数学奥数题高中
Ⅰ 数学解题高手来帮忙解决个高中奥数题(剪纸片问题)
n=1,纸片数量s=9n=2,s=9+8n=3,s=9+8+8n=4,s=9+8+8+8.....n=n,s=9+8+8+8(n-1个8)s=9+(n-1)*8=8n+1,n为正整数若s=2009,则n=251所以第251次剪出的纸片恰好是2009块
Ⅱ 数学奥数题5道(带答案)
. 有 28位小朋友排成一行 .从左边开始数第 10位是爱华,从右边开始数他是第几位? 2. 纽约时间是香港时间减 13小时 .你与一位在纽约的朋友约定,纽约时间 4月 1日晚上 8时与他通电话,那么在香港你应几月几日几时给他打电话? 3. 名工人 5小时加工零件 90件,要在 10小时完成 540个零件的加工,需要工人多少人? 4. 大于 100的整数中,被 13除后商与余数相同的数有多少个? 5. 四个房间,每个房间里不少于 2人,任何三个房间里的人数不少 8人,这四个房间至少有多少人? 6. 在 1998的约数(或因数)中有两位数,其中最大的是哪个数? 7. 英文测验,小明前三次平均分是 88分,要想平均分达到 90分,他第四次最少要得几分? 8. 一个月最多有 5个星期日,在一年的 12个月中,有 5个星期日的月份最多有几个月? 9. 将 0, 1, 2, 3, 4, 5, 6, 7, 8, 9这十个数字中,选出六个填在下面方框中,使算式成立,一个方框填一个数字,各个方框数字不相同 . □ +□□ =□□□ 问算式中的三位数最大是什么数? 10. 有一个号码是六位数,前四位是 2857,后两位记不清,即 2857□□ 但是我记得,它能被 11和 13整除,请你算出后两位数 . 11. 某学校有学生 518人,如果男生增加 4%,女生减少 3人,总人数就增加 8人,那么原来男生比女生多几人? 12. 陈敏要购物三次,为了使每次都不产生 10元以下的找赎, 5元、 2元、 1元的硬币最少总共要带几个? (硬币只有 5元、 2元、 1元三种 .) 13. 右图是三个半圆构成的图形,其中小圆直径为 8,中圆直径为 12, 14.幼儿园的老师把一些画片分给 A, B, C三个班,每人都能分到 6张 .如果只分给 B班,每人能得 15张,如果只分给 C班,每人能得 14张,问只分给 A班,每人能得几张? 15. 两人做一种游戏:轮流报数,报出的数只能是 1, 2, 3, 4, 5, 6, 7, 8.把两人报出的数连加起来,谁报数后,加起来的数是 123,谁就获胜,让你先报,就一定会赢,那么你第一个数报几? 16.一本小说的页码,在印刷时必须用1989个铅字,在这一本书的页码中数字1出现多少次? 17.把23个数:3,33,333,…,33…3(23个3)相加,则所得的和的末四位数是多少? 18.将1、1、2、2、3、3、4、4这八个数字排成一个八位数,使得两个1之间有一个数字,两个2之间有二个数字,两个3之间有三个数字,两个4之间有四个数字,那么这样的八位数中最小的是? 19.从 1, 2, 3,…,2004, 2005这些自然数中,最多可以取几个数,才能使其中每两个数的差不等于4? 20.有一个电话号码是六位数,其中左边三个数字相同,右边三个数字是三个连续的自然数,六个数字之和恰好等于末尾的两位数,这个电话号码是多少? 21.若a为自然数,证明10│(a2005-a1949). 22.给出12个彼此不同的两位数,证明:由它们中一定可以选出两个数,它们的差是两个相同数字组成的两位数. 23.求被3除余2,被5除余3,被7除余5的最小三位数. 24.设2n+1是质数,证明:12,22,…,n2被2n+1除所得的余数各不相同. 