初三数学课
A. 初三数学学习必须先打好学习基础
初中数学的基础知识,主要是概念、法则、性质、公式、公理、定理以及由其内容所反映出来的数学思想和方法。在新课程标准总目标中特别提出学生要“获得适应未来社会生活和继续学习所必需的数学基本知识和技能以及基本的数学思想方法”。掌握好数学思想和方法,培养我们的创新意识是全面提高思维品质的必要条件。
掌握数学思想方法可以使数学更容易理解和记忆,更重要的是领会数学思想方法是通向成功的“光明之路”,如果把数学思想和方法学好了,在数学思想和方法的指导下运用数学方法驾驭数学知识,就能培养我们的数学能力,使数学学习就较容易。
数学思想方法的学习可以使我们有意识、自觉地将数学知识转化为数学能力,最终通过自身的学习转化为创造性能力。因此,加强数学思想方法的学习,是培养我们分析问题和解决问题的能力的重要方法。
数学思想方法又是处理数学问题的指导思想和基本策略,是数学的灵魂。因此,我们领悟和掌握以数学知识为载体的数学思想方法,是提高思维水平,真正懂得数学的价值,建立科学的数学观念,从而发展数学,运用数学的重要保证。
所谓数学思想方法是对数学知识的本质认识,是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观点,他在认识活动中被反复运用,带有普遍的指导意义,是建立数学和用数学解决问题的指导思想;是在数学地提出问题、解决问题(包括数学内部问题和实际问题)过程中,所采用的各种方式、手段、途径等。初中数学中常用的数学思想方法有:化归思想方法、分类思想方法、数形结合的思想方法、函数思想方法、方程思想方法、模型思想方法、统计思想方法、用字母代替数的思想方法、运动变换的思想方法等。
在初三复习时,特别对章节复习或总复习时,将统领知识的数学思想方法概括出来,增强我们对数学思想方法的应用意识,从而有利于我们更透彻地理解所学的知识,提高独立分析、解决问题的能力,培养我们的创新意识,进而提高我们的思维品质。
B. 初三数学一周标准几节课
5节,一天一节。不包括晚自习和其他加课。
C. 初三下学期数学都教了那些课程
一、分式
1、 同底数幂相除,底数不变,指数相减。am an=am-n(a 0)
2、 两个单项式相除,只要将系数及同底数幂分别相除。
3、 形如 (A、B是整式,且B中含有字母,B 0)的式子叫做分式。 =0(A=0,B 0)。
4、 分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。约分后,分子与分母不再有公因式的分式称为最简分式。分式运算的结果一定要是最简。
5、 最简公分母是各分母所有因式的最高次幂的积。
6、 在将分式方程变形为整式方程时,方程两边同乘以一个含未知数的整式,并约去分母,有时可能产生不适合原方程的解(或根),这种根称为增根。因此,在解分式方程时必须进行检验。
7、 任何不等于零的数的零次幂都等于1。a0=1(a 0)
8、 任何不等于零的数的-n(n为正整数)次幂,等于这个数的n次幂的倒数。a-n=( )n= (a
9、 用科学记数法表示一些绝对值较小的数,即将它们表示成a 的形式,其中n是正整数,1≤ <10。例如0.000021=2.1
二、一元二次方程
1、 只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。一般形式:ax2+bx+c=0(a、b、c是已知数,a 其中a、b、c分别叫做二次项系数、一次项系数和常数项。
2、 一元二次方程的解法:(1)直接开平方法(2)因式分解法(十字相乘法)(3)公式法x= (b2-4ac (4)配方法(重点见P32)
3、 一元二次方程根的判别式( 2-4ac)当a 时(1) >0时方程有两个不相等的实数根;(2) =0时方程有两不相等的实数根;(3) <0时方程没有实数根
4、 一元二次方程根与系数关系(韦达定理):ax2+bx+c=0(a、b、c是已知数,a 当 ≥0时,设方程两根为x1,x2则x1+x2=- ,x1 x2= 如 = =……
5、 以x1,x2为根的一元二次方程为:
三、二次函数
2、抛物线 的对称轴是 轴,顶点是原点,当 时,开口向上,当 时,开口向下。
四、图形的全等
1、能够完全重合的两个图形就是全等图形。互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
2、全等图形的对应边相等,对应角相等。
3、全等三角形的识别(1)如果两个三角形的三条边分别对应相等,那么这两个三角形全等。简记(边边边或SSS)(2) 如果两个三角形有两边及其夹角分别对应相等,那么这个三角形全等。简记为(边角边SAS) (3)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等,简记为(角边角ASA) (4)如果两个三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等。简记为(HL)
