当前位置:首页 » 语数英语 » 初二上册数学期末试卷

初二上册数学期末试卷

发布时间: 2023-11-14 20:55:23

⑴ 初二数学上期末试卷及答案

时光飞逝,做好初二数学期末复习准备,考场上充分发挥自己的数学能力。沉着才见英雄本色。下面由我为你整理的初二数学上期末试卷,希望对大家有帮助!

初二数学上期末试卷

一、选择题

1.某地一天的最高气温是12℃,最低气温是﹣2℃,则该地这天的温差是()

A.﹣10℃ B.10℃ C.14℃ D.﹣14℃

2.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()

A.3.386×108 B.0.3386×109 C.33.86×107 D.3.386×109

3.如图,放置的一个机器零件(图1),若从正面看到的图形如(图2)所示,则从上面看到的图形是()

A. B. C. D.

4.下列说法正确的是()

A.有理数分为正数和负数

B.有理数的相反数一定比0小

C.绝对值相等的两个数不一定相等

D.有理数的绝对值一定比0大

5.单项式﹣23a2b3的系数和次数分别是()

A.﹣2,8 B.﹣8,5 C.2,8 D.﹣2,5

6.若a+b<0且ab<0,那么()

A.a<0,b>0 B.a<0,b<0

C.a>0,b<0 D.a,b异号,且负数绝对值较大

7.把弯曲的道路改直,就能缩短路程,其中蕴含的数学原理是()

A.过一点有无数条直线 B.两点确定一条直线

C.两点之间线段最短 D.线段是直线的一部分

8.某品牌商品,按标价八折出售,仍可获得10%的利润.若该商品标价为275元,则商品的进价为()

A.192.5元 B.200元 C.244.5元 D.253元

9.如图,两块直角三角板的直顶角O重合在一起,若∠BOC= ∠AOD,则∠BOC的度数为()

A.30° B.45° C.54° D.60°

10.适合|2a+5|+|2a﹣3|=8的整数a的值有()

A.4个 B.5个 C.7个 D.9个

二、填空题

11.﹣ 的相反数是.

12.过某个多边形的一个顶点的所有对角线,将这个多边形分成6个三角形,这个多边形是边形.

13.如图,数轴上点A、B、C所对应的数分别为a、b、c,化简|a|+|c﹣b|﹣|a+b﹣c|=.

14.如图,P1是一块半径为1的半圆形纸板,在P1的左下端剪去一个半径为 的半圆后得到图形P2,然后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆的半径)得图形P3,P4,…,Pn,…,记纸板Pn的面积为Sn,试通过计算S1,S2,猜想得到Sn﹣1﹣Sn=(n≥2).

三、解答题

15.计算题

(1)30×( ﹣ ﹣ );

(2)﹣14﹣(1﹣0.5)× ×[1﹣(﹣2)3].

16.解方程:

(1) ﹣ =1

(2) ﹣ =0.5.

17.如图,已知线段a,b,用尺规作一条线段AB,使AB=2a﹣b(不写作法,保留作图痕迹).

18.先化简,再求值(﹣x2+3xy﹣ y2)﹣(﹣ x2+4xy﹣ y2),其中x=2,y=1.

19.新年快到了,贫困山区的孩子想给资助他们的王老师写封信,折叠长方形信纸装入标准信封时发现:若将信纸如图①连续两次对折后,沿着信封口边线装入时,宽绰有3.8cm;若将信纸如图②三等分折叠后,同样方法装入时,宽绰1.4 cm,试求信纸的纸长和信封的口宽.

20.雾霾天气严重影响市民的生活质量,在今年元旦期间,某校七年级一班的同学对“雾霾天气的主要成因”就市民的看法做了随机调查,并对调查结果进行了整理,绘制了不完整的统计图表(如下图),观察分析并回答下列问题.