25.试证不小于5的质数的平方与1的差必能被24整除. 26. 有甲乙两种糖水,甲含糖270克,含水30克,乙含糖400克,含水100克,现要得到浓度是82.5%的糖水100克,问每种应取多少克? 27. 一个容器里装有10升纯酒精,倒出1升后,用水加满,再倒出1升,用水加满,再倒出1升,用水加满,这时容器内的酒精溶液的浓度是? 28. 有若干千克4%的盐水,蒸发了一些水分后变成了10%的盐水,在加300克4%的盐水,混合后变成6.4%的盐水,问最初的盐水是多少千克? 29.已知盐水若干克,第一次加入一定量的水后,盐水浓度变为3%,第二次加入同样多的水后,盐水浓度变为2%。求第三次加入同样多的水后盐水的浓度。 30.有A、B、C三种盐水,按A与B的数量之比为2:1混合,得到浓度为13%的盐水;按A与B的数量之比为1:2混合,得到浓度为14%的盐水;按A、B、C的数量之比为1:1:3混合,得到浓度为10.2%的盐水,问盐水C的浓度是多少? [ 答案 ] 1. 从右边开始数,他是第 19位 . 2. 4 月2 日上午9 时. 3.9名工人 . 4.有 5个 . 13× 7+7=98< 100,商数从 8开始 .但余数小于 13,最大是 12,有 13× 8+ 8= 112, 13× 9+ 9= 126, 13× 10+ 10=140, 13× 11+ 11=154, 13× 12+ 12= 168,共 5个数 . 5.至少有 11人 . 人数最多的房间至少有 3人,其余三个房间至少有 8人,总共至少有 11人 . 6.最大的两位约数是 74. 1998= 2× 3× 3× 3× 37 7.第四次最少要得 96分 . 88+( 90- 88)× 4=96(分) 8.最多有 5个月有 5个星期日 . 1月 1日是星期日,全年就有 53个星期日 .每月至少有 4个星期日, 53-4× 12=5,多出 5个星期日,在 5个月中 . 9.105. 和的前两位是 1和 0,两位数的十位是 9.因此加数的个位最大是 7和 8. 10.后两位数是 14. 285700÷( 11× 13) =1997余 129 余数 129再加 14就能被 143整除 . 11.男生比女生多 32人 . 男生 4%是 3+ 8=11(人),男生有 11÷ 4% =275(人),女生有 518-275=243(人), 275-243=32(人) . 12.最少 5元、 2元、 1元的硬币共 11个 . 购物 3次,必须备有 3个 5元、 3个 2元、 3个 1元 .为了应付 3次都是 4元,至少还要 2个硬币,例如 2元和 1元各一个,因此,总数 11个是不能少的 .准备 5元 3个, 2元 5个, 1元 3个,或者 5元 3个, 2元 4个, 1元 4个就能三次支付 1元至 9元任何钱数 . 14.A班每人能得 35张 . 设三班总人数是 1,则 B班人数是 6/15, C班人数是 6/14,因此 A班人数是: 15.第一个数报 6. 对方至少要报数 1,至多报数 8,不论对方报什么数,你总是可以做到两人所报数之和为 9. 123÷ 9= 13…… 6. 你第一次报数 6.以后,对方报数后,你再报数,使一轮中两人报的数和为 9,你就能在 13轮后达到 123. 16.4 17.甲26又2/3天,乙40天 18.21 19.14又1/3 20.10 21.甲、乙两地相距540千米,原来火车的速度为每小时90千米。 22.750 23.384 24.600 25.一班48人,二班42人 26.15 27.82 28.312 29.最少5个,最多7个 30.784 希望对你有帮助
Ⅲ 高中数学奥数题!