4、能判断正确或是错误的句子叫做命题,命题常写成“如果……那么……”的形式,用“如果”开始的部分是题设,用“那么”开始的部分是结论。能判断其它命题真假的原始依据,这样的真命题叫做公理。有些命题可以从公理或其它真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其它命题真假的依据,这样的真命题叫做定理。根据题设,定义以及公理、定理等,经过逻辑推理,来判断一个命题是否正确,这样的推理过程叫做证明。
五、圆
1、 圆的有关概念:(1)、确定一个圆的要素是圆心和半径。(2)连结圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。圆上任意两点间的部分叫做圆弧,简称弧。小于半圆周的圆弧叫做劣弧。大于半圆周的圆弧叫做优弧。在同圆或等圆中,能够互相重合的弧叫做等弧。顶点在圆上,并且两边和圆相交的角叫圆周角。经过三角形三个顶点可以画一个圆,并且只能画一个,经过三角形三个顶点的圆叫做三角形的外接圆,三角形外接圆的圆心叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形,外心是三角形各边中垂线的交点;直角三角形外接圆半径等于斜边的一半。与三角形各边都相切的圆叫做三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆外切三角形,三角形的内心就是三角形三条内角平分线的交点。直角三角形内切圆半径 满足: 。
2、 圆的有关性质(1)定理在同圆或等圆中,如果圆心角相等,那么它所对的弧相等,所对的弦相等,所对的弦的弦心距相等。推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对的其余各组量都分别相等。(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。推论1(ⅰ)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。(ⅱ)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。(ⅲ)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。推论2圆的两条平行弦所夹的弧相等。(3)圆周角定理:一条弧所对的圆周角等于该弧所对的圆心角的一半。推论1在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等。推论2半圆或直径所对的圆周角都相等,都等于90 。90 的圆周角所对的弦是圆的直径。推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。(4)切线的判定与性质:判定定理:经过半径的外端且垂直与这条半径的直线是圆的切线。性质定理:圆的切线垂直于经过切点的半径;经过圆心且垂直于切线的直线必经过切点;经过切点切垂直于切线的直线必经过圆心。(5)定理:不在同一条直线上的三个点确定一个圆。(6)圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长;切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角。(7)圆内接四边形对角互补,一个外角等于内对角;圆外切四边形对边和相等;(8)弦切角定理:弦切角等于它所它所夹弧对的圆周角。(9)和圆有关的比例线段:相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。从圆外一点引圆的两条割线,这一点到每条割线与圆交点的两条线段长的积相等。(10)两圆相切,连心线过切点;两圆相交,连心线垂直平分公共弦。
3、与圆有关的位置关系
(1)点和圆的位置关系:点在圆内d (2)直线和圆的位置关系:直线与圆相离(d>r);直线与圆相切( ),这条直线叫做圆的切线;直线与圆相交( ),这条直线叫做圆的割线。(3)圆和圆的位置关系:外离(d>R+r);外切 ;相交( ) ;内切( ) ;内含 。
4、圆中的计算: ;圆锥侧面积= ;圆锥侧面展开图扇形弧长
D. 如何学初三数学,方法,如何归纳总结
1、上课前要调整好心态,一定不能想,哎,又是数学课,上课时听讲心情就很不好,这样当然学不好!
