+4-5X+3X-1+4=7
三题:
由②得:1/X=6/Y+5/Z代入 ①得
8/Y+8/Z=0
所以:Y=-Z代入1/X=6/Y+5/Z得:
1/X=1/Y
所以:X=Y
X/Y+Y/Z+Z/X=1-1-1=-1
四题:
在1,2,3,…,1998中,共有999个奇数,999个偶数,
无论二个偶数间的加减,其结果都是偶数,所以只考虑奇数间的关系.
因为任意二个奇数间的加减,其结果都是偶数,
所以,最后都是一个奇数和一个偶数间的加减,
所以,最后计算出来的结果是奇数.
五题:
设:未参加竞赛的人数为X,则参加竞赛的人数为3X,全校总人数为4X
如果该年级减少6人,则总人数为4X-6
未参加的学生增加6人,则未参加的人数为X+6,
参加的人数为4X-6-(X+6)=3X-12
参加与未参加人数之比是2:1
所以:3X-12=2*(X+6)
解之得:X=24(人),参加竞赛的人数为3X=72人,全校总人数为4X=96人
负二分之一 三分之一
负四分之一 五分之一 负六分之一
负七分之一 八分之一 负九分之一 十分之一。。。。。。
这组数中,第2007行第7个是什么数?
第1行有1个数,
第2行有2个数,
第3行有3个数,
....
所以第n行有n个数,
1到2006行,一起有数:
1+2+3+...+2006=2006*2007/2=2013021 个.
2013021+7=2013028
第2007行第7个的分数是1/2013028.
又发现,在每行第奇数个位置的都是负数.
所以第2007行第7个是: -1/2013028
1.已知关于x的方程2a(x-1)=(5-a)x+3b有无数多个解,那么a=_____,b=_____.
答:2a(x-1)=(5-a)x+3b
2ax-2a=5x-ax+3b
3ax-5x=2a+3b
x(3a-5)=2a+3b
关于x的方程2a(x-1)=(5-a)x+3b有无数多个解
所以无论X取何值,总成立
所以此方程与X无关
所以 3a-5=0 , 2a+3b=0
a=5/3 , b= -10/9
2.由自然数1~9组成的一切可能的没有重复数字的四位数,这些四位数之和是多少?
答:首先看看一共有多少个四位数。
千位有9种可能,百位有8种,十位有7种,个位有6种。
一共有3024个四位数。
先看个位。由于每个数字的地位是平等的,所以
有九分之一,就是有336个数的个位是1,有336个数的个位是2,有336个数的个位是3,……有336个数的个位是9。
这些所有的个位相加就是336×(1+2+...+9)×1。
再看十位。由于每个数字的地位是平等的,所以
有九分之一,就是有336个数的十位是1,有336个数的十位是2,有336个数的十位是3,……有336个数的十位是9。
这些所有的个位相加就是336×(1+2+...+9)×10。
再看百位。由上面分析可知,所有的百位相加就是336×(1+2+...+9)×100。
再看千位。由上面分析可知,所有的千位相加就是336×(1+2+...+9)×1000。
所以所有的四位数之和,就是:
336×(1+2+...+9)×1+336×(1+2+...+9)×10+336×(1+2+...+9)×100+336×(1+2+...+9)×1000
=336×(1+2+...+9)×(1+10+100+1000)
=336×45×1111
=16798320
已知一列数:1,6,11,16.......
求:
第17位是多少?
前20个的和?
(请用所给的式子做答)
第2题:
有一列数:2.4.6.8........192
求:
他们的和?
请判断48是数列中的第几个?(可以列方程)
3、有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是多少?
4、设M、N都是自然数,记PM是自然数M的各位数字之和,PN是自然数N的各位数字之和。又记M*N是M除以N的余数。已知M+N=4084,那么(PM+PN)*9的值是多少?
5、如图,已知CD=5,DE=7,EF=15,FG=6,直线AB将图形分成左右两部份,左边部份面积是38,右边部份面积是65,那么三角形ADG的面积是?
6、某自然数,它可以表示成9个连续自然数的和,又可以表示成10个连续自然数的和,还可以表示成11个连续自然数的和,那么符合以上条件的最小自然数是?
7、已知甲酒精纯酒精含量为72%,乙酒精纯酒精含量为58%,两种酒精混合后纯酒精含量为62%。如果每种酒精取的数量都比原来多15升,混合后纯酒精含量为63.25%,那么第一次混合时,甲酒精取了多少升?
8、在下面算式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字。那么“新年好”所代表的三位数是多少?
9、有两家商场,当第一家商场的利润减少15%,而第二家商场利润增加18%时,这两家商场的利润相同。那么,原来第一家商场的利润是第二家商场利润的多少倍?
10、从1~9这9个数字中取出三个,由这三个数字可以组成六个不同的三位数。如果六个三位数的和是3330,那么这六个三位数中最大的是多少 ?
11、有A、B、C、D、E五支球队参加足球循环赛,每两个队之间都要赛一场。当比赛快要结束时,统计到的成绩如下:
队名 获胜场数 平局场数 失败场数 进球个数 失球个数
A 2 1 0 4 1
B 1 2 0 4 2
C 1 1 1 2 3
D 1 0 3 5 5
E 0 2 1 1 5
已知A与E以及B与C都赛成平局,并且比分都是1:1,那么B与D两队之间的比分是多少?
12、一辆客车和一辆面包车分别从甲、乙两地同时出发相向而行。客车每小时行驶32千米,面包车每小时行驶40千米,两车分别到达乙地和甲地后,立即返回出发地点,返回时的速度,客车第小时增加8千米,面包车每小时减少5千米。已知两次相遇处相距70千米,那么面包车比客车早返回出发地多少小时?
甲(简称1)乙(简称2)二人走在某商场扶手电梯.1从1楼到2楼,2从2楼到1楼.1站在电梯上,每秒走上去两级,(注意:电梯也在动).50秒走到2楼. 2站在电梯上,每秒下去3级,60秒到达底部.已知道电梯运行的方向一直是从下往上.并且1和2双方同时到达目的地.求:静止时,电梯的级数.
从1~9这9个数字中取出三个,由这三个数字可以组成六个不同的三位数。如果六个三位数的和是3330,那么这六个三位数中最大的是多少 ?
题在前,答案在后
2.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.
3.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n, 求x的取值范围.
4.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值.
5.已知方程组
有解,求k的值.
6.解方程2|x+1|+|x-3|=6.
7.解方程组
8.解不等式||x+3|-|x-1||>2.
9.比较下面两个数的大小:
10.x,y,z均是非负实数,且满足:
x+3y+2z=3,3x+3y+z=4,
求u=3x-2y+4z的最大值与最小值.
11.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.
12.如图1-88所示.小柱住在甲村,奶奶住在乙村,星期日小柱去看望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应该选择怎样的路线才能使路程最短?
13.如图1-89所示.AOB是一条直线,OC,OE分别是∠AOD和∠DOB的平分线,∠COD=55°.求∠DOE的补角.
14.如图1-90所示.BE平分∠ABC,∠CBF=∠CFB=55°,∠EDF=70°.求证:BC‖AE.
15.如图1-91所示.在△ABC中,EF⊥AB,CD⊥AB,∠CDG=∠BEF.求证:∠AGD=∠ACB.
16.如图1-92所示.在△ABC中,∠B=∠C,BD⊥AC于D.求
17.如图1-93所示.在△ABC中,E为AC的中点,D在BC上,且BD∶DC=1∶2,AD与BE交于F.求△BDF与四边形FDCE的面积之比.
18.如图1-94所示.四边形ABCD两组对边延长相交于K及L,对角线AC‖KL,BD延长线交KL于F.求证:KF=FL.
19.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由.
20.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸?
21.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).
22.设n是满足下列条件的最小正整数,它们是75的倍数,且恰有
23.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?
24.求不定方程49x-56y+14z=35的整数解.
25.男、女各8人跳集体舞.
(1)如果男女分站两列;
(2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴.
问各有多少种不同情况?
26.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152?
27.甲火车长92米,乙火车长84米,若相向而行,相遇后经过1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.
28.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?
29.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度.
30.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?
31.已知甲乙两种商品的原价之和为150元.因市场变化,甲商品降价10%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和降低了1%,求甲乙两种商品原单价各是多少?
32.小红去年暑假在商店买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1元,今年暑假她又带同样的钱去该商店买同样的牙刷和牙膏,因为今年的牙刷每把涨到1.68元,牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,结果找回4角钱.试问去年暑假每把牙刷多少钱?每支牙膏多少钱?
33.某商场如果将进货单价为8元的商品,按每件12元卖出,每天可售出400件,据经验,若每件少卖1元,则每天可多卖出200件,问每件应减价多少元才可获得最好的效益?
34.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇出发驶向B镇,25分钟以后,乙骑自行车,用0.6千米/分钟的速度追甲,试问多少分钟后追上甲?
35.现有三种合金:第一种含铜60%,含锰40%;第二种含锰10%,含镍90%;第三种含铜20%,含锰50%,含镍30%.现各取适当重量的这三种合金,组成一块含镍45%的新合金,重量为1千克.
(1)试用新合金中第一种合金的重量表示第二种合金的重量;
(2)求新合金中含第二种合金的重量范围;
(3)求新合金中含锰的重量范围.
初一奥数复习题解答
作者:佚名 文章来源:初中数学竞赛辅导 点击数:456 更新时间:2006-2-4
2.因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以
原式=-b+(a+b)-(c-b)-(a-c)=b.