令y=1,f(x)=2*f(x)-f(x+1)+1
所以,f(x)+1=f(x+1) ,f(x)为首项为2,公差为 1的等差数列.f(x)=2+x-1=x+1
Ⅳ 给我一些数学奥数题及其答案(中学的)
(2009•丽水)绿谷商场“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示:
类别 冰箱 彩电进价(元/台) 2 320 1 900
售价(元/台) 2 420 1 980
(1)按国家政策,农民购买“家电下乡”产品可享受售价13%的政府补贴.农民田大伯到该商场购买了冰箱、彩电各一台,可以享受多少元的政府补贴?
(2)为满足农民需求,商场决定用不超过85 000元采购冰箱、彩电共40台,且冰箱的数量不少于彩电数量的 .
①请你帮助该商场设计相应的进货方案;
②哪种进货方案商场获得利润最大(利润=售价-进价),最大利润是多少?考点:一元一次不等式的应用.专题:应用题;方案型.分析:(1)总售价×13%=(冰箱总售价+彩电总售价)×13%,根据此关系计算即可;
(2)冰箱总价+彩电总价≤85000;冰箱的数量≥彩电数量的 ;先根据此不等关系求得x的取值范围.总利润为:冰箱总利润+彩电总利润.然后根据自变量的取值选取即可.解答:解:(1)(2420+1980)×13%=572
答:可以享受政府572元的补贴.
(2)①设冰箱采购x台,则彩电采购(40-x)台,根据题意得
2320x+1900(40-x)≤85000 ①
x≥ (40-x)②
解不等式组得 ≤x≤
∵x为正整数.
∴x=19,20,21.
∴该商场共有3种进货方案
方案一:冰箱购买19台,彩电购买21台
方案二:冰箱购买20台,彩电购买20台;
方案三:冰箱购买21台,彩电购买19台.
②设商场获得总利润y元,根据题意得
y=(2420-2320)x+(1980-1900)(40-x)=20x+3200
∵20>0
∴y随x的增大而增大
∴当x=21时,y最大=20×21+3200=3620
答:方案三商场获得利润最大,最大利润是3620元.点评:解决本题的关键是读懂题意,找到所求量的等量关系,及符合题意的不等关系式.要会利用函数的单调性结合自变量的取值范围求得利润的最大值.
**********************************************************************************************************
(2001•苏州)某园林的门票每张10元,一次性使用.考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年).年票分A、B、C三类,A类年票每张120元,持票者进人园林时,无需再购买门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.
(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式;
(2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算.考点:一元一次不等式组的应用.分析:(1)根据题意,需分类讨论.
因为80<120,所以不可能选择A类年票;
若只选择购买B类年票,则能够进入该园林 =10(次);
若只选择购买C类年票,则能够进入该园林 ≈13(次);
若不购买年票,则能够进入该园林 =8(次).
通过计算发现:可使进入该园林的次数最多的购票方式是选择购买C类年票.
(2)设一年中进入该园林至少超过x次时,购买A类年票比较合算,根据题意,
得 .
求得解集即可得解.解答:解:(1)根据题意,需分类讨论.
因为80<120,所以不可能选择A类年票;
若只选择购买B类年票,则能够进入该园林 =10(次);
若只选择购买C类年票,则能够进入该园林 ≈13(次);
若不购买年票,则能够进入该园林 =8(次).
所以,计划在一年中用80元花在该园林的门票上,
通过计算发现:可使进入该园林的次数最多的购票方式是选择购买C类年票.
(2)设一年中进入该园林至少超过x次时,购买A类年票比较合算,根据题意,
得 .由①,解得x>30;
由②,解得x>26 ;
由③,解得x>12.
解得原不等式组的解集为x>30.
答:一年中进入该园林至少超过30次时,购买A类年票比较合算.点评:(1)用了分类讨论的方法;(2)注意不等式组确定解集的规律:同大取大.
********************************************************************************************************
(2009•德城区)2008年北京奥运会的比赛门票开始接受公众预订.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用8000元预订10张下表中比赛项目的门票.
(1)若全部资金用来预订男篮门票和乒乓球门票,问他可以订男篮门票和乒乓球门票各多少张?
