当前位置:首页 » 语数英语 » 高一上册数学试卷

高一上册数学试卷

发布时间: 2023-08-07 15:39:21

❶ 一份高一上学期期末数学试题

http://www.1-123.com/Ecation/PrimaryMathematics/HighSchoolFirstForm/final/52008.html
高一上学期期末数学试题

说明:1.试卷总分150分,考试时间120分钟;

2.不允许用计算器;

(第Ⅰ卷)

一. 选择题(每小题只有唯一选项是正确的,每小题5分,共计50分)

1.左面的三视图所示的几何体是( )

A. 六棱台 B. 六棱柱 C. 六棱锥 D. 六边形

2.下列命题:

(1)平行于同一平面的两直线平行;

(2)垂直于同一平面的两直线平行;

(3)平行于同一直线的两平面平行;

(4)垂直于同一直线的两平面平行;

其中正确的有 ( )

A. (1) (2)和(4) B. (2)和(4) B. (2) (3)和(4) D. (3)和(4)

3.设A在x轴上,它到P(0, ,3)的距离为到点Q(0,1,-1)的距离的两倍那么A点的坐标是( )

A.(1,0,0)和( -1,0,0) B.(2,0,0)和(-2,0,0)

C.(,0,0)和(–,0,0) D.(– ,0,0)和( ,0,0)

4.设Rt△ABC斜边AB上的高是CD,AC=BC=2, 沿高CD作折痕将之折成直二面

角A—CD—B(如图)那么得到二面角C—AB—D的余弦值等于 ( )

A. B. C. D.

(第4题图)

(第5题图)

5.如图, 是体积为1的棱柱,则四棱锥 的体积是( )

A. B. C. D.

6.根据表格中的数据,可以判定方程ex-x-2=0的一个根所在的区间为 ( )

x

-1

0

1

2

3

ex

0.37

1

2.72

7.39

20.09

x+2

1

2

3

4

5

A. (-1,0) B. (0,1) C. (1,2) D. (2,3)

7.点E,F,G,H分别为空间四边形ABCD中

AB,BC,CD,AD的中点, 若AC=BD,且

AC与BD成900,则四边形EFGH是( )

(A)菱形 (B)梯形

( 第7题图)

(C)正方形 (D)空间四边形

8.已知定义在实数集上的偶函数 在区间(0,+ )上是增函数,那么 , 和 之间的大小关系为 ( )

A. y1 < y3 < y2 B. y1 <y2< y3 C. y3 <y1 <y2 D. y3 <y2 <y1

9.直线y = x绕原点按逆时针方向旋转 后所得直线与圆 (x-2)2+y2=3的位置关系是( )

(A)直线过圆心 (B) 直线与圆相交,但不过圆心

(C)直线与圆相切 (D) 直线与圆没有公共点

10.函数 在 上的最大值与最小值之和为 ,则 的值为( )

A. B. C. 2 D. 4

(第II卷)

二. 填空题(每小题5分,共计20分)

11.用一张圆弧长等于12 分米,半径是10分米的扇形胶片制作一个圆锥体模型,这个圆锥体的体积等于 立方分米。

12.直线l的斜率是-2,它在x轴与y轴上的截距之和是12,那么直线l的一般式方程是 。

13.某工厂12年来某产品总产量S与时间t(年)的函数关系如图所示,下列四种说法:

(1) 前三年总产量增长的速度越来越快;

(2) 前三年总产量增长的速度越来越慢;

(3) 第3年后至第8年这种产品停止生产了;

(4) 第8年后至第12年间总产量匀速增加。

其中正确的说法是 。 (第13题图)

14.把一坐标纸折叠一次,使得点(0,2)与(-2,0)重合,且点(2004,2005)与点(m,n)重合,则m-n的值为

三.解答题(本大题共6小题,共80分。解答应写出文字说明,证明过程或演算步骤)

15.(本小题12分)

已知集合A= ,B={x|2<x<10},C={x|x<a},全集为实数集R.