3.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变为m+n>0.当x+m≥0时,|x+m|=x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时,
|x+m|+|x-n|=x+m-x+n=m+n.
4.分别令x=1,x=-1,代入已知等式中,得
a0+a2+a4+a6=-8128.
5.②+③整理得
x=-6y, ④
④代入①得 (k-5)y=0.
当k=5时,y有无穷多解,所以原方程组有无穷多组解;当k≠5时, y=0,代入②得(1-k)x=1+k,因为x=-6y=0,所以1+k=0,所以k=-1.
故k=5或k=-1时原方程组有解.
<x≤3时,有2(x+1)-(x-3)=6,所以x=1;当x>3时,有
,所以应舍去.
7.由|x-y|=2得
x-y=2,或x-y=-2,
所以
由前一个方程组得
|2+y|+|y|=4.
当y<-2时,-(y+2)-y=4,所以 y=-3,x=-1;当-2≤y<0时,(y+1)-y=4,无解;当y≥0时,(2+y)+y=4,所以y=1,x=3.
同理,可由后一个方程组解得
所以解为
解①得x≤-3;解②得
-3<x<-2或0<x≤1;
解③得x>1.
所以原不等式解为x<-2或x>0.9.令a=99991111,则
于是
显然有a>1,所以A-B>0,即A>B.
10.由已知可解出y和z
因为y,z为非负实数,所以有
u=3x-2y+4z
11.
所以商式为x2-3x+3,余式为2x-4.
12.小柱的路线是由三条线段组成的折线(如图1-97所示).
我们用“对称”的办法将小柱的这条折线的路线转化成两点之间的一段“连线”(它是线段).设甲村关于北山坡(将山坡看成一条直线)的对称点是甲′;乙村关于南山坡的对称点是乙′,连接甲′乙′,设甲′乙′所连得的线段分别与北山坡和南山坡的交点是A,B,则从甲→A→B→乙的路线的选择是最好的选择(即路线最短).
显然,路线甲→A→B→乙的长度恰好等于线段甲′乙′的长度.而从甲村到乙村的其他任何路线,利用上面的对称方法,都可以化成一条连接甲′与乙′之间的折线.它们的长度都大于线段甲′乙′.所以,从甲→A→B→乙的路程最短.
13.如图1-98所示.因为OC,OE分别是∠AOD,∠DOB的角平分线,又
∠AOD+∠DOB=∠AOB=180°,
所以 ∠COE=90°.
因为 ∠COD=55°,
所以∠DOE=90°-55°=35°.
因此,∠DOE的补角为
180°-35°=145°.
14.如图1-99所示.因为BE平分∠ABC,所以
∠CBF=∠ABF,
又因为 ∠CBF=∠CFB,
所以 ∠ABF=∠CFB.
从而
AB‖CD(内错角相等,两直线平行).
由∠CBF=55°及BE平分∠ABC,所以
∠ABC=2×55°=110°. ①
由上证知AB‖CD,所以
∠EDF=∠A=70°, ②
由①,②知
BC‖AE(同侧内角互补,两直线平行).
15.如图1-100所示.EF⊥AB,CD⊥AB,所以
∠EFB=∠CDB=90°,
所以EF‖CD(同位角相等,两直线平行).所以
∠BEF=∠BCD(两直线平行,同位角相等).①又由已知 ∠CDG=∠BEF. ②
由①,② ∠BCD=∠CDG.
所以
BC‖DG(内错角相等,两直线平行).
所以
∠AGD=∠ACB(两直线平行,同位角相等).
16.在△BCD中,
∠DBC+∠C=90°(因为∠BDC=90°),①
又在△ABC中,∠B=∠C,所以
∠A+∠B+∠C=∠A+2∠C=180°,
所以
由①,②
17.如图1-101,设DC的中点为G,连接GE.在△ADC中,G,E分别是CD,CA的中点.所以,GE‖AD,即在△BEG中,DF‖GE.从而F是BE中点.连结FG.所以
又
S△EFD=S△BFG-SEFDG=4S△BFD-SEFDG,
所以 S△EFGD=3S△BFD.
设S△BFD=x,则SEFDG=3x.又在△BCE中,G是BC边上的三等分点,所以
S△CEG=S△BCEE,
从而
所以
SEFDC=3x+2x=5x,
所以
S△BFD∶SEFDC=1∶5.
18.如图1-102所示.
由已知AC‖KL,所以S△ACK=S△ACL,所以
即 KF=FL.
+b1=9,a+a1=9,于是a+b+c+a1+b1+c1=9+9+9,即2(a十b+c)=27,矛盾!
20.答案是否定的.设横行或竖列上包含k个黑色方格及8-k个白色方格,其中0≤k≤8.当改变方格的颜色时,得到8-k个黑色方格及k个白色方格.因此,操作一次后,黑色方格的数目“增加了”(8-k)-k=8-2k个,即增加了一个偶数.于是无论如何操作,方格纸上黑色方格数目的奇偶性不变.所以,从原有的32个黑色方格(偶数个),经过操作,最后总是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸.
21.大于3的质数p只能具有6k+1,6k+5的形式.若p=6k+1(k≥1),则p+2=3(2k+1)不是质数,所以, p=6k+5(k≥0).于是,p+1=6k+6,所以,6|(p+1).
22.由题设条件知n=75k=3×52×k.欲使n尽可能地小,可设n=2α3β5γ(β≥1,γ≥2),且有
(α+1)(β+1)(γ+1)=75.
于是α+1,β+1,γ+1都是奇数,α,β,γ均为偶数.故取γ=2.这时
(α+1)(β+1)=25.
所以
故(α,β)=(0,24),或(α,β)=(4,4),即n=20·324·52
23.设凳子有x只,椅子有y只,由题意得
3x+4y+2(x+y)=43,
即 5x+6y=43.
所以x=5,y=3是唯一的非负整数解.从而房间里有8个人.
24.原方程可化为
7x-8y+2z=5.
令7x-8y=t,t+2z=5.易见x=7t,y=6t是7x-8y=t的一组整数解.所以它的全部整数解是
而t=1,z=2是t+2z=5的一组整数解.它的全部整数解是
把t的表达式代到x,y的表达式中,得到原方程的全部整数解是
25.(1)第一个位置有8种选择方法,第二个位置只有7种选择方法,…,由乘法原理,男、女各有
8×7×6×5×4×3×2×1=40320
种不同排列.又两列间有一相对位置关系,所以共有2×403202种不同情况.
(2)逐个考虑结对问题.
与男甲结对有8种可能情况,与男乙结对有7种不同情况,…,且两列可对换,所以共有
2×8×7×6×5×4×3×2×1=80640
种不同情况.
26.万位是5的有
4×3×2×1=24(个).
万位是4的有
4×3×2×1=24(个).
万位是3,千位只能是5或4,千位是5的有3×2×1=6个,千位是4的有如下4个:
34215,34251,34512,34521.
所以,总共有
24+24+6+4=58
个数大于34152.
27.两车错过所走过的距离为两车长之总和,即
92+84=176(米).
设甲火车速度为x米/秒,乙火车速度为y米/秒.两车相向而行时的速度为x+y;两车同向而行时的速度为x-y,依题意有
解之得
解之得x=9(天),x+3=12(天).
解之得x=16(海里/小时).
经检验,x=16海里/小时为所求之原速.
30.设甲乙两车间去年计划完成税利分别为x万元和y万元.依题意得
解之得
故甲车间超额完成税利
乙车间超额完成税利
所以甲共完成税利400+60=460(万元),乙共完成税利350+35=385(万元).
31.设甲乙两种商品的原单价分别为x元和y元,依题意可得
由②有
0.9x+1.2y=148.5, ③
由①得x=150-y,代入③有
0. 9(150-y)+1.2y=148. 5,
解之得y=45(元),因而,x=105(元).
32.设去年每把牙刷x元,依题意得
2×1.68+2(x+1)(1+30%)=[2x+3(x+1)]-0.4,
即
2×1.68+2×1.3+2×1.3x=5x+2.6,
即 2.4x=2×1.68,
所以 x=1.4(元).
若y为去年每支牙膏价格,则y=1.4+1=2.4(元).
33.原来可获利润4×400=1600元.设每件减价x元,则每件仍可获利(4-x)元,其中0<x<4.由于减价后,每天可卖出(400+200x)件,若设每天获利y元,则
y=(4-x)(400+200x)
=200(4-x)(2+x)
=200(8+2x-x2)
=-200(x2-2x+1)+200+1600
=-200(x-1)2+1800.
所以当x=1时,y最大=1800(元).即每件减价1元时,获利最大,为1800元,此时比原来多卖出200件,因此多获利200元.
34.设乙用x分钟追上甲,则甲到被追上的地点应走了(25+x)分钟,所以甲乙两人走的路程分别是0.4(25+x)千米和0.6x千米.因为两人走的路程相等,所以
0.4(25+x)=0.6x,
解之得x=50分钟.于是
左边=0.4(25+50)=30(千米),
右边= 0.6×50=30(千米),
即乙用50分钟走了30千米才能追上甲.但A,B两镇之间只有28千米.因此,到B镇为止,乙追不上甲.
35.(1)设新合金中,含第一种合金x克(g),第二种合金y克,第三种合金z克,则依题意有
(2)当x=0时,y=250,此时,y为最小;当z=0时,y=500为最大,即250≤y≤500,所以在新合金中第二种合金重量y的范围是:最小250克,最大500克.