(2)若在现有资金8000元允许的范围内和总票数不变的前提下,他想预订下表中三种球类门票,其中男篮门票数与足球门票数相同,且乒乓球门票的费用不超过男篮门票的费用,求他能预订三种球类门票各多少张?
比赛项目 票价(元/场)男篮 1000
足球 800
乒乓球 500
考点:一元一次不等式组的应用.专题:应用题;方程思想.分析:(1)关系式为:男篮门票总价钱+乒乓球门票总价钱=8000;
(2)不等关系式为:乒乓球门票的费用不超过男篮门票的费用;总资金≤8000.解答:解:(1)设预订男篮门票x张,则乒乓球门票(10-x)张,由题意得
1000x+500(10-x)=8000
解得x=6
∴10-x=4
答:可订男篮门票6张,乒乓球门票4张;
(2)设男篮门票与足球门票都订a张,则乒乓球门票(10-2a)张,
由题意得
解得
由a为正整数可得a=3.
答:他能预订男篮门票3张,足球门票3张,乒乓球门票4张.点评:解决本题的关键是读懂题意,找到符合题意的等量关系和不等关系式组.
***********************************************************************************
已知:|x-2|+ =0,则yx=9
9
.考点:非负数的性质:算术平方根;非负数的性质:绝对值.专题:计算题.分析:根据非负数的性质列出方程求出x、y的值,代入所求代数式计算,再求其平方根即可.解答:解:∵|x-2|+ =0,
∴x-2=0,y+3=0
∴x=2,y=-3,
∴yx=(-3)2=9.
故答案为:9.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.************************************************************************************
其实什么奥数不奥数的都没什么用,只是超前了些,只要上课认真听分析,作业认真做,试卷认真订正,就不用怕考试的,平常注意下考点哦~~~
Ⅳ 求一道高中数学奥数题,大神请进!
解:(1)当T在四面体ABCD内,四条线段 TA、 TB、 TC、 TD 两两相互垂直时,四面体ABCD 体积的最大,其体积最大值V=1/3*1/2abc+1/3*1/2abd+1/3*1/2acd+1/3*1/2bcd=1/6(abc+abd+acd+bcd)。
(2)根据(1)的结论,TD⊥平面TBC,过T作TM⊥BC于M,连DM,则BC⊥平面TMD,所以BC⊥MD。因BC*TM=bc,BC=√(b^2+c^2),所以TM=bc/√(b^2+c^2),所以DM=√(b^2c^2+b^2d^2+c^2d^2)/√(b^2+c^2),所以ΔBCD的面积S1=MD/TM*1/2bc=1/2√(b^2c^2+b^2d^2+c^2d^2)。同理可求得ΔABC的面积S2=1/2√(b^2c^2+b^2a^2b^2+a^2c^2),ΔABD的面积S3=1/2√(b^2d^2+b^2a^2b^2+a^2d^2),ΔACD的面积S4=1/2√(a^2c^2+a^2d^2b^2+c^2d^2)。所以四面体ABCD 表面积的最大值S=S1+S2+S3+S4=1/2(√(b^2c^2+b^2d^2+c^2d^2+√(b^2c^2+b^2a^2b^2+a^2c^2)+√(b^2d^2+b^2a^2b^2+a^2d^2)+√(a^2c^2+a^2d^2b^2+c^2d^2))。
Ⅵ 来给我些超难的高中奥数题
一、填空题
1.有两列火车,一列长102米,每秒行20米;一列长120米,每秒行17米.两车同向而行,从第一列车追及第二列车到两车离开需要几秒?
2.某人步行的速度为每秒2米.一列火车从后面开来,超过他用了10秒.已知火车长90米.求火车的速度.
3.现有两列火车同时同方向齐头行进,行12秒后快车超过慢车.快车每秒行18米,慢车每秒行10米.如果这两列火车车尾相齐同时同方向行进,则9秒后快车超过慢车,求两列火车的车身长.