(1) 求A∪B,(CRA)∩B;(2)如果A∩C≠φ,求a的取值范围。

16.(本小题12分)

△ABC中,BC边上的高所在直线方程为 的平分线所在直线方程为y=0,若点B的坐标是(1,2)

求(1)A点的坐标;(2)C点的坐标。

17(本小题14分)

如图,长方体 中, , ,点 为 的中点。

(1)求证:直线 ‖平面 ;

(2)求证:平面 平面 ;

(3)求证:直线 平面 。

18

.(本小题14分)

甲乙两人连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲、乙两图:

甲调查表明:每个鱼池平均产量从第1年1万只鳗鱼上升到第6年2万只。

乙调查表明:全县鱼池总个数由第1年30个减少到第6年10个。

请你根据提供的信息说明:

(1)第2年全县鱼池的个数及全县出产的鳗鱼总数。

(2)到第6年这个县的鳗鱼养殖业的规模(即总产量)比第1年扩大了还是缩小了?说明理由。

(3)哪一年的规模(即总产量)最大?说明理由。

19.(本小题14分)

设实数 同时满足条件: 且

(1)求函数 的解析式和定义域;

(2)判断函数 的奇偶性;

(3)若方程 恰有两个不同的实数根,求 的取值范围。

20.(本小题14分)

圆 的半径为3,圆心 在直线 上且在 轴下方, 轴被圆 截得的弦长为 。(1)求圆 的方程;

(2)是否存在斜率为1的直线 ,使得以 被圆 截得的弦 为直径的圆过原点?若存在,求出 的方程;若不存在,说明理由。

❷ 高一期末考试数学试题

高一期末考试数学试题

一、选择题:(每小题5分,共60分)

1、过点(-1,3)且垂直于直线x-2y+3=0的直线方程是( )

A、x-2y+7=0 B、2x+y-1=0

C、x-2y-5=0 D、2x+y-5=0

2、如图,一个空间几何体的主视图和左视图都是边长相等的正方形,

俯视图是一个滑搏此圆,那么这个几何体是( )、

A、棱柱 B、圆柱 C、圆台 D、圆锥

3、 直线 :ax+3y+1=0, :2x+(a+1)y+1=0, 若 ∥ ,则a=( )

A、-3 B、2 C、-3或2 D、3或-2

4、已知圆C1:(x-3)2+y2=1,圆C2:x2+(y+4)2=16,则圆C1,C2的位置关系为( )

A、相交 B、相离 C、内切 D、外切

5、等差数列{an}中, 公差 那么使前 项和 最大的 值为( )

A、5 B、6 C、 5 或6 D、 6或7

6、若 是等比数列, 前n项和 ,则 ( )

A、 B、

7、若变量x,y满足约束条件y1,x+y0,x-y-20,则z=x-2y的最大值为( )

A、4 B、3

C、2 D、1

本文导航 1、首页2、高一第二学期数学期末考试试卷分析-23、高一第二学期数学期末考试试卷分析-3

8、当a为任意实数时,直线(a-1)x-y+a+1=0恒银激过定点C,则以C为圆心,半径为5的圆的方程为( )

A、x2+y2-2x+4y=0 B、x2+y2+2x+4y=0

C、x2+y2+2x-4y=0 D、x2+y2-2x-4y=0

9、方程 表示的曲线是( )

A、一个圆 B、两个半圆 C、两个圆 D、半圆

10、在△ABC中,A为锐角,lgb+lg( )=lgsinA=-lg , 则△ABC为( )

A、 等腰三角形 B、 等边三角形 C、 直角三角形 D、 等腰直角三角形

11、设P为直线 上的动点,过点P作圆C 的两条切线,切点分别为A,B,则四边形PACB的面积的最小值为( )

A、1 B、 C、 D、

12、设两条直线的方程分别 为x+y+a=0,x+y+b=0,已知a,b是方程x2+x+c=0的两个实根,

且018,则这两条直线之间的距离的最大值和最小值分别是( )、

A、 B、 C、 D、

第II卷(非选择题共90分)

二、填空题:(每小题5分,共20分)

13、空间直角 坐标系中点A和点B的坐标分别是(1,1,2)、(2,3,4),则 ______

14、 过点(1,2)且在两坐标轴上的截距相等的直线的方程 _

15、 若实数 满足 的取值范围为

16、锐角三角形 中,若 ,则下列叙述正确的是

① ② ③ ④

本文导航 1、首页2、高一第二学期数学期末考试试卷分析-23、高一第二学期数学期末考试试卷分析-3

三、解答题:(其中17小题10分,其它每小题12分,共70分)