(3)新合金中,含锰重量为:
x·40%+y·10%+z·50%=400-0.3x,
而0≤x≤500,所以新合金中锰的重量范围是:最小250克,最大400克.
很长的,很难得
C. 初中一年级50道有答案的数学题
一、填空题(每小题3分,共24分)
1.(-1)2002-(-1)2003=_________________.
答案:2
2.已知某数的 比它大 ,若设某数为x,则可列方程_______________.
答案: x=x+
3.如图1,点A、B、C、D在直线l上.则BC=_________-CD,AB+________+CD=AD;若AB=BC=CD,则AB=________BD.
图1
答案:BD,BC,
4.若∠α=41°32′,则它的余角是____________,它的补角是__________.
答案:48°28′,138°28′
5.如图2,求下列各角:∠1=___________,∠2=___________,∠3=___________.
图2
答案:62.5°,25°,130°
6.两条直线相交,有_____________个交点;三条直线两两相交最多有_____________个交点,最少有_____________个交点.
答案:且只有一,三,一
7.38°12′=_____________°,67.5°=__________°___________′.
答案:38.2,67,30
8.如果 x2-3x=1是关于x的一元一次方程,则a=_________________.
答案:
二、选择题:(每小题3分,共24分)
9.下列说法中,正确的是
A.|a|不是负数 B.-a是负数
C.-(-a)一定是正数 D. 不是整数
答案:A.
10.平面上有任意三点,经过其中两点画一条直线,共可以画
A.一条直线 B.二条直线 C.三条直线 D.一条或三条直线
答案:D.
11.下列画图语句中,正确的是
A.画射线OP=3 cm B.连结A、B两点
C.画出A、B两点的中点 D.画出A、B两点的距离
答案:B.
12.下列图形中能折成正方体的有
图3
A.1个 B.2个 C.3个 D.4个
答案:D.
13.下列图形是,是左边图形绕直线l旋转一周后得到的是
图4
答案:D.
14.图5是某村农作物统计图,其中水稻所占的比例是
图5
A.40% B.72% C.48% D.52%
答案:C.
15.下列说法,正确的是
①所有的直角都相等 ②所有的余角都相等 ③等角的补角相等 ④相等的角是直角.其中正确的是
A.①② B.①③ C.②③ D.③④
答案:B.
16.若|x- |+(2y+1)2=0,则x2+ y2的值是
A. B.
C.- D.-
答案:B.
三、解答下列各题
17.计算题(每小题3分,共12分)
(1)(- )×(-1 )÷(-1 ) (2)32÷(-2)3+(-2)3×(- )-22
(3)( - )÷( - )2÷(-6)2-(- )2
(4)1 ×〔3×(- )2-1〕- 〔(-2)2-(4.5)÷3〕
答案:(1)-1 (2)-2 (3)- (4)-
18.解方程:(每小题5分,共10分)
(1) 〔 ( x- )-8〕= x+1
(2) - - =0
答案:(1)x=- (2)x=-
19.(6分)如图6,已知AOB为直线,OC平分∠AOD,∠BOD=50°,求∠AOC的度数.
图6
答案:65°
20.(6分)一个角的余角的3倍比这个角的补角大18°,求这个角的度数.
答案:36°
21.(6分)制作适当的统计图表示下表数据:
1949年以后我国历次人口普查情况
年份 1953 1964 1982 1990 2000
人口(亿) 5.94 6.95 10.08 11.34 12.95
答案:可制作条形统计图 (略).
22.(12分)一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过18 s,已知客车与货车的速度之比是5∶3,问两车每秒各行驶多少米?
解:设客车的速度是5x,则货车速度为3x.根据题意,得
18(5x+3x)=200+280.
解得x= ,即客车的速度是 m/s.货车的速度是10 m/s.
参考资料:http://..com/question/42971029.html?si=9
展开其他相似回答 (1) 隐藏其他相似回答 (1)
[硕士生]
54980516 [硕士生] 2009-1-12 下午09:35:04 222.64.119.* 举报
带答案的行吗?七年级第一学期期末测试卷
(时间:100分钟,满分100分)
一、填空题(每小题3分,共24分)
1.(-1)2002-(-1)2003=_________________.
答案:2
2.已知某数的 比它大 ,若设某数为x,则可列方程_______________.
答案: x=x+
3.如图1,点A、B、C、D在直线l上.则BC=_________-CD,AB+________+CD=AD;若AB=BC=CD,则AB=________BD.
图1
答案:BD,BC,
4.若∠α=41°32′,则它的余角是____________,它的补角是__________.
答案:48°28′,138°28′
5.如图2,求下列各角:∠1=___________,∠2=___________,∠3=___________.
图2
答案:62.5°,25°,130°
6.两条直线相交,有_____________个交点;三条直线两两相交最多有_____________个交点,最少有_____________个交点.
答案:且只有一,三,一
7.38°12′=_____________°,67.5°=__________°___________′.
答案:38.2,67,30
8.如果 x2-3x=1是关于x的一元一次方程,则a=_________________.
答案:
二、选择题:(每小题3分,共24分)
9.下列说法中,正确的是
A.|a|不是负数 B.-a是负数
C.-(-a)一定是正数 D. 不是整数
答案:A.
10.平面上有任意三点,经过其中两点画一条直线,共可以画
A.一条直线 B.二条直线 C.三条直线 D.一条或三条直线
答案:D.
11.下列画图语句中,正确的是
A.画射线OP=3 cm B.连结A、B两点
C.画出A、B两点的中点 D.画出A、B两点的距离
答案:B.
12.下列图形中能折成正方体的有
图3
A.1个 B.2个 C.3个 D.4个
答案:D.
13.下列图形是,是左边图形绕直线l旋转一周后得到的是
图4
答案:D.
14.图5是某村农作物统计图,其中水稻所占的比例是
图5
A.40% B.72% C.48% D.52%
答案:C.
15.下列说法,正确的是
①所有的直角都相等 ②所有的余角都相等 ③等角的补角相等 ④相等的角是直角.其中正确的是
A.①② B.①③ C.②③ D.③④
答案:B.
16.若|x- |+(2y+1)2=0,则x2+ y2的值是
A. B.
C.- D.-
答案:B.
三、解答下列各题
17.计算题(每小题3分,共12分)
(1)(- )×(-1 )÷(-1 ) (2)32÷(-2)3+(-2)3×(- )-22
(3)( - )÷( - )2÷(-6)2-(- )2
(4)1 ×〔3×(- )2-1〕- 〔(-2)2-(4.5)÷3〕
答案:(1)-1 (2)-2 (3)- (4)-
18.解方程:(每小题5分,共10分)
(1) 〔 ( x- )-8〕= x+1
(2) - - =0
答案:(1)x=- (2)x=-
19.(6分)如图6,已知AOB为直线,OC平分∠AOD,∠BOD=50°,求∠AOC的度数.
图6
答案:65°
20.(6分)一个角的余角的3倍比这个角的补角大18°,求这个角的度数.
答案:36°
21.(6分)制作适当的统计图表示下表数据:
1949年以后我国历次人口普查情况
年份 1953 1964 1982 1990 2000
人口(亿) 5.94 6.95 10.08 11.34 12.95
答案:可制作条形统计图 (略).
22.(12分)一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过18 s,已知客车与货车的速度之比是5∶3,问两车每秒各行驶多少米?
解:设客车的速度是5x,则货车速度为3x.根据题意,得
18(5x+3x)=200+280.
解得x= ,即客车的速度是 m/s.货车的速度是10 m/s.
参考资料:http://..com/question/42971029.html?si=9
]七年级期末数学复习题
(满分100分,90分钟完卷)
一.选择题:(每小题3分,共24分)
1.在 , ,- , ,3.14,2+ ,- ,0, ,1.262662666…中,属于无理数的个数是( )
A.3个 B. 4个 C. 5个 D.6个
2.若a<0,在平面直角坐标系中,将点(a,-3)分别向左、向上平移4个单位,可以得到的对应点的位置在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.有4根木条,长度分别为4cm,7cm,9cm,11cm,选其中三根组成三角形,则选择的方法有( )
A.1种 B.2种 C.3种 D.4种
4.一次不等式组 的解是( )
A.x>-3 B.x<2 C.2<x<3 D.-3<x<2
5.下列命题中,正确命题的个数是 ( )
①.在同一平面内,不相交的两条线段叫平行线 ②.不相交的两条直线叫平行线
③.过一点,有且只有一条直线平行已知直线 ④.垂直于同一直线的两直线平行
A.0个; B.1个 C.2个 D.3个
6.如果一个多边形的每一个内角都等于144º,那么它的内角和为( )
A.1260º B.1440º C.1620º D.1800º
7.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来方向
上平行前进,那么这两次拐弯的角度是( )
A.第一次向右拐60º,第二次向左拐120º;
B.第一次向左拐120º,第二次向右拐120º;
C.第一次向右拐60º,第二次向右拐60º;
D.第一次向左拐60º,第二次向左拐120º.
8.如图1,直线a、b被直线c、d所截,下列条件中不能判断a‖b的是( )
A.∠1=∠2 B. ∠5=∠7 C. ∠4=∠6 D. a⊥d、d⊥b
7. 设“●”“▲”“■”表示三种不同的物体,现用天平称了两次,情况如图2所示,那么 ●、▲、■这三种物体按质量从大到小的顺序排列为( )
A. ■●▲ B. ■▲● C. ▲●■ D. ▲■●
10.一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分.小明有两道题未答.至少答对几道题,总分才不会低于60分.则小明至少答对的题数是( )
A.7道 B.8题 C.9题 D.10题
二.填空题:(每小题3分,共24分)
11.计算-(-3) + - - = .