组别 雾霾天气的主要成因 百分比

A 工业污染 45%

B 汽车尾气排放 m

C 炉烟气排放 15%

D 其它(滥砍滥伐等) n

(1)本次被调查的市民共有人;

(2)补全条形统计图;

(3)图2中区域B所对应的扇形圆心角为度.

21.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=25°,求∠AOB的度数.

22.甲仓库有水泥100吨,乙仓库有水泥80吨,要全部运到A、B两工地,已知A工地需要70吨,B工地需要110吨,甲仓库运到A、B两工地的运费分别是140元/吨、150元/吨,乙仓库运到A、B两工地的运费分别是200元/吨、80元/吨,本次运动水泥总运费需要25900元.(运费:元/吨,表示运送每吨水泥所需的人民币)

(1)设甲仓库运到A工地水泥为x吨,请在下面表格中用x表示出其它未知量.

甲仓库 乙仓库

A工地 x

B工地 x+10

(2)用含x的代数式表示运送甲仓库100吨水泥的运费为元.(写出化简后的结果)

(3)求甲仓库运到A工地水泥的吨数.

23.已知线段AB=12,CD=6,线段CD在直线AB上运动(A在B的左侧,C在D的左侧).

(1)当D点与B点重合时,AC=;

(2)点P是线段AB延长线上任意一点,在(1)的条件下,求PA+PB﹣2PC的值;

(3)M、N分别是AC、BD的中点,当BC=4时,求MN的长.

初二数学上期末试卷参考答案与试题解析

一、选择题

1.某地一天的最高气温是12℃,最低气温是﹣2℃,则该地这天的温差是()

A.﹣10℃ B.10℃ C.14℃ D.﹣14℃

【考点】有理数的减法.

【分析】根据题意用最高气温12℃减去最低气温﹣2℃,根据减去一个数等于加上这个数的相反数即可得到答案.

【解答】解:12﹣(﹣2)=14(℃).故选:C.

2.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()

A.3.386×108 B.0.3386×109 C.33.86×107 D.3.386×109

【考点】科学记数法—表示较大的数.

【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.

【解答】解:数字338 600 000用科学记数法可简洁表示为3.386×108.

故选:A.

3.如图,放置的一个机器零件(图1),若从正面看到的图形如(图2)所示,则从上面看到的图形是()

A. B. C. D.

【考点】简单组合体的三视图.

【分析】根据从上边看得到的图形是俯视图,可得答案.

【解答】解:从上边看是等宽的三个矩形,

故选:D.

4.下列说法正确的是()

A.有理数分为正数和负数

B.有理数的相反数一定比0小

C.绝对值相等的两个数不一定相等

D.有理数的绝对值一定比0大

【考点】有理数;相反数;绝对值.

【分析】根据有理数的分类、绝对值的性质,可得答案.

【解答】解:A、有理数分为正数、零、负数,故A不符合题意;

B、负数的相反数大于零,故B不符合题意;

C、互为相反数的绝对值相等,故C符合题意;

D、绝对值是非负数,故D不符合题意;

故选:C.

5.单项式﹣23a2b3的系数和次数分别是()

A.﹣2,8 B.﹣8,5 C.2,8 D.﹣2,5

【考点】单项式.

【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.

【解答】解:单项式﹣23a2b3的系数和次数分别是﹣8,5,

故选B.

6.若a+b<0且ab<0,那么()

A.a<0,b>0 B.a<0,b<0

C.a>0,b<0 D.a,b异号,且负数绝对值较大

【考点】有理数的乘法;有理数的加法.

【分析】根据a+b<0且ab<0,可以判断a、b的符号和绝对值的大小,从而可以解答本题.

【解答】解:∵a+b<0且ab<0,

∴a>0,b<0且|a|<|b|或a<0,b>0且|a|>|b|,

即a,b异号,且负数绝对值较大,

故选D.

7.把弯曲的道路改直,就能缩短路程,其中蕴含的数学原理是()

A.过一点有无数条直线 B.两点确定一条直线

C.两点之间线段最短 D.线段是直线的一部分

【考点】线段的性质:两点之间线段最短.