17、直线l经过点P(2,-5),且与点A(3,-2)和B(-1,6)的距离之比为1:2,求直线l的方程、

18、在△ABC中,a,b,c分别是A,B,C的'对边,且2sin A=3cos A、

(1)若a2-c2=b2-mbc,求实数m的值;

(2)若a=3,求△ABC面积的最大值、

19、投资商到一开发区投资72万元建起一座蔬菜加工厂,第一年共支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜 销售收入50万元、 设 表示前n年的纯利润总和(f(n)=前n年的总收入一前n年的总支出一投资额)、

(1)该厂从第几年开始盈利?

(2)若干年后,投资商为开发新项目,对该厂有两种处理方案:①年平均纯利润达到最大时, 以48万元出售该厂;②纯利润总和达到最大时,以10万元出售该厂,问哪种方案更合算?

20、信迅 设有半径为3 的圆形村落,A、B两人同时从村落中心出发,B向北直行,A先向东直行,出村后不久,改变前进方向,沿着与村落周界相切的直线前进,后来恰与B相遇、设A、B两人速度一定,其速度比为3:1,问两人在何处相遇?

21、设数列 的前n项和为 ,若对于任意的正整数n都有 、

(1)设 ,求证:数列 是等比数列,并求出 的通项公式。

(2)求数列 的前n项和、

22、已知曲线C:x2+y2-2x-4y+m=0

(1)当m为何值时,曲线C表示圆;

(2)若曲线C与直线x+2y-4=0交于M、N两点,且OMON(O为坐标原点),求m的值。

❸ 高一数学上册圆的方程测试题

高一数学上册圆的方程测试题

班级 学号 姓名

[基础练习]

1.已知曲线 关于直线 对称,则( )

A. B. C. D.

2.直线 截圆 所得的劣弧所对的圆心角为( )

A. B. C. D.

3.过点(2,1)的直线中,被圆 截得的弦为最长的直线方程为( )

A. B. C. D.

4.过点 的直线 将圆 分成两段弧。当其中的劣弧最短时, 的方程为( ) A. B. C. D.

5.圆 关于直线 对称的曲线方程是( )

A. B.

C. D.

6.若圆 和圆 关于直线 对称,则直线 的方程是( )

A. B. C. D.

7.圆 在轴上截得的弦长为

8.过点 的'直线被圆 截得的弦长为 ,则此直线的方程为

9.圆 与圆 的公共弦长是

10.已知 是圆 内异于圆心的一点,则直线 与此圆的交点个数是

11.圆 上到直线 的距离为 的点共有 个

12.圆 与 轴相交于A、B两点,圆心为M,若 ,则 的值等于 ,

13.设直线 将圆 平分,且不过第三象限,则 的斜率的取值范围是 。

14.过圆 与直线 的两个交点,且面积最小的圆的方程是 。

15.过已知点 作圆 : 的割线ABC,求(1) 的值;(2)弦 的中点 的轨迹方程。

16.设圆上的点 关于直线 的对称点仍在这个圆上,且与直线 相交的弦长为 ,求圆的方程。

17.圆 与直线 相交于P、Q两点,当 为何值时, ?

[深化练习]

18.设圆 上有且只有两个点到直线 的距离等于1,则半径 的取值范围是( )

A. B. C. D.

19.已知圆 内一点 ,则以A为中点的弦所在直线方程为( )

A. B. C. D.

20.不管 取何实数,圆 恒经过两个定点,其坐标为

21.已知直线 : 和圆

求证:(1)直线 恒过定点 ;

(2)对任何实数,直线 与C恒相交于不同的两点;

(3)求 被圆C截得的线段的最短长度及相应的 的值。

❹ 求高一数学上学期期末综合试卷

新课程高一上期期末数学综合模拟试卷1(必修1.2)
一、选择题(每小题5分,共60分,每小题只有一个正确答案)
1、若集合A={1,3,x},B={1, },A∪B={1,3,x},则满足条件的实数x的个数有( )
(A) 1个 (B) 2个 (C)3个 (D) 4个
2、右图所示的直观图,其原来平面图形的面积是( )
A,4 B.,4 C.,2 D.,8