4.一列火车通过440米的桥需要40秒,以同样的速度穿过310米的隧道需要30秒.这列火车的速度和车身长各是多少?
5.小英和小敏为了测量飞驶而过的火车速度和车身长,他们拿了两块跑表.小英用一块表记下了火车从她面前通过所花的时间是15秒;小敏用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是20秒.已知两电线杆之间的距离是100米.你能帮助小英和小敏算出火车的全长和时速吗?
6.一列火车通过530米的桥需要40秒,以同样的速度穿过380米的山洞需要30秒.求这列火车的速度与车身长各是多少米.
7.两人沿着铁路线边的小道,从两地出发,以相同的速度相对而行.一列火车开来,全列车从甲身边开过用了10秒.3分后,乙遇到火车,全列火车从乙身边开过只用了9秒.火车离开乙多少时间后两人相遇?
8. 两列火车,一列长120米,每秒行20米;另一列长160米,每秒行15米,两车相向而行,从车头相遇到车尾离开需要几秒钟?
9.某人步行的速度为每秒钟2米.一列火车从后面开来,越过他用了10秒钟.已知火车的长为90米,求列车的速度.
10.甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?
二、解答题
11.快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向并行,当快车车尾接慢车车尾时,求快车穿过慢车的时间?
12.快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向并行,当两车车头齐时,快车几秒可越过慢车?
13.一人以每分钟120米的速度沿铁路边跑步.一列长288米的火车从对面开来,从他身边通过用了8秒钟,求列车的速度.
14.一列火车长600米,它以每秒10米的速度穿过长200米的隧道,从车头进入隧道到车尾离开隧道共需多少时间?
———————————————答 案——————————————————————
一、填空题
120米
102米
17x米
20x米
尾
尾
头
头
1. 这题是“两列车”的追及问题.在这里,“追及”就是第一列车的车头追及第二列车的车尾,“离开”就是第一列车的车尾离开第二列车的车头.
设从第一列车追及第二列车到两列车离开需要x秒,列方程得:
102+120+17 x =20 x
x =74.
2.
设列车的速度是每秒x米,列方程得
10 x =90+2×10
x =11.
3. (
则快车长:18×12-10×12=96(米)
(2)车尾相齐,同时同方向行进,快车
则慢车长:18×9-10×9=72(米)
4. (1)火车的速度是:(440-310)÷(40-30)=13(米/秒)
(2)车身长是:13×30-310=80(米)
5. (1)火车的时速是:100÷(20-15)×60×60=72000(米/小时)
(2)车身长是:20×15=300(米)
6. 设火车车身长x米,车身长y米.根据题意,得
①②
解得
7. 设火车车身长x米,甲、乙两人每秒各走y米,火车每秒行z米.根据题意,列方程组,得
①②
①-②,得:
火车离开乙后两人相遇时间为:
(秒) (分).
8. 解:从车头相遇到车尾离开,两车所行距离之和恰为两列车长之和,故用相遇问题得所求时间为:(120+60)¸(15+20)=8(秒).
9. 这样想:列车越过人时,它们的路程差就是列车长.将路程差(90米)除以越过所用时间(10秒)就得到列车与人的速度差.这速度差加上人的步行速度就是列车的速度.
90÷10+2=9+2=11(米)
答:列车的速度是每秒种11米.
10. 要求过几分钟甲、乙二人相遇,就必须求出甲、乙二人这时的距离与他们速度的关系,而与此相关联的是火车的运动,只有通过火车的运动才能求出甲、乙二人的距离.火车的运行时间是已知的,因此必须求出其速度,至少应求出它和甲、乙二人的速度的比例关系.由于本问题较难,故分步详解如下:
①求出火车速度 与甲、乙二人速度 的关系,设火车车长为l,则:
(i)火车开过甲身边用8秒钟,这个过程为追及问题:
故 ; (1)
(i i)火车开过乙身边用7秒钟,这个过程为相遇问题:
故 . (2)
由(1)、(2)可得: ,
所以, .