【分析】根据线段的性质,可得答案.

【解答】解:把弯曲的道路改直,就能缩短路程,其中蕴含的数学原理是两点之间线段最短,

故选:C.

8.某品牌商品,按标价八折出售,仍可获得10%的利润.若该商品标价为275元,则商品的进价为()

A.192.5元 B.200元 C.244.5元 D.253元

【考点】一元一次方程的应用.

【分析】设商品的进价为x元,由已知按标价八折出售,仍可获得10%的利润,可以表示出出售的价格为(1+10%)x元,商品标价为275元,则出售价为275×80%元,其相等关系是售价相等.由此列出方程求解.

【解答】解:设商品的进价为x元,根据题意得:

(1+10%)x=275×80%,

1.1x=220,

x=200.

故商品的进价为200元.

故选:B.

9.如图,两块直角三角板的直顶角O重合在一起,若∠BOC= ∠AOD,则∠BOC的度数为()

A.30° B.45° C.54° D.60°

【考点】角的计算.

【分析】此题“两块直角三角板”可知∠DOC=∠BOA=90°,根据同角的余角相等可以证明∠DOB=∠AOC,由题意设∠BOC=x°,则∠AOD=5x°,结合图形列方程即可求解.

【解答】解:由两块直角三角板的直顶角O重合在一起可知:∠DOC=∠BOA=90°

∴∠DOB+∠BOC=90°,∠AOC+∠BOC=90°,

∴∠DOB=∠AOC,

设∠BOC=x°,则∠AOD=5x°,

∴∠DOB+∠AOC=∠AOD﹣∠BOC=4x°,

∴∠DOB=2x°,

∴∠DOB+∠BOC=3x°=90°

解得:x=30

故选A.

10.适合|2a+5|+|2a﹣3|=8的整数a的值有()

A.4个 B.5个 C.7个 D.9个

【考点】绝对值.

【分析】此方程可理解为2a到﹣5和3的距离的和,由此可得出2a的值,继而可得出答案.

【解答】解:如图,由此可得2a为﹣4,﹣2,0,2的时候a取得整数,共四个值.

故选:A.

二、填空题

11.﹣ 的相反数是 .

【考点】相反数.

【分析】求一个数的相反数就是在这个数前面添上“﹣”号.

【解答】解:﹣ 的相反数是﹣(﹣ )= .

故答案为: .

12.过某个多边形的一个顶点的所有对角线,将这个多边形分成6个三角形,这个多边形是八边形.

【考点】多边形的对角线.

【分析】根据n边形对角线公式,可得答案.

【解答】解:设多边形是n边形,由对角线公式,得

n﹣2=6.

解得n=8,

故答案为:八.

13.如图,数轴上点A、B、C所对应的数分别为a、b、c,化简|a|+|c﹣b|﹣|a+b﹣c|=0.

【考点】整式的加减;数轴;绝对值.

【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.

【解答】解:根据题意得:a<0

∴a<0,c﹣b>0,a+b﹣c<0,

∴|a|+|c﹣b|﹣|a+b﹣c|=﹣a+(c﹣b)+(a+b﹣c)=﹣a+c﹣b+a+b﹣c=0.

故答案为0.

14.如图,P1是一块半径为1的半圆形纸板,在P1的左下端剪去一个半径为 的半圆后得到图形P2,然后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆的半径)得图形P3,P4,…,Pn,…,记纸板Pn的面积为Sn,试通过计算S1,S2,猜想得到Sn﹣1﹣Sn=( )2n﹣1π.(n≥2).

【考点】扇形面积的计算.

【分析】由P1是一块半径为1的半圆形纸板,在P1的左下端剪去一个半径为 的半圆后得到图形P2,得到S1= π×12= π,S2= π﹣ π×( )2.同理可得Sn﹣1= π﹣ π×( )2﹣ π×[( )2]2﹣…﹣ π×[( )n﹣2]2,Sn= π﹣ π×( )2﹣ π×[( )2]2﹣…﹣ π×[( )n﹣2]2﹣ π×[( )n﹣1]2,它们的差即可得到.