12.一张三角形纸片ABC,∠A=55º,∠B=65º,现将纸片的一角折叠,
使点C落在ΔABC中,如图3,若∠1=30º,则∠2= . A
13.若y= + +2,则3x+4y-1的平方根是 .
14.给你一对数值 ,请写出一个二元一次方程组,
使这对数是满足这个方程组的解 .
15.如图4,ΔABC中,AB=2.5cm,BC=4cm, 则ΔABC的
高AD与CE的比是 .
16.一些形状、大小相同的任意四边形,能否镶嵌成平面图案? (填“能”或“不能” ),道理是: .
17.如图5,把直角梯形ABCD沿AD方向平移到梯形EFGH,
HG=24m,MG=8m,MC=6m,则阴影部分地的面积是 .
18.观察下列等式, =2 , =3 ,
=4 ,请你写出含有n(n>2的自然数)的等式表示上述各式规律的一般化公式: .
三、解答题:(第19、20、21、22、23题各6分,第24、25题各8分,共46分)
19.解方程组x-2=2(y-1),2(x-2)+y=1=5
21.某商场购进甲、乙两种商品50件,甲种商品进价每件35元,利润率是20%,乙种商品的进价每件20元,利润率是15%,共获利278元,问甲、乙两种商品各购进了多少件?22.如图6, 四边形ABCD在平面直角坐标系中. A(2,2)
(1)分别写出B、C、D的坐标.
(2)求四边形ABCD的面积.(保留两个有效数字)23.如图7,ΔABC中,∠A=40º,∠ABC=110º,CE平分∠ACB,CD⊥AB于D,DF⊥CE。求∠CDF的度数?
24.某连队在一次执行任务中将战士编成8个组.如果每组分配人数比预定人数多1名,那么战士总数将超过100人;如果每组分配人数比预定人数少1名,那么战士总数将不到90人. 求预定每组分配战士的人数.25.为了保护环境,某企业决定购买10台污水处理设备,现有A、B两种型号的设备,其中每台价格、月处理污水量及年消耗费如下表:
经预算,该企业购买设备的资金不高于105万元。
(1) 请你设计该企业有几种购买方案;
(2) 若企业每月产生的污水量为2040吨, 为了节约资金,应选择哪种购买方案;
(3) 在第(2)问的条件下,若每台设备的使用年限为10年,污水厂处理污水费为每吨10元,请你计算,该企业自己处理污水与将污水厂处理相比较,10年节约资金多少万元?(注:企业处理污水的费用包括购买设备的资金和消耗费)
例1 某校购买篮球和排球共花去600元,篮球每个45元,排球每个30元,已知篮球买了10个,问排球买了多少个?
分析 本题的相等关系是:篮球总价+排球总价=600元
解:设买了 个排球,根据题意,得 (两边同时减去450)
(两边同时除以30)
答:买了5个排球。
23.下列是3家公司的广告:
甲公司:招聘1人,年薪3万,一年后,每年加薪2000元
乙公司:招聘1人,半年薪1万,半年后按每半年20%递增.
丙公司:招聘1人,月薪2000元,一年后每月加薪100元
你如果应聘,打算选择哪家公司?(合同期为2年)
甲:3+3.2=6.2万
乙:1+1.2+1.2*1.2+1.2*1.2*1.2=1+1.2+1.44+1.728=5.368万
丙:0.2*24+0.01+0.02+0.03+0.04+……0.12=4.8+0.78=5.58万
甲工资最高,去甲
24.1.某风景区集体门票的收费标准是:20人以内(含20人)。每人25元,超过20人的,超过的部分每人10元,某班51名学生该风景区浏览,购买门票要话多少钱?
20*25+(51-20)*10=810(元)
25.2.某公司推销某种产品,付给推销员每月的工资有两种方案:
方案一:不计推销多少都有600元底薪,每推销一件产品加付推销费2元;
方案二:不付底薪,每推销一件产品,付给推销费5元;
若小明一个月推销产品300件,那么他应选择哪一种工资方案比较合算?为什么?
方案一:600+2×300=1200(元)
方案二:300×5=1500(元)
所以方案二合算。
26.某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖出这两件衣服总的是盈利还是亏损,或是不盈不亏?
设其中一件衣服原价是X无,另一件是Y元,那么
X(1+25%)=60,得X=40
Y(1-25%)=60,得Y=80
总的情况是售价-原价,40+80-60*2=0
所以是不盈不亏
27.一家商店将某型号彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”,经顾客投诉后,执法部门按已得非法收入的10倍处以每台2700元罚款。求每台彩电的售价?
非法收入270元
原售价x
1.4x*0.8-x=270
x=2250
原售价2250元
28.机普通客舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的1.5%购买行李票。一名旅客带了35千克行李乘机,机票连同行李费共付1323元,求该旅客的机票价?
设机票价为X,X+1.5%*X*10=1323
票价为1150.43元
29.小明在第一次数学测验中得了82分,在第二次测验中得了96分,在第三次测验中至少得多少分。才能使三次测验的平均成绩不少于90分?
均成绩不少于90分,则总分不少于3*90=270分。
所以第三次测验至少要得270-82-96=92分。
30.甲骑自行车从某城A地出发,2h后,乙步行从同路赶了3h后两人相距16km,此时乙继续前进追赶,甲在原地休息了11/3h后从原地返回,又经过1h,甲乙两人相距于C点.请问”C点距离某城A多远?
设甲的速度为X km/s,乙的速度为Y km/s。
因乙在追赶甲的3小时中,甲也在前进,所以有方程5x-3y=16
甲休息11/3小时,这是甲比乙少走的时间,他们走的路程为16KM
所以有方程 (1+11/3)y+x=16
解方程组可得
y=192/79(km)
x=368/79
因甲总计前进了5小时,又返回一小时,所以C点距A点距离应是4倍X
应该为1472/79 约为18.633 KM
即C点距离A点约18.633km远
32.某单位在商店订购了x件白衬衣和y件花衬衣,每件白衬衣的价格是花衬衣价格的一倍半.当衬衣买来之后,发现白衬衣和花衬衣的件数和原来想买的件数刚好互换了,经查对,是订单填错了,用分式表示出按原来的设想需要的钱数与实际应付的数之比.
设单件白衬衣的价钱为z,则花的为2z
设想的钱数为:xz+2yz (注:x件白衬衣和y件花衬衣的花费)
实际的钱数为:2xz+yz (注:x件花衬衣和y件白衬衣的花费)
一求比值得我们所求结果为:(x+2y)/(2x+y)
33.某校初一有师生199人要租车外出旅游。如果租用可乘坐45名乘客的甲种旅行车,毎辆租金400元;如果租用可乘坐32名乘客的乙种旅行车,毎辆租金300元。若同时租两种车,费用最低是各租多少辆?最低费用是多少元?
199=45*3+32*2
400*3+300*2=1800yuan
34.某城市的出租车起步价为10元(即行驶距离在5千米以内都需付10元车费),达到或超过5千米后,毎行驶1千米加1.2(不足1千米也按1千米计
)。现某人乘车从甲地到乙地,支付车费17.2元,问从甲地到乙地的路程大约是多少?
解:
因为超过10元,所以超过5千米。
设路程为x千米
(x-5)*1.2+10=17.2
解得:x=11
答:......
35.两地相距300KM,一船航行于两地之间,若顺水需15H,逆流需20H 求船航行在静水和逆水中的速度格式多少?
首先了解;顺水速度=船速+水流速度;逆水速度=船速-水流速度
那么顺水速度*15就等于两地的距离300km,逆流速度*20也等于300km
解:设船速为x千米/时,水流速度为y千米/时.
15(x+y)=300
20(x-y)=300
解得x=17.5 y=2.5
则船在静水中的速度是17.5km/时,逆水速度是(17.5-2.5)=15km/时
36.现有1角,5角,1元硬币各10枚,从中取出15枚,共值7元.1角,5角,1元硬币各去多少枚?
实际上7元是个整数:
一如果没有1角的不会有15枚.
二如果有1角的,那么1角的只能是5枚或10枚或0枚:
①如果1角的有5枚,那么5角的枚数应该是单数,5角的只能是9,7,5枚,分析一下9枚不行,7枚刚好,5枚也不行.则可以得到一个结果:1角的5枚,5角的7枚,1元的3枚.
②如果1角的有10枚,那么5角的枚数应该是双数,5角的只能是4,2,0枚(共15枚),分析一下0枚的不行,2枚的也不行,4枚的还是不行.
③如果没有1角的,那么5角和1元的共15枚其组合的最小值应该是10个5角的和5个1元的,共10元,不行.
最终结果就是:1元的3枚,5角的7枚,1角的5枚.
37.一辆公共汽车上有(5A-4)名乘客,到站后有(9-2A)名乘客下车,问车上原有多少名乘客?
5a-4≥9-2a —— ①
9-2a>0 —— ②
由①得a≥13/7
由②得a<9/2
(5a-4)和(9-2a)都应该是正整数,所以a必须是整数。
满足13/7≤a<9/2的整数解为a1=2;a2=3;a3=4,所以车上原来有6、11或16个乘客。
38.校组织学生到距学校31千米的农村社会实践,上午行3小时,下午行4小时,且下午的平均速度比上午每小时慢1千米,求上、下午的平均速度各是多少
设上午速度是X,下午是Y
X-Y=1
3x+4y=31
解得:X=5,Y=4
即上午速度是5千米,下午是4千米
39.一游泳者逆水而上,在A处将一塑料空水壶丢失,前进50米到B处时,发现水壶丢失立即返回寻找,在C处找到,此人的游水速度是水流速度的1.5倍,问从丢失到找到水壶游了多少米?