②火车头遇到甲处与火车遇到乙处之间的距离是:
.
③求火车头遇到乙时甲、乙二人之间的距离.
火车头遇甲后,又经过(8+5×60)秒后,火车头才遇乙,所以,火车头遇到乙时,甲、乙二人之间的距离为:
④求甲、乙二人过几分钟相遇?
(秒) (分钟)
答:再过 分钟甲乙二人相遇.
二、解答题
11. 1034÷(20-18)=91(秒)
12. 182÷(20-18)=91(秒)
13. 288÷8-120÷60=36-2=34(米/秒)
答:列车的速度是每秒34米.
14. (600+200)÷10=80(秒)
答:从车头进入隧道到车尾离开隧道共需80秒.
平均数问题
1. 蔡琛在期末考试中,政治、语文、数学、英语、生物五科的平均分是 89分.政治、数学两科的平均分是91.5分.语文、英语两科的平均分是84分.政治、英语两科的平均分是86分,而且英语比语文多10分.问蔡琛这次考试的各科成绩应是多少分?
2. 甲乙两块棉田,平均亩产籽棉185斤.甲棉田有5亩,平均亩产籽棉203斤;乙棉田平均亩产籽棉170斤,乙棉田有多少亩?
3. 已知八个连续奇数的和是144,求这八个连续奇数。
4. 甲种糖每千克8.8元,乙种糖每千克7.2元,用甲种糖5千克和多少乙种糖混合,才能使每千克糖的价钱为8.2元?
5. 食堂买来5只羊,每次取出两只合称一次重量,得到十种不同的重量(千克):47、50、51、52、53、54、55、57、58、59.问这五只羊各重多少千克?
等差数列
1、下面是按规律排列的一串数,问其中的第1995项是多少?
解答:2、5、8、11、14、……。 从规律看出:这是一个等差数列,且首项是2,公差是3, 这样第1995项=2+3×(1995-1)=5984
2、在从1开始的自然数中,第100个不能被3除尽的数是多少?
解答:我们发现:1、2、3、4、5、6、7、……中,从1开始每三个数一组,每组前2个不能被3除尽,2个一组,100个就有100÷2=50组,每组3个数,共有50×3=150,那么第100个不能被3除尽的数就是150-1=149.
3、把1988表示成28个连续偶数的和,那么其中最大的那个偶数是多少?
解答:28个偶数成14组,对称的2个数是一组,即最小数和最大数是一组,每组和为: 1988÷14=142,最小数与最大数相差28-1=27个公差,即相差2×27=54, 这样转化为和差问题,最大数为(142+54)÷2=98。
4、在大于1000的整数中,找出所有被34除后商与余数相等的数,那么这些数的和是多少?
解答:因为34×28+28=35×28=980<1000,所以只有以下几个数:
34×29+29=35×29
34×30+30=35×30
34×31+31=35×31
34×32+32=35×32
34×33+33=35×33
以上数的和为35×(29+30+31+32+33)=5425
5、盒子里装着分别写有1、2、3、……134、135的红色卡片各一张,从盒中任意摸出若干张卡片,并算出这若干张卡片上各数的和除以17的余数,再把这个余数写在另一张黄色的卡片上放回盒内,经过若干次这样的操作后,盒内还剩下两张红色卡片和一张黄色卡片,已知这两张红色的卡片上写的数分别是19和97,求那张黄色卡片上所写的数。
解答:因为每次若干个数,进行了若干次,所以比较难把握,不妨从整体考虑,之前先退到简单的情况分析: 假设有2个数20和30,它们的和除以17得到黄卡片数为16,如果分开算分别为3和13,再把3和13求和除以17仍得黄卡片数16,也就是说不管几个数相加,总和除以17的余数不变,回到题目1+2+3+……+134+135=136×135÷2=9180,9180÷17=540, 135个数的和除以17的余数为0,而19+97=116,116÷17=6……14, 所以黄卡片的数是17-14=3。
6、下面的各算式是按规律排列的:
1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,……, 那么其中第多少个算式的结果是1992?