【解答】解:根据题意得,n≥2.

S1= π×12= π,

S2= π﹣ π×( )2,

Sn﹣1= π﹣ π×( )2﹣ π×[( )2]2﹣…﹣ π×[( )n﹣2]2,

Sn= π﹣ π×( )2﹣ π×[( )2]2﹣…﹣ π×[( )n﹣2]2﹣ π×[( )n﹣1]2,

∴Sn﹣1﹣Sn= π×( )2n﹣2=( )2n﹣1π.

故答案为( )2n﹣1π.

三、解答题

15.计算题

(1)30×( ﹣ ﹣ );

(2)﹣14﹣(1﹣0.5)× ×[1﹣(﹣2)3].

【考点】有理数的混合运算.

【分析】(1)原式利用乘法分配律计算即可得到结果;

(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.

【解答】解:(1)原式=15﹣20﹣24=15﹣44=﹣29;

(2)原式=﹣1﹣ × ×9=﹣ .

16.解方程:

(1) ﹣ =1

(2) ﹣ =0.5.

【考点】解一元一次方程.

【分析】解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,据此求出每个方程的解是多少即可.

【解答】解:(1)去分母,得2(5+2x)﹣3(10﹣3x)=6

去括号,得10+4x﹣30+9x=6

移项,得4x+9x=6﹣10+30

合并同类项,得13x=26

系数化为1,得x=2

(2)去分母,得1.5x﹣0.3(1.5﹣x)=0.5×0.6

去括号,得1.5x+0.3x﹣0.45=0.3

移项,得1.5x+0.3x=0.3+0.45

合并同类项,得1.8x=0.75

系数化为1,得x=

17.如图,已知线段a,b,用尺规作一条线段AB,使AB=2a﹣b(不写作法,保留作图痕迹).

【考点】作图—复杂作图.

【分析】首先作射线,再截取AD=DC=a,进而截取BC=b,即可得出AB=2a﹣b.

【解答】解:如图所示:线段AB即为所求.

18.先化简,再求值(﹣x2+3xy﹣ y2)﹣(﹣ x2+4xy﹣ y2),其中x=2,y=1.

【考点】整式的加减—化简求值.

【分析】首先化简(﹣x2+3xy﹣ y2)﹣(﹣ x2+4xy﹣ y2),然后把x=2,y=1代入化简后的算式,求出算式的值是多少即可.

【解答】解:(﹣x2+3xy﹣ y2)﹣(﹣ x2+4xy﹣ y2)

=﹣x2+3xy﹣ y2+ x2﹣4xy+ y2

=﹣0.5x2﹣xy+y2

当x=2,y=1时,

原式=﹣0.5×22﹣2×1+12

=﹣2﹣2+1

=﹣3

19.新年快到了,贫困山区的孩子想给资助他们的王老师写封信,折叠长方形信纸装入标准信封时发现:若将信纸如图①连续两次对折后,沿着信封口边线装入时,宽绰有3.8cm;若将信纸如图②三等分折叠后,同样方法装入时,宽绰1.4 cm,试求信纸的纸长和信封的口宽.

【考点】一元一次方程的应用.

【分析】设信纸的纸长为12xcm,则信封的口宽为(4x+1.4)cm,根据信纸的折法结合信封的口宽不变即可得出关于x的一元一次方程,解之即可得出结论.

【解答】解:设信纸的纸长为12xcm,则信封的口宽为(4x+1.4)cm.

根据题意得:3x+3.8=4x+1.4,

解得:x=2.4,

∴12x=28.8,4x+1.4=11.

答:信纸的纸长为28.8cm,信封的口宽为11cm.

