数学排列公式
① 高中数学排列组合公式Cnm(n为下标,m为上标)=n!/m!(n-m)!是怎么来的
解:Cnm=Anm/Amm.
式中,排列数(又叫选排列数)Anm、全排列数Ann的表示法:
连乘表示: Anm=n(n-1)(n-2)...(n-m+1).
阶乘表示: Anm=n!/(n-m)! .
Ann=n(n-1)(n-2)...3*2*1=n!
例如:A85=8*7*6*5*4. ----连乘法;
A85=8*7*6*5*4*3*2*1/3*2*1=8!/(8-5)!
组合数Cnm=Anm/Amm=n(n-1)(n-2)...(n-m+1)/m(m-1)(m-2)...*3*2*1 【Amm---全排列数】
=n!/m!(n-m)!.*2*
例如:C85=8*7*6*5*4/1*2*3*4*5=[8*7*6*5*4*3*2*1/1*2*3]/1*2*3*4*5.
=8*7*6*5*4/1*2*3*4*5
=56.
注意:组合数公式是由于排列数的表示方法推导出来的。
(1)数学排列公式扩展阅读:
公式P是排列公式,从N个元素取M个进行排列(即排序)。(P是旧用法,现在教材上多用A,即Arrangement)
公式
排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示。 p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1)
符号
1、C-组合数
A-排列数(在旧教材为P)N-元素的总个数
R-参与选择的元素个数
!-阶乘,如5!=5×4×3×2×1=120C-Combination 组合
P-Permutation排列 (现在教材为A-Arrangement)
2、排列组合常见公式
kCn/k=nCn-1/k-1(a/b,a在下,b在上)Cn/rCr/m=Cn/mCn-m/r-m
② 关于数学排列组合,A什么的C什么的到底怎么算举个例子。。
A开头的叫排列,C开头的叫组合。
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)。
注:当且仅当两个排列的元素完全相同,且元素的排列顺序也相同,则两个排列相同。例如,abc与abd的元素不完全相同,它们是不同的排列;又如abc与acb,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列。
③ 数学排列公式
这么给你解释:
假设我们要从N个人中选M个人出来做排列
那么
第一个位置有N种选择;
第二个位置由N-1种选择——因为有一个人被选择排在第一个位置,因此,这里只有N-1中选择;
第三个位置有N-2中选择;
……
第M个位置有N-M+1中选择。
这些选择相互之间是递进关系(一步接一步的进行) 因此 我们用乘法来计算 所以 总排列有N*(N-1)*(N-2)……*(N-M+1) 这里一共有M项
我们把这个计算公式定义为:
P(N,M)=N*(N-1)*(N-2)……*(N-M+1)也就是表示从N个总体中选M个样本作排列。
特别的 当M=N时 我们称为全排列 并定义P(N,N)=N!=N*(N-1)*(N-2)*……*2*1 且P(0,0)=0!=1
希望对你有所帮助
④ 高中数学排列组合公式有哪些
高中数学排列组合公式如下:
排列A(n,m)=n×(n-1)。(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)。
组合C(n,m)=P(n,m)/P(m,m)=n!/m!(n-m)!。
例如A(4,2)=4!/2!=4*3=12。
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6。
加法原理与分布计数法:
1、加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法...在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+.. +m种不同方法。
2、第一类办法的方法属于集合A1,第二类办法的方法属于集合A2...第n类办法的方法属于集合An,那么完成这件事的方法属于集合AUA2....UAn。
3、分类的要求:每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重) ;完成此任务的任何一种方法,都属于某一类(即分类不漏)。
⑤ 高中数学排列组合公式是什么
高中排列组合公式是:C(n,m)=A(n,m)/m!=n!/m!(n-m)!与C(n,m)=C(n,n-m)。
例如C(4,2)=4!/(2!*2!)=4*3/(2*1)=6,C(5,2)=C(5,3)。
排列组合c计算方法:C是从几个中选取出来,不排列,只组合。
C(n,m)=n*(n-1)*...*(n-m+1)/m!
例如c53=5*4*3÷(3*2*1)=10,再如C(4,2)=(4x3)/(2x1)=6。
两个常用的排列基本计数原理及应用:
1、加法原理和分类计数法:
每一类中的每一种方法都可以独立地完成此任务,两类不同办法中的具体方法,互不相同(即分类不重),完成此任务的任何一种方法,都属于某一类(即分类不漏)。
2、乘法原理和分步计数法:
任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务,各步计数相互独立。只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。
⑥ 高二数学中关于排列组合的公式 变形公式 计算公式有哪些 谢谢~
Permutation
Formula
(排列公式):
Pn(下标)m(上标)=(n!)/((n-m)!)=n(n-1)(n-2)...(n-m+1)
Combination
Formula
(组合公式):
Cn(下标)m(上标)=(n!)/((m!(n-m)!))=
(n(n-1)(n-2)...(n-m+1))/(1x2x3...m)
公式P是指排列,从N个元素取m个进行排列(即排序)。
公式C是指组合,从N个元素取m个,不进行排列(即不排序)。
C-组合数
;P-排列数
;m参与选择的元素个数
n-元素的总个数
;!-阶乘
,如5!=5*4*3*2*1=120
⑦ 排列组合的公式
排列组合计算公式如下:
1、从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。
排列就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。
排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。 排列组合与古典概率论关系密切。
(7)数学排列公式扩展阅读
排列组合的发展历程:
根据组合学研究与发展的现状,它可以分为如下五个分支:经典组合学、组合设计、组合序、图与超图和组合多面形与最优化。
由于组合学所涉及的范围触及到几乎所有数学分支,也许和数学本身一样不大可能建立一种统一的理论。
然而,如何在上述的五个分支的基础上建立一些统一的理论,或者从组合学中独立出来形成数学的一些新分支将是对21世纪数学家们提出的一个新的挑战。