设水壶漂流距离为x米,水流速度为v米/秒,则游泳者逆流游速度为1.5v-v=0.5v(米/秒),顺流游速度为1.5v+v=2.5v米/秒,根据题意(水壶漂流时间=此人游泳时间),得
50/0.5v+(50+x)/2.5v=x/v .
解这个方程,得x=200.
所以从丢失到找到水壶游了50×2+200=300米.
40.有甲,乙,丙三种文具,若购买甲2件,乙1件,丙3件共需23元;若购买甲1件,乙4件,丙5件共需36元,问购买甲1件,乙2件,丙3件共需多少元?
解:设购买甲需要x元,乙要y元,丙要z元,则
2x+y+3z=23
x+4y+5z=36
联立解得
y+z=7
x+z=8
现在要求x+2y+3z=x+z+2(y+z)=8+7*2=22元
所以购买甲1件,乙2件,丙3件共需22元
41.甲,乙两人在400米环形跑道上练习跑步,如果同方向跑,他们每隔3分零2秒相遇一次,如果相对跑,他们每隔40秒相遇一次,求甲,乙两人的速度各是多少?
甲,乙两人的速度各是x,y
(x+y)*40=400
(x-y)*182=400
42.40只脚的蜈蚣和3个头的龙在一个笼子里。共有26个头和298只脚,40只脚的蜈蚣只有一个头,问3个头的龙有几只脚?
三个未知数,两个方程。
设龙有a只脚,有x只蜈蚣,y只龙。
可列方程40x+ay=298 (1)
x+3y=26 (2)
由1式可知x的尽可能解有7,6,5,4,3,2,1,0
又有2式可得x=5,y=7或x=2,y=8 (只有y=7和y=8可除尽)
代入1式可得a=14
43.一批零件共840个,如果甲先做4天后,乙加入合作,那么再作8天完成,如果乙先做4天,甲加入合作,那么在做9天才能完成,求两人每天各做多少个?
解 设甲每天做x个机器零件,乙每天做y个机器零件,根据题意,得
(4+8)x+8y=840
9x+(4+9)y=840
解之得
x=50
y=30
答:甲、乙两人每天做机器零件分别为50个、30个.
44.小明和同学做游戏,规定从某点向前走20M,左拐30度,在向前走20M,再左拐30度,直至回到某点。请问小明共走了多少米?
解:最后走完其实是一个正12边形。
360/30=12。
结果:20*12=240米。
45.某校初一年级200名学生参加期中考试,数学成绩的及格学生的平均分是87分,不及格学生的平均分是43分,初一年级共平均分是76分,问这次考试中及格和不及格的人数各是多少人?
设这次考试中及格人数为x人,不及格人数为y人
x+y=200
87x+43y=200*76
x=150
y=50
46.某工程队要招聘甲乙两种工人150人,甲,乙两种工人的工人月工资分别为600元,1000元,现要求乙种不得少于甲种工人得2倍,问甲乙各招多少时,工资是最少?
设甲种X人,乙种Y人,钱数为S
2X大于等于Y
X+Y=150
3X=150
X=50
当2X=Y时钱最少
600X+1000Y=S
600X+1000(2X)=S
将X=50代入
600*50+1000*(2*50)
=30000+100000
=130000元
答:甲50人 ,乙100人,工资最少是13万元。
用初3的2次函数做好点``````
47.某商场计划拨款90000元从厂家购进50台电视机,已知该厂家生产的3种不同型号的电视机厂价分别为甲种每台1500元,乙种每台2100元,丙种每台2500元.
(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请研究进货方案.
(2)若商场销售一台甲电视获得利润150元,乙200元,丙250元,在(1)中的方案中,利润最高是什么
解:设甲种X台,乙种Y台,丙种Z台.
方案一:买甲乙
X+Y=50
1500X+2100Y=90000
X=25 Y=25
方案二:买甲丙
X+Z=50
1500X+2500Z=90000
X=35 Z=15
方案三:买乙丙
Z+Y=50
2500Z+2100Y=90000
Y=-37.5 Z=87.5(舍去)
所以有2种方案
方案一:25*150+25*200=8750
方案二:35*150+15*250=9000
选方案二利润高些
48.被誉为城区风景线的杭州东路跨湖段长1857米,其各项绿化指标如下表所示.分析下表,回答下列问题:
主要树种 株数
香樟 336
柳树 188
棕榈 258
桂花树 50
合计 832
已知杭州东路全长4744米,在各树行距(两树之间的水平距离)不变的情况下,请你估计全线栽植的香樟,棕榈各多少株(结果保留整数)
树间隔2.23m,全线树木4744/2.23+1=2128,香樟比例336/832,全线2128*336/832=859棕榈=659
49.某人用若干人民币购买了一种年利率为10%的一年期债券,到期后他取出本金的一半用作购物,剩下的一半及所得的利息又全部购买了这种一年期债券(利息不变),到期后得本息和1320元,问这个人当初购买这种债券花了多少元?
1200元
设他开始买债券花了x元,据题意列方程得:
x·10%·0.5+x+(x·10%·0.5)+(x·10%·0.5)·10%=1320
解得x=1200
50.某校初一年级学生数学竞赛共有20道题,每答对一题得5分,每答错或不答一题扣1分,求得70分要答对几题?
解:
20×5=100(分)
100-70=30分
30÷(5+1)=5道
20-5=15道
答:想得70分必须答对15题,错5题~
最后在送你一道题目^_^
D. 一年级奥数题及答案
好好做吧 对你有好处
最佳答案一、按规律填数。
1)64,48,40,36,34,( )
2)8,15,10,13,12,11,( )
3)1、4、5、8、9、( )、13、( )、( )
4)2、4、5、10、11、( )、( )
5)5,9,13,17,21,( ),( )
二、等差数列
1.在等差数列3,12,21,30,39,48,…中912是第几个数?
2.求1至100内所有不能被5或9整除的整数和
3.把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?
4.把从1开始的所有奇数进行分组,其中每组的第一个数都等于此组中所有数的个数,如(1),(3、5、7),(9、11、13、15、17、19、21、23、25),(27、29、……79),(81、……),求第5组中所有数的和
5.将自然数如下排列,
1 2 6 7 15 16 …
3 5 8 14 17 …
4 9 13 18 …
10 12 …
11 …
…
在这样的排列下,数字排在第2行第1列,13排在第3行第3列,问:1993排在第几行第几列?
三、 平均数问题
1.已知9个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是______ .
2.某班有40名学生,期中数学考试,有两名同学因故缺考,这时班级平均分为89分,缺考的同学补考各得99分,这个班级中考平均分是_______ .
3.今年前5个月,小明每月平均存钱4.2元,从6月起他每月储蓄6元,那么从哪个月起小明的平均储蓄超过5元?
4.A、B、C、D四个数,每次去掉一个数,将其余下的三个数求平均数,这样计算了4次,得到下面4个数.
23, 26, 30, 33
A、B、C、D 4个数的平均数是多少?
5 A、B、C、D4个数,每次去掉一个数,将其余3个数求平均数,这样计算了4次得到下面4个数23、26、30、33,A、B、C、D4个数的和是 。
四、加减乘除的简便运算
1)100-98+96-94+92-90+……+8-6+4-2=( )
2)1976+1977+……2000-1975-1976-……-1999=( )
3)26×99 =( )
4)67×12+67×35+67×52+67=( )
5)(14+28+39)×(28+39+15)-(14+28+39+15)×(28+39)
五、数阵图
1、△、□、〇分别代表三个不同的数,并且:
△+△+△=〇+〇;〇+〇+〇+〇=□+□+□; △+〇+〇+□=60
求:△= 〇= □=
2.将九个连续自然数填入3行3列的九个空格中,使每一横行及每一竖列的三个数之和都等于60.
3.将从1开始的九个连续奇数填入3行3列的九个空格中,使每一横行、每一竖列及两条对角线上的三个数之和都相等.
4 用1至9这9个数编制一个三阶幻方,写出所有可能的结果。所谓幻方是指在正方形的方格表的每个方格内填入不同的数,使得每行、每列和两条对角线上的各数之和相等;而阶数是指每行、每列所包含的方格的数。
六、和差倍问题
1.果园里一共种340棵桃树和杏树,其中桃树的棵数比杏树的3倍多20棵,两种树各种了多少棵?
2.一个长方形,周长是30厘米,长是宽的2倍,求这个长方形的面积。
3.甲、乙两个数,如果甲数加上320就等于乙数了.如果乙数加上460就等于甲数的3倍,两个数各是多少?
4.有两块同样长的布,第一块卖出25米,第二块卖出14米,剩下的布第二块是第一块的2倍,求每块布原有多少米?
5.果园里有桃树和梨树共150棵,桃树比梨树多20棵,两种果树各有多少棵?
6.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油?
七、年龄问题
1.兄弟俩今年的年龄和是30岁,当哥哥像弟弟现在这样大时,弟弟的年龄恰好是哥哥年龄的一半,哥哥今年几岁?
2.母女的年龄和是64岁,女儿年龄的3倍比母亲大8岁,求母女二人的年龄各是多少岁?