20.雾霾天气严重影响市民的生活质量,在今年元旦期间,某校七年级一班的同学对“雾霾天气的主要成因”就市民的看法做了随机调查,并对调查结果进行了整理,绘制了不完整的统计图表(如下图),观察分析并回答下列问题.

组别 雾霾天气的主要成因 百分比

A 工业污染 45%

B 汽车尾气排放 m

C 炉烟气排放 15%

D 其它(滥砍滥伐等) n

(1)本次被调查的市民共有200人;

(2)补全条形统计图;

(3)图2中区域B所对应的扇形圆心角为108度.

【考点】条形统计图;统计表;扇形统计图.

【分析】(1)根据条形图和扇形图信息,得到A组人数和所占百分比,求出调查的市民的人数;

(2)根据A、C组的百分比求得其人数,由各组人数之和可得D组人数,即可补全条形统计图;

(3)持有B组主要成因的市民百分比乘以360°求出答案.

【解答】解:(1)从条形图和扇形图可知,A组人数为90人,占45%,

∴本次被调查的市民共有:90÷45%=200人,

故答案为:200;

(2)∵A组的人数为200×45%=90(人),C组的人数为200×15%=30(人),

∴D组人数为200﹣90﹣60﹣30=20,

补全条形统计图如下:

(3)∵B组所占百分比为60÷200=30%,

∴30%×360°=108°,

即区域B所对应的扇形圆心角的度数为:108°,

故答案为:108.

21.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=25°,求∠AOB的度数.

【考点】角的计算;角平分线的定义.

【分析】先设∠AOC=x,则∠COB=2∠AOC=2x,再根据角平分线定义得出∠AOD=∠BOD=1.5x,进而根据∠COD=25°列出方程,解方程求出x的值,即可得出答案.

【解答】解:设∠AOC=x,则∠COB=2∠AOC=2x.

∵OD平分∠AOB,

∴∠AOD=∠BOD=1.5x.

∴∠COD=∠AOD﹣∠AOC=1.5x﹣x=0.5x.

∵∠COD=25°,

∴0.5x=25°,

∴x=50°,

∴∠AOB=3×50°=150°.

22.甲仓库有水泥100吨,乙仓库有水泥80吨,要全部运到A、B两工地,已知A工地需要70吨,B工地需要110吨,甲仓库运到A、B两工地的运费分别是140元/吨、150元/吨,乙仓库运到A、B两工地的运费分别是200元/吨、80元/吨,本次运动水泥总运费需要25900元.(运费:元/吨,表示运送每吨水泥所需的人民币)

(1)设甲仓库运到A工地水泥为x吨,请在下面表格中用x表示出其它未知量.

甲仓库 乙仓库

A工地 x 70﹣x

B工地 100﹣x x+10

(2)用含x的代数式表示运送甲仓库100吨水泥的运费为﹣10x+15000元.(写出化简后的结果)

(3)求甲仓库运到A工地水泥的吨数.

【考点】一元一次方程的应用.

【分析】(1)根据题意填写表格即可;

(2)根据表格中的数据,以及已知的运费表示出总运费即可;

(3)根据本次运送水泥总运费需要25900元列方程化简即可.

【解答】解:(1)设甲仓库运到A工地水泥的吨数为x吨,则运到B地水泥的吨数为吨,

乙仓库运到A工地水泥的吨数为(70﹣x)吨,则运到B地水泥的吨数为(x+10)吨,

补全表格如下:

甲仓库 乙仓库

A工地 x 70﹣x

B工地 100﹣x x+10

故答案为:70﹣x;100﹣x;

(2)运送甲仓库100吨水泥的运费为140x+150=﹣10x+15000;

故答案为:﹣10x+15000;

(3)140x+150+200(70﹣x)+80(x+10)=25900,

整理得:﹣130x+3900=0.

解得x=30

答:甲仓库运到A工地水泥的吨数是30吨.

23.已知线段AB=12,CD=6,线段CD在直线AB上运动(A在B的左侧,C在D的左侧).