3、下列图象中不能表示函数的图象的是 ( )
y y y

o x x o x o x

(A) (B) (C) (D)
4、有下列四个命题:
1)过三点确定一个平面 2)矩形是平面图形 3)三条直线两两相交则确定一个平面
4)两个相交平面把空间分成四个区域 其中错误命题的序号是( ).
(A)1)和2) (B)1)和3) (C)2)和4) (D)2)和3)
5、直线L1:ax+3y+1=0, L2:2x+(a+1)y+1=0, 若L1‖L2,则a=( )
A.-3 B.2 C.-3或2 D.3或-2
6、某工厂今年前五个月每月生产某种产品的数量C(件)关于时间 C
t(月)的函数图象如图所示,则这个工厂对这种产品来说( )

O 一 二 三 四 五 t
(A)一至三月每月生产数量逐月增加,四、五两月每月生产数量逐月减少
(B)一至三月每月生产数量逐月增加,四、五月每月生产数量与三月持平
(C)一至三月每月生产数量逐月增加,四、五两月均停止生产
(D)一至三月每月生产数量不变,四、五两月均停止生产
7、如图,平面不能用( ) 表示.
(A)平面α (B)平面AB
(C)平面AC (D)平面ABCD
8、设f(x)=3ax+1-2a 在(-1,1)内存在x0 使f(x0)=0 ,则a 的取值范围是
(A): -1<a<1/5 (B): a >1/5 (C): a>1/5 或a < -1 (D): a<-1

9、如图,如果MC⊥菱形ABCD所在的平面,
那么MA与BD的位置关系是( )
A.平行 B.垂直相交
C.异面 D.相交但不垂直
10、经过点M(1,1)且在两轴上截距相等的直线是( )
A.x+y=2 B.x+y=1 C.x=1或y=1 D.x+y=2或x=y
11、已知函数 ,其中n N,则f(8)=( )
(A)6 (B)7 (C) 2 (D)4
12、圆x2+y2+4x–4y+4=0关于直线l: x–y+2=0对称的圆的方程是( )
A.x2+y2=4 B.x2+y2–4x+4y=0
C.x2+y2=2 D.x2+y2–4x+4y–4=0
二、填空题(每小题4分,共4小题16分)
13、已知三点A(a,2) B(5,1) C(-4,2a)在同一条直线上,
则a= .
14、在边长为a的等边三角形ABC中,AD⊥BC于D,
沿AD折成二面角B-AD-C后,BC=12 a,
这时二面角B-AD-C的大小为
15、指数:函数y=(a+1)x 在R上是增函数,则a的取值范围是
16、有以下4个命题:
①函数f(x)= (a>0且a≠1)与函数g(x)= (a>0且a≠1)的定义域相同;
②函数f(x)=x3与函数g(x)= 的值域相同;
③函数f(x)= 与g(x)= 在(0,+∞)上都是增函数;
④如果函数f(x)有反函数f -1(x),则f(x+1)的反函数是f -1(x+1).
其中不正确的题号为 .

三、解答题
17、计算下列各式
(1)(lg2)2+lg5•lg20-1

(2)

18、定义在实数R上的函数y= f(x)是偶函数,当x≥0时, .
(1)求f(x)在R上的表达式;
(2)求y=f(x)的最大值,并写出f(x)在R上的单调区间(不必证明).

19、如图,一个圆锥形的空杯子上面放着一个半球形
的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?
请用你的计算数据说明理由.

20、已知 三个顶点是 , , .
(Ⅰ)求BC边中线AD所在直线方程;
(Ⅱ)求点A到BC边的距离.

21、商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少。把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元。现在这种羊毛衫的成本价是100元/ 件,商场以高于成本价的相同价格(标价)出售. 问:
(Ⅰ)商场要获取最大利润,羊毛衫的标价应定为每件多少元?
(Ⅱ)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?