3.哥哥今年比小丽大12岁,8年前哥哥的年龄是小丽的4倍,今年二人各几岁?
4.爷爷今年72岁,孙子今年12岁,几年后爷爷的年龄是孙子的5倍?几年前爷爷的年龄是孙子的13倍?
八、假设问题
1、有42个同学参加植树,男生平均每人种3棵,女生平均每人种2棵,男生比女生多种56棵.男、女生各多少人?
2.某小学举行一次数学竞赛,共15道题,每做对一题得8分,每做错一题倒扣4分,小明共得了72分,他做对了多少道题?
3.一张试卷有25道题,答对一题得4分,答错或不答均倒扣1分,某同学共得60分,他答对了多少道题?
4.小华解答数学判断题,答对一题给4分,答错一题要倒扣4分,她答了20个判断题,结果只得了56分,她答错了多少道题?
5. 育才小学五年级举行数学竞赛,共10道题,每做对一道题得8分,错一题倒扣5分,张小灵最终得分为41分,她做对了多少道题?
50名同学去划船,坐11只船,其中大船坐6人,小船坐4人,问大小船各多少只?
有鸡兔同笼,他们一共有35个头,94只脚。问鸡和兔各有多少只?
答案:
设:鸡有x只,兔有y只。
x+y=35
因为鸡有4只脚,兔有两只脚。所以
4x+2y=94
所以2x+2y=70
x=12
所以y=23
学校购买蓝球、排球、足球三种球,第一次各买2个,共花去71.4元;第二次买4个篮球、3个排球、2个足球共花去113.7元,第三次买5个篮球、4个排球、2个足球共花去140.7元,求每个足、篮、排球的价钱?
足球:(71.4-27*2)/2=8.7(元)
篮球:113.7-8.7*2-27*3=15.3(元)
排球:71.4*8.7-15.3=11.7(元)
答:足球8.7元,篮球15.3元,排球11.7元。
1.在1到100的全部自然数中,既不是6的倍数,也不是5的倍数有多少个?
2.学校数学竞赛一举行了24次,共出了试题426道,每次出题有25道,或者16道,或者20道.其中考25道题的有多少次?
1.0 3 9 18 (30) (45)
2.2 6 12 20 (30) (42)
3.1 2 5 10 17 (26) (37)
4.1 2 5 6 13 14 25 26 (41)(42)61 62
5.20 25 21 29 22 33 (23) (37)
6.1 1 3 4 7 9 15 16 31 25 (63)(36)(127)(49)
7.1 7 13 19 (25)
8.1 1 4 8 9 27 (16)(64)
小东和小荣同时从甲地出发到乙地。小东每分钟60米,小荣每分钟70米。小荣到达乙地后立即返回甲地,从出发到小东相遇共用12分钟。甲乙两地相距多少米?
答案:(60×12+70×12)÷2=780米
某生产商为了扩大啤酒的销售,决定凡是在本店购买的啤酒,都能用三个啤酒瓶换一瓶啤酒,问一个人在这买了十五瓶啤酒,他最多能喝多少瓶啤酒??
都能用三个啤酒瓶换一瓶啤酒,意思为:你给老板3个瓶子,老板给你1个瓶子(就是1瓶酒),所以可以转换成2个瓶子换一瓶啤酒
15瓶瓶酒是必定喝到的
15÷2= 7(瓶)……1(瓶),就是能换7瓶
15+7=22(瓶)
1、大小两桶油,重量比是7:3,如果从大桶取出12千克倒入小桶,则两桶油中的油正好相等。两桶油原来各有多少油?
E. 一年级数学竞赛试卷可以出什么更多的动脑筋题
1、小亮从一楼到三楼用了2分钟,照这样的速度,她从一楼到八楼需要几分钟? (7分钟)
2、李林家住在四楼,他从底楼走到二楼要走18级楼梯,那么他从底楼到四楼一共要走多少楼梯?(54级)
3、 五根绳子系在一起,共打几个结?(4个)
4、把一根钢管截成6段,每截1次要1分钟,一共要几分钟?(5分钟)
5、把一根粗细均匀的木头锯成6段需要25分钟,每锯一次平均要用多少分钟?(5分钟)
6、同学们在校门口的一条走道的一旁插彩旗,从头到尾共插了8面,相邻两面彩旗之间相距3米,问这条走道长多少米?(21米)
7、公园路边放了一些椅子,从起点到终点共15把,每两把椅子之间有一头石狮子,问这条路边共有多少头石狮子?(14头)
8、时钟3点钟敲3下,2秒敲完,5点钟敲5下,几秒敲完?(4秒)
9、时钟2点钟敲2下,2秒敲完,5点钟敲5下,几秒敲完?(8秒)
10、把一根钢管截成5段,要锯几次?每截1次要2分钟,一共要几分钟?(4次,8分钟)
11、学校在圆形的花坛边放了12盆鲜花,每两盆之间相隔1米,这花坛一圈长多少米?(12米)
12、在正方形的花坛周围共摆放了8盆鲜花,每两盆鲜花之间间隔1米,这个正方形花坛一周长几米?(8米)
13、有一个长方形池塘,在池塘四周种了16棵柳树,每两课柳树之间又种了一棵桃树,桃树有多少棵?一共种树多少棵?(16棵桃树,共32棵)
14、 2、6、()、14、18() (10,22)
15、 1、3、4、6、7、()、()、12、13 (9,10)
16、 1、6、7、12、13、()、() (18.19)
17、 1、2、4、7、()、()、22 (11,16)
18、 3、4、7、11、()、29 (18)
19、 1、3、7、15、() (31)
20、 18、7、15、7、12、7()、()、6、7 (9、7)
21、小军喝一杯牛奶,第一次喝了半杯,用水加满,第二次喝了半杯后又用水加满,然后全部喝完。小军一共喝了几杯牛奶,几杯水。
F. 一年级数学题
好好做吧 对你有好处
最佳答案一、按规律填数。
1)64,48,40,36,34,( )
2)8,15,10,13,12,11,( )
3)1、4、5、8、9、( )、13、( )、( )
4)2、4、5、10、11、( )、( )
5)5,9,13,17,21,( ),( )
二、等差数列
1.在等差数列3,12,21,30,39,48,…中912是第几个数?
2.求1至100内所有不能被5或9整除的整数和
3.把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?
4.把从1开始的所有奇数进行分组,其中每组的第一个数都等于此组中所有数的个数,如(1),(3、5、7),(9、11、13、15、17、19、21、23、25),(27、29、……79),(81、……),求第5组中所有数的和
5.将自然数如下排列,
1 2 6 7 15 16 …
3 5 8 14 17 …
4 9 13 18 …
10 12 …
11 …
…
在这样的排列下,数字排在第2行第1列,13排在第3行第3列,问:1993排在第几行第几列?
三、 平均数问题
1.已知9个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是______ .
2.某班有40名学生,期中数学考试,有两名同学因故缺考,这时班级平均分为89分,缺考的同学补考各得99分,这个班级中考平均分是_______ .
3.今年前5个月,小明每月平均存钱4.2元,从6月起他每月储蓄6元,那么从哪个月起小明的平均储蓄超过5元?
4.A、B、C、D四个数,每次去掉一个数,将其余下的三个数求平均数,这样计算了4次,得到下面4个数.
23, 26, 30, 33
A、B、C、D 4个数的平均数是多少?
5 A、B、C、D4个数,每次去掉一个数,将其余3个数求平均数,这样计算了4次得到下面4个数23、26、30、33,A、B、C、D4个数的和是 。
四、加减乘除的简便运算
1)100-98+96-94+92-90+……+8-6+4-2=( )
2)1976+1977+……2000-1975-1976-……-1999=( )
3)26×99 =( )
4)67×12+67×35+67×52+67=( )
5)(14+28+39)×(28+39+15)-(14+28+39+15)×(28+39)
五、数阵图
1、△、□、〇分别代表三个不同的数,并且:
△+△+△=〇+〇;〇+〇+〇+〇=□+□+□; △+〇+〇+□=60
求:△= 〇= □=
2.将九个连续自然数填入3行3列的九个空格中,使每一横行及每一竖列的三个数之和都等于60.
3.将从1开始的九个连续奇数填入3行3列的九个空格中,使每一横行、每一竖列及两条对角线上的三个数之和都相等.
4 用1至9这9个数编制一个三阶幻方,写出所有可能的结果。所谓幻方是指在正方形的方格表的每个方格内填入不同的数,使得每行、每列和两条对角线上的各数之和相等;而阶数是指每行、每列所包含的方格的数。
六、和差倍问题
1.果园里一共种340棵桃树和杏树,其中桃树的棵数比杏树的3倍多20棵,两种树各种了多少棵?
2.一个长方形,周长是30厘米,长是宽的2倍,求这个长方形的面积。
3.甲、乙两个数,如果甲数加上320就等于乙数了.如果乙数加上460就等于甲数的3倍,两个数各是多少?
4.有两块同样长的布,第一块卖出25米,第二块卖出14米,剩下的布第二块是第一块的2倍,求每块布原有多少米?
5.果园里有桃树和梨树共150棵,桃树比梨树多20棵,两种果树各有多少棵?
6.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油?
七、年龄问题
1.兄弟俩今年的年龄和是30岁,当哥哥像弟弟现在这样大时,弟弟的年龄恰好是哥哥年龄的一半,哥哥今年几岁?