(1)当D点与B点重合时,AC=6;

(2)点P是线段AB延长线上任意一点,在(1)的条件下,求PA+PB﹣2PC的值;

(3)M、N分别是AC、BD的中点,当BC=4时,求MN的长.

【考点】线段的和差.

【分析】(1)根据题意即可得到结论;

(2)由(1)得AC= AB,CD= AB,根据线段的和差即可得到结论;

(3)需要分类讨论:①如图1,当点C在点B的右侧时,根据“M、N分别为线段AC、BD的中点”,先计算出AM、DN的长度,然后计算MN=AD﹣AM﹣DN;②如图2,当点C位于点B的左侧时,利用线段间的和差关系求得MN的长度.

【解答】解:(1)当D点与B点重合时,AC=AB﹣CD=6;

故答案为:6;

(2)由(1)得AC= AB,

∴CD= AB,

∵点P是线段AB延长线上任意一点,

∴PA+PB=AB+PB+PB,PC=CD+PB= AB+PB,

∴PA+PB﹣2PC=AB+PB+PB﹣2( AB+PB)=0;

(3)如图1,∵M、N分别为线段AC、BD的中点,

∴AM= AC= (AB+BC)=8,

DN= BD= (CD+BC)=5,

∴MN=AD﹣AM﹣DN=9;

如图2,∵M、N分别为线段AC、BD的中点,

∴AM= AC= (AB﹣BC)=4,

DN= BD= (CD﹣BC)=1,

∴MN=AD﹣AM﹣DN=12+6﹣4﹣4﹣1=9.

⑵ 初二数学上册期末检测试卷

在七年级数学期末的考试道路上,学习没有止境,每天学习进步一点点,数学期末考试就会成功!下面由我为你整理的初二数学上册期末检测试题,希望对大家有帮助!

初二数学上册期末检测试题

一、选择题(每小题3分,共36分)

1. 的相反数和绝对值分别是()

A. B. C. D.

2.如果 和 互为相反数,且 ,那么 的倒数是( )

A. B. C. D.

3.(2016•湖南长沙中考)下列各图中,∠1与∠2互为余角的是( )

A B C D

4.(2016•北京中考改编)有理数a,b在数轴上的对应点的位置如图所示,则正确的结论

是( )

第4题图

A.a>-2 B.a<-3 C.a>-b D.a<-b

5.已知有一整式与 的和为 ,则此整式为()

A. B. C. D.

6.(2016•吉林中考)小红要购买珠子串成一条手链.黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费( )

A.(3a+4b)元 B.(4a+3b)元 C.4(a+b)元 D.3(a+b)元

第6题图

7.(2015•河北中考)图中的三视图所对应的几何体是()

C. D. 第7题图

8.(2015•吉林中考)如图,有一个正方体纸巾盒,它的平面展开图是()

第8题图

9.2条直线最多有1个交点,3条直线最多有3个交点,4条直线最多有6个交点,…,那么6条直线最多有( )

A.21个交点 B.18个交点

C.15个交点 D.10个交点

10.如图,直线 和 相交于 点, 是直角, 平分 , ,则 的大小为( )

A. B. C. D.

11.(2015•山东泰安中考)如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于( )

A.122° B.151° C.116° D.97°

12. (2015•山西中考)如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为( )

A.105° B.110°

C.115° D.120°

二、填空题(每小题3分,共24分)

13.如果 的值与 的值互为相反数,那么 等于_____.

14.足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得0分.一队打14场,负5场,共得19分,那么这个队共胜了_____场.

15.一个两位数,个位数字和十位数字之和为10,个位数字为 ,用代数式表示这个两位数 是.

16.定义 ,则 _______.

17.当 时,代数式 的值为 ,则当 时,代数式 _____.

18.若关于 的多项式 中不含有 项,则 _____.

19.(2016•江苏连云港中考)如图,直线AB∥CD,BC平分∠ABD,若∠1=54°,则∠2= .

20.如图,已知点 是直线 上一点,射线 分别是 的平分线,若 则 _________, __________.