22、已知直线:y=x+b和圆x2+y2+2x―2y+1=0
(1)若直线和圆相切,求直线的方程;(2)若b=1,求直线和圆相交的弦长;

一CDDBA DBCCD BA
二3.5或2 60˚ (0,+∞ ) 2,3
三 17.(1)解:原式=0 —————— 6分
(2)解:原式=4*27+2-7-2-1
=100 --------------------12分
18解:(1)f(x)= -4x2+8x-3 x≥0

-4x2-8x-3 x<o --------------------------6#
(2)当 x=1或-1时,y最大值=1 -----------------------8#
增区间 (-∞,-1) (0,1) ----------------------10#
减区间 [-1,0] (1 ,+∞) -------------------------------------12#
19 解:V半球=⅔√×π×43=128π/3 ----------------------5#
V锥=⅓×π×42×12=64π>V半球 ----------------10#
所以如果冰淇淋融化了,不会溢出杯子 ---------12#
20 解(1)BC中点D(0,1)
中线AD所在直线方程:y=-3x+1 ---------6#
(2) BC的方程为x-y+1=0
点A到BC边的距离=--------=2√2 ---------12#
21 解:(1)设羊毛衫的标价为每件x元,利润y元
则购买人数为 k(x-300) k<0
y=(x-100)k(x-300) ( 100<x<300 )
当x=200 y最大值=-10000k
故商场要获取最大利润,羊毛衫的标价应为每件200元 --------------6#

(2) 当y=-10000k×75% 即x=250或 150
故商场要获取最大利润的75%,羊毛衫的标价应为每件250元或 150 -----------12#

22解:圆心C(-1,1) 半径r=1
(1) 直线 x-y+b=0
圆心到直线的距离dc-l=半径r b=2±√2 √ ---------------7#
(2) 若b=1 则直线l:x-y+1=0
圆心到直线的距离dc-l=√2/2
弦长=√2 --------------------------------------------------14#

❺ 高一数学测试卷

松山区2006-2007学年度上学期期中考试试题
高一数学 2006.11

一.选择题(本题共12小题,每小题5分,共60分。)
1. 下列各组对象能构成集合的是( )
A.赤峰的小河流 B.方程 的解 C.接近于 的数的 D.所有的穷人
2.集合 的真子集的个数为( ) A. 3 B. 6 C. 8 D. 7
3.设 , , ,则 ( )
A. B. C. D.
4、如果命题“p或q”与命题“非p”都是真命题,那么( )
A.命题p不一定是假命题 B.命题q一定是真命题
C.命题q不一定是真命题 D.命题p与q的真值相同

5、如果( )在映射 作用下的象是 ,则(1,2)的原象是( )
A.(0, 3) B.(4,1) C.(0, 1) D.(0,1)
6、已知函数f(x) 的定义域是 [ ],那么函数y= f (2x) 的定义域是( )
A. B. C. D.
7、不等式 的解集为 ,则 的值是( )
A. B. C. D.

8. 则 ( )
A.2x+1 B.2 x-1 C.2 x-3 D.2 x +7

9、函数 的单调递减区间是( )
A. B. C. D.

10.函数y= x2的图象经过怎样的变换可以得到y=(x+1)2 +1的图象( )
A. 向左平移1个单位,再向下平移1个单位.
B. 向左平移1个单位,再向上平移1个单位.
C. 向右平移1个单位,再向上平移1个单位.
D. 向右平移1个单位,再向下平移1个单位.

11、已知A、B两地相距150千米,某人开汽车以60千米/小时的速度从A地到达B地,在B地停留1小时后再以50千米/小时的速度返回A地,把汽车离开A地的距离x表示为时间t(小时)的函数表达式是 ( )
A.x=60t B.x=60t+50t
C. x= D.x=
12、给出下列命题:
①命题“若b=3,则b2=9”的逆命题;
②命题“相似三角形的对应角相等”的否命题;
③命题“若 则 有实数根”的逆否命题;
④“a>b”是“a2>b2”的充分条件;
⑤“a<5”是“a<3”的必要条件;
其中真命题的个数是 ( )
A.1 B.2 C.3 D.4

二.填空题(本题共4小题,每小题4分,共16分。)
13.函数 的值域为:________.
14.已知函数 ,则 .
15、函数y= 的定义域为 .
16.如果二次函数 在区间 上是减函数,在区间 上是增函数,则 的值是 .