解答:先找出规律: 每个式子由2个数相加,第一个数是1、2、3、4的循环,第二个数是从1开始的连续奇数。 因为1992是偶数,2个加数中第二个一定是奇数,所以第一个必为奇数,所以是1或3, 如果是1:那么第二个数为1992-1=1991,1991是第(1991+1)÷2=996项,而数字1始终是奇数项,两者不符, 所以这个算式是3+1989=1992,是(1989+1)÷2=995个算式。
7、如图,数表中的上、下两行都是等差数列,那么同一列中两个数的差(大数减小数)最小是多少?
解答:从左向右算它们的差分别为:999、992、985、……、12、5。 从右向左算它们的差分别为:1332、1325、1318、……、9、2, 所以最小差为2。
8、有19个算式:
那么第19个等式左、右两边的结果是多少?
解答:因为左、右两边是相等,不妨只考虑左边的情况,解决2个问题: 前18个式子用去了多少个数? 各式用数分别为5、7、9、……、第18个用了5+2×17=39个, 5+7+9+……+39=396,所以第19个式子从397开始计算; 第19个式子有几个数相加? 各式左边用数分别为3、4、5、……、第19个应该是3+1×18=21个, 所以第19个式子结果是397+398+399+……+417=8547。
9、已知两列数: 2、5、8、11、……、2+(200-1)×3; 5、9、13、17、……、5+(200-1)×4。它们都是200项,问这两列数中相同的项数共有多少对?
解答:易知第一个这样的数为5,注意在第一个数列中,公差为3,第二个数列中公差为4,也就是说,第二对数减5即是3的倍数又是4的倍数,这样所求转换为求以5为首项,公差为12的等差数的项数,5、17、29、……, 由于第一个数列最大为2+(200-1)×3=599; 第二数列最大为5+(200-1)×4=801。新数列最大不能超过599,又因为5+12×49=593,5+12×50=605, 所以共有50对。
10、如图,有一个边长为1米的下三角形,在每条边上从顶点开始,每隔2厘米取一个点,然后以这些点为端点,作平行线将大正三角形分割成许多边长为2厘米的小正三角形。求⑴边长为2厘米的小正三角形的个数,⑵所作平行线段的总长度。
解答:⑴ 从上数到下,共有100÷2=50行, 第一行1个,第二行3个,第三行5个,……,最后一行99个, 所以共有(1+99)×50÷2=2500个; ⑵所作平行线段有3个方向,而且相同, 水平方向共作了49条, 第一条2厘米,第二条4厘米,第三条6厘米,……, 最后一条98厘米, 所以共长(2+98)×49÷2×3=7350厘米。
11、某工厂11月份工作忙,星期日不休息,而且从第一天开始,每天都从总厂陆续派相同人数的工人到分厂工作,直到月底,总厂还剩工人240人。如果月底统计总厂工人的工作量是8070个工作日(一人工作一天为1个工作日),且无人缺勤,那么,这月由总厂派到分厂工作的工人共多少人?
解答:11月份有30天。 由题意可知,总厂人数每天在减少,最后为240人,且每天人数构成等差数列,由等差数列的性质可知,第一天和最后一天人数的总和相当于8070÷15=538 也就是说第一天有工人538-240=298人,每天派出(298-240)÷(30-1)=2人, 所以全月共派出2*30=60人。
12、小明读一本英语书,第一次读时,第一天读35页,以后每天都比前一天多读5页,结果最后一天只读了35页便读完了;第二次读时,第一天读45页,以后每天都比前一天多读5页,结果最后一天只需读40页就可以读完,问这本书有多少页?