2、上课时一定要认真听讲,作到耳到、眼到、手到!这个很重要,一定要学会做笔记,上课时如果老师讲的快,一定静下心来听,不要记,下课时再整理到笔记本上!保持高效率!
3、俗话说兴趣是最好的老师,当别人谈论最讨厌的课时,你要告诉自己,我喜欢数学!
4、保证遇到的每一题都要弄会,弄懂,这个很重要!不会就问,不要不好意思,要学会举一反三!也就是要灵活运用!作的题不要求多,但要精!
5、要有错题集,把平时遇到的好题记下来,错题记下来,并要多看,多思考,加油
E. 如何学好初三数学
如何学好初三数学,是摆在即将升入新初三学生面前的一个难题。其实,学好数学并不难!
一、课本要“预、做、复”。每堂新课之前,做到先预习,特别要把难点或不懂之处用彩笔划出,以便上课时更加注意。每节内容后面的练习自己可以先做一做,做到看懂70%的新内容,会做80%的练习题。每节新内容学完后,我们要按照课本内容,从易到难,从简到繁,一步一步地把学过的知识进行比较复习,对概念、定理、公式做出归纳、总结,加深对知识的理解,最好能把课本上的例题自己做一遍。对课本上的概念、定理、公式推理一遍,以形成对知识的整体认识。
二、上课要“听、记、练”。把预习中存在的问题放在课堂上着重听,必要时还需做好笔记,并通过一些练习题加以巩固。数学不同于其他学科,单把概念、定理、公式背熟,无法解决实际问题,只有通过练来减少运算中出现的错误。
三、作业要“思、问、集”。作业一定要养成独立思考的习惯,多从不同的方法、角度入手,多从典型题目中探索多种解题方法,从中得到联想和启发。同时,还应多树立数学解题思想:如,方程的思想、函数的思想、数形结合的思想、整体的思想、分类的思想等常用方法;对于难题,要多问几个为什么,如改变条件、添加条件、结论与条件互换,原结论还成立吗?另外,对于自己作业、试卷中出现的错误,最好能准备一本错题集,以便今后复习中使用。做到绝不出现第二次类似错误。
总之,学习数学要有方法、计划和合理的安排。新课授完后,有些同学就感到头痛,于是,东看看西翻翻,一天下来,不知道自己学了什么。因此,每个同学都应根据自己的实际情况制订出合理的学习方法、目标;没有方法,就会变成一只无头苍蝇;没有目标就会没有动力。
如果想拿高分建议你做一做历年中考的最后两道题
还要总结一下以往错题 常看避免再犯
(1)学会“数学阅读”
在中小学,我们会遇到这样的情况,当学生向教师问问题时,一些教师常常会说:请你把问题再读两遍;请你把问题讲一讲;请你把问题抄一遍;等等。这些教师要表达的是一个意思,请你再读一读,再理解一下。
我们讲一个真实的故事。在大学,每年都要举办一次“数学建模竞赛”,竞赛的问题都是一些实际问题,要求三人一组,工作三天,共同完成一篇解决问题的“论文”,可以借助各种图书、网上资源和工具(包括计算机和软件等)。1993或1994年,首都师范大学第一次组队参加,让我们担任指导教师,我们十分为难,首都师范大学的学生要与北大、清华的学生一起考试,差距是明显的,是多方面的。我们分析,感到最大的差距是:独立地学习和理解数学的习惯和能力。我们改变了辅导的方式,让学生选择内容,学生讲,我们听。开始阶段,我们总会说:对不起,我们没有听懂,请你重新准备。有的学生讲过四、五遍,当我们感到他真的懂了,再学别的。这种方法很好,大部分学生经历了一次这样的过程以后,再报告其他的内容就变得比较顺利了。这些学生在竞赛中得到了很好的成绩。