【考生须知】请把选择、填空的答案填在答题纸的相应位置,考试结束后只交答题纸.
松山区2006-2007学年度上学期期中考试试题
高一数学答题纸

得分 阅卷人

一.选择题(本题共12小题,每小题5分,共60分。)

题号 1 2 3 4 5 6 7 8 9 10 11 12
答案

得分 阅卷人

二.填空题(本题共4小题,每小题4分,共16分。)
13. 14.
15. 16.
三.解答题(本大题共6题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤.)
得分 阅卷人

17.(10分) 解不等式组

得分 阅卷人

18.(12分) 已知
(1)求 ;(2)求 、 的解析式.

得分 阅卷人

19.(12分) 已知函数 ,判断并证明 在区间(-1,+∞)上的单调性.

得分 阅卷人

20.(12分) 已知集合A=
(1)若A∪B=B,求实数 的取值范围;
(2)若A∩B≠ ,求实数 的取值范围.

得分 阅卷人

21.(12分) 已知集合A=
(1)若A是空集,求 的取值范围;
(2)若A中只有一个元素,求 的值,并把这个元素写出来;
(3)若A中至多只有一个元素,求 的取值范围。

得分 阅卷人

22.(16分) 已知二次函数 的图象(如图).
求:(1) 二次函数 的解析式;
(2) 二次函数 在区间 上的值域;
(3)解关于 的不等式 .

[url=http://www.abcjy.com/plug-ins/ad/get.asp?get=241462]免费课件、教案、论文、试卷、在线考试的好地方[/url]

[url=http://www.jy51.com/plug-ins/ad/get.asp?get=142003]两万个课件全免费、全册/实录教案、优秀论文、最新试卷[/url]

❻ 高一数学题

高一数学试卷
说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟。
第Ⅰ卷(选择题 共60分)
一、 选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中只有一个是符合题目要求的.
1、 已知角 的正弦线是单位长度的有向线段,那么角 的终边 ( )
A 在X轴上 B 在Y轴上 C 在直线y=x上 D在直线y= -x上
2 、设角 的终边过点P(-6a,-8a) (a<0),则sin -cos 的值是 ( )
A B 或- C - 或 D -
3 、函数y=sin( ) , x ( )
A 是奇函数 B 是偶函数
C 既不是奇函数也不是偶函数 D 奇偶性无法确定
4 、已知cos a cos +sin asin =0,那么sin a cos -cos a sin 的值为
( )
A -1 B 0 C 1 D ±1
5、 在ΔABC中,下列三角表达式:
①sin(A+B)+sinC ② cos(B +C)+cosA
③tan( )tan ④cos( )sec
其中恒为定值的是 ( )
A ①与② B ②与③ C ③与④ D ②与④
6、条件甲: ,条件乙:sin ,那么条件甲是条件乙的 ( )
A 充分而非必要条件 B 必要而非充分条件
C 充要条件 D 既非充分又非必要条件
7、如果 = 4+ ,那么cot( )的值等于 ( )
A -4- B 4+ C - D
8、化简 等于 ( )
A tan B cot C tan D cot
9、已知sin a cos a = , < < , 则cos a -sin a的值为 ( )
A B C D -
10、求值:tan70°+ tan50°- tan70°tan50°= ( )
A B C - D -
11、已知 (0, ),且cos( + )= - ,则cos = ( )
A B - C - D
12、已知f(tanx)=cos2x ,则f(- )等于 ( )
A - B 0 C D -1

2004━2005学年度第二学期期中联考
高一数学试卷
第II卷(非选择题 共90分)
二、填空题:(本大题共4小题,每小题4分,共16分.)
13、若 为第一象限的角,则 是第 象限的角
14、已知函数y =Asin( x+ )( >0,| |< )
的图象如图,则其解析式为

15、一个扇形的面积为1,周长为4,则此扇形中心角的弧度数为
16、已知函数f(x)=asin( x+ )+bcos( x+ )+4,且f(2004)=3,则f(2005)=
三、 解答题:(本大题共6小题,共76分.解答题应写出文字说明,证明过程或演算步骤.)
17、(本小题满分12分)
已知 为第四象限的角,化简cos +sin

18、(本小题满分12分)
已知cos( = - , < <2 ,求sin(2 - )的值.