2.母女的年龄和是64岁,女儿年龄的3倍比母亲大8岁,求母女二人的年龄各是多少岁?
3.哥哥今年比小丽大12岁,8年前哥哥的年龄是小丽的4倍,今年二人各几岁?
4.爷爷今年72岁,孙子今年12岁,几年后爷爷的年龄是孙子的5倍?几年前爷爷的年龄是孙子的13倍?
八、假设问题
1、有42个同学参加植树,男生平均每人种3棵,女生平均每人种2棵,男生比女生多种56棵.男、女生各多少人?
2.某小学举行一次数学竞赛,共15道题,每做对一题得8分,每做错一题倒扣4分,小明共得了72分,他做对了多少道题?
3.一张试卷有25道题,答对一题得4分,答错或不答均倒扣1分,某同学共得60分,他答对了多少道题?
4.小华解答数学判断题,答对一题给4分,答错一题要倒扣4分,她答了20个判断题,结果只得了56分,她答错了多少道题?
5. 育才小学五年级举行数学竞赛,共10道题,每做对一道题得8分,错一题倒扣5分,张小灵最终得分为41分,她做对了多少道题?
50名同学去划船,坐11只船,其中大船坐6人,小船坐4人,问大小船各多少只?
有鸡兔同笼,他们一共有35个头,94只脚。问鸡和兔各有多少只?
答案:
设:鸡有x只,兔有y只。
x+y=35
因为鸡有4只脚,兔有两只脚。所以
4x+2y=94
所以2x+2y=70
x=12
所以y=23
学校购买蓝球、排球、足球三种球,第一次各买2个,共花去71.4元;第二次买4个篮球、3个排球、2个足球共花去113.7元,第三次买5个篮球、4个排球、2个足球共花去140.7元,求每个足、篮、排球的价钱?
足球:(71.4-27*2)/2=8.7(元)
篮球:113.7-8.7*2-27*3=15.3(元)
排球:71.4*8.7-15.3=11.7(元)
答:足球8.7元,篮球15.3元,排球11.7元。
1.在1到100的全部自然数中,既不是6的倍数,也不是5的倍数有多少个?
2.学校数学竞赛一举行了24次,共出了试题426道,每次出题有25道,或者16道,或者20道.其中考25道题的有多少次?
1.0 3 9 18 (30) (45)
2.2 6 12 20 (30) (42)
3.1 2 5 10 17 (26) (37)
4.1 2 5 6 13 14 25 26 (41)(42)61 62
5.20 25 21 29 22 33 (23) (37)
6.1 1 3 4 7 9 15 16 31 25 (63)(36)(127)(49)
7.1 7 13 19 (25)
8.1 1 4 8 9 27 (16)(64)
小东和小荣同时从甲地出发到乙地。小东每分钟60米,小荣每分钟70米。小荣到达乙地后立即返回甲地,从出发到小东相遇共用12分钟。甲乙两地相距多少米?
答案:(60×12+70×12)÷2=780米
某生产商为了扩大啤酒的销售,决定凡是在本店购买的啤酒,都能用三个啤酒瓶换一瓶啤酒,问一个人在这买了十五瓶啤酒,他最多能喝多少瓶啤酒??
都能用三个啤酒瓶换一瓶啤酒,意思为:你给老板3个瓶子,老板给你1个瓶子(就是1瓶酒),所以可以转换成2个瓶子换一瓶啤酒
15瓶瓶酒是必定喝到的
15÷2= 7(瓶)……1(瓶),就是能换7瓶
15+7=22(瓶)
1、大小两桶油,重量比是7:3,如果从大桶取出12千克倒入小桶,则两桶油中的油正好相等。两桶油原来各有多少油?
请采纳。
G. 求30道初一奥数题。
1.已知关于x的方程2a(x-1)=(5-a)x+3b有无数多个解,那么a=_____,b=_____.
答:2a(x-1)=(5-a)x+3b
2ax-2a=5x-ax+3b
3ax-5x=2a+3b
x(3a-5)=2a+3b
关于x的方程2a(x-1)=(5-a)x+3b有无数多个解
所以无论X取何值,总成立
所以此方程与X无关
所以 3a-5=0 , 2a+3b=0
a=5/3 , b= -10/9
2.由自然数1~9组成的一切可能的没有重复数字的四位数,这些四位数之和是多少?
答:首先看看一共有多少个四位数。
千位有9种可能,百位有8种,十位有7种,个位有6种。
一共有3024个四位数。
先看个位。由于每个数字的地位是平等的,所以
有九分之一,就是有336个数的个位是1,有336个数的个位是2,有336个数的个位是3,……有336个数的个位是9。
这些所有的个位相加就是336×(1+2+...+9)×1。
再看十位。由于每个数字的地位是平等的,所以
有九分之一,就是有336个数的十位是1,有336个数的十位是2,有336个数的十位是3,……有336个数的十位是9。
这些所有的个位相加就是336×(1+2+...+9)×10。
再看百位。由上面分析可知,所有的百位相加就是336×(1+2+...+9)×100。
再看千位。由上面分析可知,所有的千位相加就是336×(1+2+...+9)×1000。
所以所有的四位数之和,就是:
336×(1+2+...+9)×1+336×(1+2+...+9)×10+336×(1+2+...+9)×100+336×(1+2+...+9)×1000
=336×(1+2+...+9)×(1+10+100+1000)
=336×45×1111
=16798320
一张方桌由一个桌面和四条腿组成,1立方米木料可制作桌面50张或桌腿300条,现在有5立方米木料,问用多少木料制作桌面,多少木料制桌腿,正好配成方桌多少张?
轮船在静水中的速度为1小时24千米,水流速度是2千米一小时,该船在甲乙两地间行驶一个来回就用了6小时,求从甲到乙顺流航行和从乙到甲逆流航行各用了多少时间,甲乙两地距离是多少?
甲仓存煤200吨,乙仓存煤70吨,若甲仓每天运出15吨,乙仓每天运进25吨,几天后乙仓存煤是甲仓的2倍?
甲车间有工人27人,乙车间有工人19人,现在新招20名工人,为使甲车间的人数是乙车间人数的2倍,应把新工人如何分配到两个车间中去?
1,设可以做x张方桌,则
需要做x张桌面,4x条桌腿
x*(1/50)+4x*(1/300)=5
解得 x=150
2,解:设甲乙两地的距离是x千米,
根据题意得: x/(24+2)+x/(24-2)=6
解得 x=71.5
则 ...........
3题
解设x天后已仓的媒是甲仓的2倍
则 2*(200-15x)=70+25x
解得 x=6
4题
解设向甲车间安排x人,则向乙车间安排20-x人
根据题意得 27+x=2*(19+20-x)
解得 x=17
1.一个两位数,十位数字是x,各位数字是x-1,把十位数字与各位数字对调后,所得到的两位数是什么?
2.小小的妈妈带m元钱上街买菜,她买肉用去了二分之一,买蔬菜用去了剩下的三分之一,那么她还剩多少元?
相关答案:
第一题:11X-10
第二题:M-m/2-m/2/3=1/3M 元
如下图,第100行的第5个数是几?
1
2 3
4 5 6
7 8 9 10
11 12 13 14 15
16 17........
答案是4955
由图的左边最外层1 2 4 7 11 16 得后面的数总是比前面的数大,
而且第2个比第1个大1....第3个比第4个大2....第4个比第3个大3..第5个比第第4个大4....第6个比第5个大5..........所以可以设左边最外层中第n个数为x 则x等于〔1加2加3加……加〈n—1〉〕.......所以第100行的第1个数为〔1加2加3加……加〈100—1〉〕等于4951
所以第100行第5个数为4955
一、计算1+3+5+7+…+1997+1999的值。
二、若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值。
三、已知
1 2 3
--- + --- + --- = 0 ①
x y z
1 6 5
--- - --- - --- =0 ②
x y z
x y z
试求 --- + --- + --- 的值
y z x
四、在1,2,3,…,1998中的每一个数的前面任意添上一个“+”或“-”那么最后计算出来的结果是奇数还是偶数?
五、某校初中一年级举行数学竞赛,参加的认识是未参加人数的3倍,如果该年级减少6人,未参加的学生增加6人,那么参加与未参加人数之比是
2:1 求参加竞赛的与未参加竞赛的认识以及初中一年级的人数
答案:一题:
原式=(1+1999)*[(1999-1)/2+1]/2
=2000*1000 /2
=1000000
二题:
2x+|4-5x|+|1-3x|+4的值恒为常数,则
4-5X≥0,1-3X≤0
所以:1/3≤X≤4/5
原式=2X+4-5X+3X-1+4=7
三题:
由②得:1/X=6/Y+5/Z代入 ①得
8/Y+8/Z=0
所以:Y=-Z代入1/X=6/Y+5/Z得:
1/X=1/Y
所以:X=Y
X/Y+Y/Z+Z/X=1-1-1=-1
四题:
在1,2,3,…,1998中,共有999个奇数,999个偶数,
无论二个偶数间的加减,其结果都是偶数,所以只考虑奇数间的关系.
因为任意二个奇数间的加减,其结果都是偶数,
所以,最后都是一个奇数和一个偶数间的加减,
所以,最后计算出来的结果是奇数.