解答:第一方案:35、40、45、50、55、……35 第二方案:45、50、55、60、65、……40 二次方案调整如下: 第一方案:40、45、50、55、……35+35(第一天放到最后惶熘腥ィ?/P>第二方案:40、45、50、55、……(最后一天放到第一天) 这样第二方案一定是40、45、50、55、60、65、70,共385页。
13、7个小队共种树100棵,各小队种的查数都不相同,其中种树最多的小队种了18棵,种树最少的小队最少种了多少棵?
解答:由已知得,其它6个小队共种了100-18=82棵, 为了使钌俚男《又值氖髟缴僭胶茫
Ⅶ 高中数学奥数题
M(S)=[(a1+1)(a2+1)(a3+1)...(an+1)-1]/n
M(S)=13N/N M(SU)=49(N+1)/(N+1)
(49(N+1)+1)/(13N+1)=a(N+1)+2=k
换句话说右边抄是大于2的整数
n=(k-50)/(49-13k)
n是大于1的整数,稍微试一下就发现k在4到8之间
但是没有结果……
不知道为什么,可能我读题的问题……
你大概看下思路,可能有帮助。
Ⅷ 求高中奥数题
1.甲.乙两个储油罐,甲比乙的储油量少,把1/4乙中的1/6输入甲,甲中储油量比乙多2吨.乙原有油多少吨?
2.工厂组织400-450人参加植树活动,平均每人植32棵.男职工平均每人植树48棵,女职工平均每人植树13棵.参加植树的男.女职工各有多少人?(用比例求人数)
3.甲.乙.丙三仓库存有救灾物资,甲有120件,乙是甲.丙两仓库之和,丙是甲.乙仓库的一半,救灾物资一共有多少件?
4.甲.乙.丙三组共装电视机500台.甲.乙两组装配台数的比是5:3,丙比乙少装39台.丙装了几台?(假设丙多装39台)
5.甲.乙两地相距243KM,一辆货车和客车同时从甲.乙两地出发,相向而行,经过1.5小时相遇.货车和客车的速度比是4:5,那么,客车行完全程要多少小时?(两种方法)
6.一个日用化工厂生产洗衣皂9800想,比生产的香皂多5/9.生产洗衣皂和香皂一共多少箱?(变分率巧解题)
够吗?
Ⅸ 一道排列组合的高中数学奥数题
由条件,a只能是1,
a为千位时,有3!=6种不同排法。
同样,a分别为百位,十位,个位时,也有6种不同排发。
所以共有6×4=24(个)不同的四位数。
Ⅹ 奥数题 1等于4 2等于8 3等于24 4等于多少
4等于96 。
解题思路是:
1=4 2=8 3=24 从这组数据中我们可以看到前面的数字规律是1、2、3、4....是N+1 ,后面对应的数字4、8、24....由此可以得出结论,用后一组开头的数字乘以前一组的结尾的数字得到后一组的结尾数字,因此4=96。
(10)数学奥数题高中扩展阅读:
国际数学奥林匹克竞赛(International Mathematical Olympiads)简称奥数,是一项以数学为内容,以中学生为对象的国际性竞赛活动,至今已有30余年的历史。国际数学奥林匹克作为一项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育水平,难度大大超过大学入学考试。有关专家认为,只有5%的智力超常儿童适合学奥林匹克数学,而能一路过关斩将冲到国际数学奥林匹克顶峰的人更是凤毛麟角。现在,IMO已成为一项国际上最有影响力的学科竞赛,同时也是公认水平最高的中学生数学竞赛。
中国的数学竞赛始于1956年。在著名数学家华罗庚、苏步青等人的倡导下,由中国数学理事会发起,北京、天津、上海、武汉四城市首先举办了高中数学竞赛。
有认为,表述为“数学奥林匹克竞赛”的简称应是“数学奥赛”。表述为“数学奥林匹克竞赛题”的简称应是“数学奥赛题”。
参考资料:网络-奥林匹克数学竞赛