在学习外语时,有一种基本能力:阅读理解。我们感到在数学的学习中,“数学阅读”也是非常基本的。这些年我们接触了一些中小学的教学实际,中小学生独立进行“数学阅读”的要求和机会越来越少。教师是好意,为了使学生尽快地提高考试成绩,为了“多讲一些”,为了“节约时间”,教师替代学生做得太多了。我们希望同学们认识到,提高数学阅读能力是学好数学的基本功之一。我们曾经做过一个调查,在地质学科的论文中,数学公式的出现次数是平均每页六次之多。在其他的学科中也有类似的情况。为了更好的说明数学阅读在中小学的重要性,我们以数学“应用问题”为例加以说明。
在中小学数学教学中,“应用问题”常常是难点,为什么难?主要两个理由,一个理由是背景丰富,都是一元二次方程,但是,可以用各种背景去展示,很难规为题型,如果归为“一元二次方程的应用题”,就好像没有归类,如果从背景归类,又会十分庞杂。
第二个理由是问题和条件不像“传统的数学习题”那样规范,有时需要自己从叙述中明确“要求的结论和要证的结论”,“条件”和“结论”的关系不像“传统的数学习题”那样“可丁可卯”,即条件不可多也不可少。这样,需要分析和判断哪些条件有用,哪些条件没用,而分析和判断的依据是因题而异。对目前中小学教学的基调——题型,这些是不匹配的。
应用问题“难”在需要“数学阅读理解”能力,“难”在这种能力不能突击培养、不容易模式化,“难”在教师不能替代。
应用问题,包括数学建模,她的教育作用有两方面。一方面,体会数学与日常生活、数学与其他学科的联系,数学的社会发展中的作用,体会数学的价值。另一方面,从另一个角度体会做数学的过程,数学不仅仅是从概念到概念,从定理到定理,从一些结果到一个新的结果;数学是有背景的,这些背景中蕴含着深刻的数学内涵,这些背景在数学思考中发挥了重要的作用;做数学会有一个过程,是一个很有趣的过程,需要我们发现问题,提出猜想,分析和寻求条件,并且,还会不断地修正,甚至反复,等等。
“数学阅读理解”能力是一种基本能力,教师和学生都应予以重视,提高这种能力需要比较长期的积累,作为教师应该针对不同的学生提供不同的建议。
在中小学数学教学中,有一个认识上的障碍,一些人认为:“学习数学就是做数学习题”,也有人认为:“做习题能力是实的,其他都是虚的。”这种看法是有一定道理的,特别是在对付考试时会起一定的作用。做数学习题的能力是反映数学能力的一个重要方面,通过做习题有助于对一些数学技能、方法的理解。但是,数学的学习还包含更丰富的内容,关于这些我们在前面已经讲了很多。
建议教师多给学生一些机会,针对不同水平和特点的学生,提高他们的“数学阅读理解能力”。很多教师在这方面积累了一些很好的经验,例如,有针对性地让学生阅读教材和收集参考资料,在阅读中,让学生思考“一些重要概念”形成的过程,思考某些章节的知识结构,不同概念(像函数与数列等)的内在联系,等等,并鼓励学生把自己的思考写成报告。
希望学生们把思路开阔一些,除了做习题,还能提出一些值得思考的问题,并养成思考问题的习惯,我们在北大数学系读书时,曾问过丁石孙老师一个问题,大体意思是:什么样的学生算好学生?丁先生的回答使我们终生难忘,“没有问题的学生恐怕不能算好学生”。对很多学生来说,除了不会做的习题,大概没有值得思考的问题。在数学的阅读中,应该不断的提出问题,把自己对数学的理解深入下去。
(2)养成好的数学学习习惯
在这次课程改革中,提出三维目标,其中“过程”也作为一个目标。“学习习惯”是过程的一个很好的体现。
什么是学习习惯?