19、(本小题满分12分)
已知A+B = , 求证:(1+tanA) (1+tanB) =2

20、(本小题满分12分)
用 “五点法”作出函数y=sin(x- ), 在一个最小正周期上的简图,并写出此函数的单调区间.

21、(本小题满分12分)
已知函数y=sin2x+2sinxcosx+3cos2x
①求函数的最小正周期
②当y取得最大值时,求自变量x取值的集合.
③说明该函数的图象可以由函数y=sinx (x R)经过怎样的平移和伸缩变换得到?

22、(本小题满分14分)
是否存在锐角 和 , 使得


同时成立?
若存在,试求出 和 的值;若不存在,请说明理由.

高 一 数 学 期 中 试 题 参 考 答 案
一、选择题:BABDB BBCBC AC
二、填空题
13 一或三 14 y=2sin( ) 15 2 16 5
三、解答题
17 解:∵ 为第四象限的角,∴1-sin >0,1-cos >0,且cos >0 ,sin <0 ,………………………………… 4分
故原式=cos …………… 8分
=cos +sin
=1-sin -1+cos
=cos -sin ……………………………12分
18 解:∵cos( )=-
∴ cos = , ………………………………4分
又 < <2 , ∴ sin =- , ………… 8分
∴sin(2 )=-sin = ……………12分
19 证明:由A+B= ,得tan(A+B)=1…………4分
即 =1……… 6分
tanA+tanB=1-tanAtanB , ……8分
tanAtanB+tanA+tanB+1=2…10分
故(tanA+1)( tanB+1)=2………………………12分
20 解: 图形略. ………………………………8分
单调增区间为[2k - , 2k + ],k Z
单调增区间为[2k + , 2k + ],k Z…………12分
21 解:①∵y=sin2x+2cos2x+1= sin2x+cos2x+2
= sin(2x+ )+2
∴最小正周期 T= ……………………………………2分
②由①知当sin(2x+ )=1, 即2x+ =2k + ,x= k + , k Z时,y有最大值,此时自变量x取值的集合为{x|x== k + , k Z}…………………………………………… 6分
③要得到y= sin(2x+ )+2的图象,可由y=sinx (x R)的图象作如下变换得到:
先将y=sinx 的图象向左平移 个单位,得到y= sin(x+ )的图象;再将y= sin(x+ )的图象上各点的横坐标压缩到原来的 ,得到y= sin(2x+ )的图象;再将y= sin(2x+ )的图象上各点的纵坐标扩大到原来的 倍,得到y= sin(2x+ )的图象;再将y= sin(2x+ )的图象向上平移2个单位,即得y= sin(2x+ )+2的图象.……………………………………12分
[注: ③可以有多种方法,上面的方法仅是其中的一种]
22 解: 若存在 满足题设
∵ , ∴ …………………………2分
∴tan( )= ……………………4分
∴ = ……………………… 5分
∵tan tan =2-
∴ tan +tan = - tan tan =3- ……7分
∴tan ,tan
是一元二次方程X2-(3- )x+2- =0 的两根
解此方程得x=1,或x=2- …………………9分
若tan =1,∵ 为锐角,则 = ,
∴ = 不合题意……………………11分
故必有tan =1,∵ 为锐角,∴ = ,
此时由 得 = ,
即 = . ……………………………13分
故存在 = , = 满足题意. ……………14分

热点内容
帮扶教师承诺 发布:2024-11-24 22:03:24 浏览:893
吉林瑞泰生物 发布:2024-11-24 21:27:32 浏览:164
班主任女友第一次 发布:2024-11-24 20:30:41 浏览:66
女教师吧 发布:2024-11-24 19:45:42 浏览:858
屈由历史 发布:2024-11-24 19:40:09 浏览:580
高中地理app 发布:2024-11-24 19:17:09 浏览:881
上帝与新物理学 发布:2024-11-24 18:59:23 浏览:449
金源康生物 发布:2024-11-24 18:27:09 浏览:651
保定教育网 发布:2024-11-24 17:17:02 浏览:787
师德先进个人推荐材料 发布:2024-11-24 16:04:48 浏览:580