五题:
设:未参加竞赛的人数为X,则参加竞赛的人数为3X,全校总人数为4X
如果该年级减少6人,则总人数为4X-6
未参加的学生增加6人,则未参加的人数为X+6,
参加的人数为4X-6-(X+6)=3X-12
参加与未参加人数之比是2:1
所以:3X-12=2*(X+6)
解之得:X=24(人),参加竞赛的人数为3X=72人,全校总人数为4X=96人
负二分之一 三分之一
负四分之一 五分之一 负六分之一
负七分之一 八分之一 负九分之一 十分之一。。。。。。
这组数中,第2007行第7个是什么数?
第1行有1个数,
第2行有2个数,
第3行有3个数,
....
所以第n行有n个数,
1到2006行,一起有数:
1+2+3+...+2006=2006*2007/2=2013021 个.
2013021+7=2013028
第2007行第7个的分数是1/2013028.
又发现,在每行第奇数个位置的都是负数.
所以第2007行第7个是: -1/2013028
1.已知关于x的方程2a(x-1)=(5-a)x+3b有无数多个解,那么a=_____,b=_____.
答:2a(x-1)=(5-a)x+3b
2ax-2a=5x-ax+3b
3ax-5x=2a+3b
x(3a-5)=2a+3b
关于x的方程2a(x-1)=(5-a)x+3b有无数多个解
所以无论X取何值,总成立
所以此方程与X无关
所以 3a-5=0 , 2a+3b=0
a=5/3 , b= -10/9
2.由自然数1~9组成的一切可能的没有重复数字的四位数,这些四位数之和是多少?
答:首先看看一共有多少个四位数。
千位有9种可能,百位有8种,十位有7种,个位有6种。
一共有3024个四位数。
先看个位。由于每个数字的地位是平等的,所以
有九分之一,就是有336个数的个位是1,有336个数的个位是2,有336个数的个位是3,……有336个数的个位是9。
这些所有的个位相加就是336×(1+2+...+9)×1。
再看十位。由于每个数字的地位是平等的,所以
有九分之一,就是有336个数的十位是1,有336个数的十位是2,有336个数的十位是3,……有336个数的十位是9。
这些所有的个位相加就是336×(1+2+...+9)×10。
再看百位。由上面分析可知,所有的百位相加就是336×(1+2+...+9)×100。
再看千位。由上面分析可知,所有的千位相加就是336×(1+2+...+9)×1000。
所以所有的四位数之和,就是:
336×(1+2+...+9)×1+336×(1+2+...+9)×10+336×(1+2+...+9)×100+336×(1+2+...+9)×1000
=336×(1+2+...+9)×(1+10+100+1000)
=336×45×1111
=16798320
H. 麻烦您出20道。一年级数学开发智力的竞赛题
1. 哥哥有4个苹果,姐姐有3个苹果,弟弟有8个苹果,哥哥给弟弟1个后,弟弟吃了3个,这时谁的苹果多?
2.小明今年6岁,小强今年4岁,2年后,小明比小强大几岁?
3.同学们排队做操,小明前面有4个人,后面有4个人,这一队一共有多少人?
4.有一本书,小华第一天看了2页,以后每一天都比前一天多看2页,第4天看了多少页?
5.同学们排队做操,从前面数小明排第4个,从后面数小明排第5个,这一队一共有多少人?
6.有8个皮球,如果男生每人发一个,就多2个,如果女生每人发一个,就少2个,男生有多少人,女生有多少人?
7.老师给9个三生每人发一朵花,还多出1朵红花,老师共有多少朵红花?
8.有5个同学投沙包,老师如果发给每人2个沙包就差1个,老师共有多少个沙包?
9.刚刚有9本书,爸爸又给他买了5本,小明借去2本,刚刚还有几本书?
10.一队小学生,李平前面有8个学生比他高,后面有3个学生比他矮,这队小学生共有多少人?
11.小林吃了8块饼干后,小林现在有4块饼干,小林原来有多少块饼干?
12.哥哥送给弟弟5支铅笔后,还剩6支,哥哥原来有几支铅笔?
13.第二中队有8名男同学,女同学的人数跟男同学同样多,第二中队共有多少名同学?
14.大华和小刚每人有10张画片,大华给小刚2张后,小刚比大华多几张?
15.猫妈妈给小白5条鱼,给小花4条鱼,小白和小花共吃了6条,它们还有几条?
16.同学们到体育馆借球,一班借了9只,二班借了6只。体育馆的球共减少了几只?
17.明明从布袋里拿出5个白皮球和5个花皮球后,白皮球还剩下10个,花皮球还剩下5个。布袋里原来有多少个白皮球,多少个花皮球?
18.芳芳做了14朵花,晶晶做了8朵花,芳芳给晶晶几朵花,两人的花就一样多?
19.妈妈买回一些鸭蛋和12个鸡蛋,吃了8个鸡蛋后,剩下的鸡蛋和鸭蛋同样多,问妈妈一共买回几个蛋?
20.草地上有10只羊,跑走了3只白山羊,又来了7只黑山羊,现在共有几只羊?
21.冬冬有5支铅笔,南南有9支铅笔,冬冬再买几支就和南南的一样多?
22.小平家距学校2千米,一次他上学走了1千米,想起忘带铅笔盒,又回家去取。这次他到学校共走了多少千米?
23.马戏团有1只老虎,3只猴子,黑熊和老虎一样多,问马戏团有几只动物?
24.春天来了,小明、小冬和小强到郊外捉蝴蝶,小明捉了3只,小冬捉了5只,他们一共捉了12只,小强捉了几只?
25.小华和爸爸、妈妈为植树节义务植树,小华植了1棵,爸爸植了5棵,妈妈比爸爸少植2棵,妈妈植了多少棵,他们一共植了多少棵?
26.第一个盘子里有5个梨,第二个盘子里有4个梨,把第一个盘里拿1个放到第二个盘里,现在一共有多少个梨?
27.小红有2个玩具,小英有3个玩具,小明的玩具比小红多2个,小明有几个玩具?
28.新星小学术兴趣小组有学生9人,书法兴趣小组的人数和术兴趣小组的人数同样多,这两个兴趣小组共有多少名学生?
29.3个男同学借走6本书,4个女同学借走7本书,他们一共借走多少本书?
30.王老师有12元钱,正买一支钢笔和2个笔记本,如果只买一支钢笔,还剩6元钱,你知道一个笔记本多少钱?
31.日落西山晚霞红,我把小鸡赶进笼。一半小鸡进了笼,还有5只在捉虫,另外5只围着我,叽叽喳喳闹哄哄。小朋友们算一算,多少小鸡进了笼?
32.一只猫吃掉一条鱼需要1分钟。照这样,100只猫同时吃掉100条鱼需要几分钟?
33.5个小朋友同时吃5个苹果需要5分钟,照这样,10个小朋友同时吃10个苹果需要几分钟?
34.小华有10个红气球,小花有8个黄气球。小华用4个红气球换小花3个黄气球,现在小华、小花各有几个球?
35.13个小朋友玩“老鹰抓小鸡”的游戏,已经抓住了5只“小鸡”,还有几只没抓住?
36.天色已晚,妈妈叫小明打开房间电灯,可淘气的小明一连拉了9下开关。请你说说这时灯是亮还是不亮?拉20下呢?拉100下呢?
37.小青有9本故事书,小新有7本连环画,小青用3本故事书换小新2本连环画,现在小青、小新各有几本书?
38.小敏到商店买文具用品。她用所带钱的一半买了1支铅笔,剩下的,一半买了1支圆珠笔,还剩下1元钱。小敏原来有多少钱?
39.欢欢和乐乐去买练习本,欢欢买了4本,乐乐买了6本,欢欢比乐乐少花1元钱,一本练习本多少钱?
40.李老师带有60元钱,正好买一个足球和两个排球。如果只买两个排球,还剩28元。一个足球多少钱?一个排球多少钱?
41.15个小朋友排成一队,小东的前面有9人,小东后面有几人?
42.14个同学站成一队做操,从前面数张兵是第6个,从后数他是第几个?
43.13只鸡排成一队,其中有只大公鸡,从前面数,它站在第8,它的后面有几只鸡?
44.13只鸡排成一队,其中有只大公鸡,它的前面有8只鸡,它的后面有几只鸡?
45.有两篮苹果,第一篮25个,第二篮19个,从第一篮中拿几个放入第二篮,两篮的苹果数相等?
46.小力有18张画片,送给小龙3张后,两人的画片同样多。小龙原来有几张画片?
47.小华给小方8枚邮票后,两人的邮票枚数同样多,小华原来比小方多几格邮票?
48.大林比小林多做15道口算题,小明比小林多做6道口算题,大林比小明多做几道口算题?
49.小花今年6岁,爸爸对小花说:“你长到10岁的时候,我正好40岁。”爸爸今年多少岁?
50.动物园里有只长颈鹿,它的年龄数是用最大的两位数减去最小的两位数,再减去最大的一位数后所得的数。这只长颈鹿有多少岁?
51.6个小朋友分一袋苹果,分来分去多2个,问这袋苹果至少有几个?
52.一根60米长的绳子,做跳绳用去12米,修排球网用去30米,这根绳子少了多少米?
53.商场运回28台电视机,卖出一些后还剩15台,卖出多少台?
54.小虎学写毛笔字,第一天写6个,以后每天比前一天多写3个,四天一共写了多少个?
55.小云今年8岁,奶奶说:“你长到12岁的时候,我62岁。”奶奶今年多少岁?
56.最小的三位数减去最小的两位数,再减去最小的一位数,所得的结果是多少?
57.妈妈从家里到工厂要走3千米,一次,她上班走了2千米,又回家取一很重要工具,再到工厂。这次妈妈上班一共走了多少千米?