有的学生放学,回家就做作业(一般是做习题),做完,就算完成学习任务。
有的学生,回家后,先把教师讲授内容的教材认真地读一遍,然后,再做作业,做完,再想一想,今天学的与以前学的有什么联系。
有的学生有些总结的习惯,学习一个段落的内容,一定要整理一下,写下来。
有的学生不喜欢写,喜欢想,常常会做在那发呆,把学过的回忆一遍。
……
不同的学生有不同的学习习惯。养成一个适合自身情况,好的学习习惯,会提高学习的效率,会自然地保持下去,会一生受益。
数学学习有自身的特点,例如,很多人在讲解数学时,喜欢画图,总会用最直观、形象的语言来解释本质的内容;有些人在讲解抽象数学概念时,总喜欢选择一些大家非常熟悉的例子,一下子就会把抽象概念很清晰地表示出来;有些人在教授数学时,总让人有一种整体的感觉,来源、过程、结果、应用等,哪一部分都是不可缺少的,十分自然。用直观的图像来表述抽象的概念;用具体的事例来理解一般的事物;不断地形成整体知识框架;等等。这些都是非常好的“习惯”。
这些好习惯的形成需要长时间的积累,教师自觉不自觉地都在用自己的习惯影响学生,希望各位教师把这件事做得更自觉一些,更主动一些。也希望学生在学习中,成为有心人,形成一些适合自身条件、行之有效的好习惯,改变一些不好的习惯,提高学习效率。
(3)学会“索取”——主动学习
从教师的角度,总希望千方百计把自己的东西给学生。有的学生不知道该如何接受这些东西;有的学生不论好坏全收;有的会挑挑拣拣,好得留下,重要的收好;等等。但是,一般地,教师最喜欢会主动“索取”的学生。
我们常说“授之以鱼,不如授之以渔。”如何“授鱼”,一般教师想得多一些,如何“授渔”,这是极具挑战的,前面说的“好的学习习惯”就是“扑鱼”的范畴。
“授渔”,有两个方面,一是方法,“好的学习习惯”是方法;另一个是动力,“好奇”,“兴趣”,“上进心”,“对数学价值的认识”,这些都是动力。二者是不可分的,“信心”就体现了二者的联系,学好数学,需要花些力气,碰到难处,要坚持一下,我们的一些硕士或博士学生做论文时,常常碰到一些“坎”,除了我们一起分析讨论之外,我们总会要求“再坚持一下”,这个过程不仅能帮助他们建立自信,也会“逼迫”他们总结出“方法”。很多优秀的教师在这方面是很有办法的。
从学生的角度,学生的主要任务是学习,不仅要学会“知识”,把别人的变成自己的;也要学“索取知识”,不断得到自己需要的,这两者也是相辅相成。需要思考。例如,在做题时,有的学生有一种很好的习惯,做完总要想一想,对题目作一个评价,是不是好题?给我留下了什么?这些思考使得他们的学习“事半功倍”,这就是他们索取知识的办法。
我们希望把“教和学”结合起来,在这方面建立起教师和学生之间的互动,一荣皆荣。教师应该尽力多给学生提供一些提高主动性的机会,帮助学生把他们的潜能发挥出来,针对不学生生的情况给于不同的建议,让更多学生尽快“入门”。变被动为主动。
(4)独立思考与研讨交流
学习数学,需要独立思考,对于背景、问题、概念、定理、应用以及它们之间的联系,都需要自己思考,让它们自然地留在我们的头脑中,做问题、习题也需要独立完成,即或请教了别人,最后,还是需要自己来完成。
目前,各种不同形式的讨论班(seminar)已经成为研究数学的一种基本的工作模式,在研究生和部分本科生的教学中,也越来越多地采用讨论班的形式,讨论的形式不同,水平不同,人数不同,但是,基本的形式是一样的,有明确的讨论问题,参加的成员应事先认真思考准备,有主题报告,又充分地讨论交流。
在中小学也可借鉴这种形式,教师和学生一起组织,大家都会受益。
借助网络,搭建专题讨论的平台,已经出现了一批,特别是一些“名师工作室”,采用这样的形式,如果能多一些讨论就更好了。这是信息技术给我们带来的最大方便,我们应该把技术充分地利用起来。