三、解答题(共60分)

21.(8分)已知 互为相反数, 互为倒数, 的绝对值是 ,求 的值.

22.(8分)给出三个多项式: ,请选择你最喜欢的两个多项式进行加法运算并分解因式,并求当x=-2时该式的结果.

23.(10分)如图,直线 分别与直线 相交于点 ,与直线 相交于点 .

若∠1=∠2,∠3=75°,求∠4的度数.

第23题图 第24题图

24.(10分)如图, , , 交AB于 .问 与 有什么关系?请说明理由.

25.(12分)如图, 于点 , 于点 , .请问: 平分 吗?若平分,请说明理由.

第26题图

第25题图

26.(12分)如图,已知点 在同一直线上, 分别是AB,BC的中点.

(1)若 , ,求 的长;

(2)若 , ,求 的长;

(3)若 , ,求 的长;

(4)从(1)(2)(3)的结果中能得到什么结论?

初二数学上册期末检测试题参考答案

1.B 解析: 的相反数是 , ,故选B.

2.A 解析:因为 和 互为相反数,所以 ,故 的倒数是 .

3.B 解析:A:根据对顶角相等,以及“两直线平行,同位角相等”可得∠1=∠2;B:∵ 三角形的内角和为180°,∴ ∠1+∠2=90°,即∠1与∠2互为余角;C:∵ ∠1与∠2是对顶角,∴ ∠1=∠2;D:∵ ∠1+∠2=180°, ∴ ∠1与∠2互补.故选B.

4.D 解析:观察数轴可得-3

观察数轴还可得1

故选项C错误,选项D正确.

规律:利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大;在原点左侧,绝对值大的反而小.

5.B 解析: ,故选B.

6.A 解析:因为图示手链有3个黑色珠子,4个白色珠子,而每个黑色珠子a元,每个白色珠子b元,所以总花费=(3a+4b)元,所以选A.

7.B 解析:主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的平面图形,由于主视图为 ,故A,C,D三选项错误,选项B正确.

8.B 解析:因为选项A折成正方体后,圆圈与“纸巾”所在的面是相对的,所以A错误;

选项B折成正方体后,圆圈与“纸巾”所在的面相邻且位置关系正确;

选项C折成正方体后,圆圈与“纸巾”所在的面相邻但位置关系不正确;

选项D折成正方体后,圆圈与“纸巾”所在的面相邻但位置关系不正确.因此B正确.

9.C 解析:由题意,得n条直线的交点个数最多为 (n取正整数且n≥2),故6条直线最多有 =15(个)交点.

10.A 解析:因为 是直角,

所以

又因为 平分 ,所以

因为 所以

所以 .

11.B 解析:根据两直线平行,同位角相等可得∠EFD=∠1=58°.

由FG平分∠EFD可得∠GFD=29°.

由两直线平行,同旁内角互补,得∠FGB=180°-∠GFD=180°-29°=151°.

12.C 解析:如图所示,设∠1的对顶角是∠3,

∴ ∠1=∠3=55°.

又∵ ∠A+∠3+∠4=180°,∠A=60°,

∴ ∠4=65°.

∵ ∠4和∠5是对顶角,∴ ∠5=65°.

∵ a∥b,∴ ∠5+∠2=180°,∴ ∠2=115°. 第12题答图

13. 解析:根据题意,得 ,解得 .

14.5 解析:设共胜了 场.由题意,得 ,解得

15.100-9 解析:10×(10- )+ =100-9 .

16. 解析:根据题意可知,(1※2)※3=(1-2)※3=(﹣1)※3=1-3=﹣2.

17.7 解析:因为当 时, ,所以 ,即 .

所以当 时, .

18. 解析: ,

由于多项式中不含有 项,故 ,所以 .

19.72° 解析:∵ AB∥CD,∠1=54°,

∴ ∠ABC=∠1=54°,∠ABD+∠BDC=180°.

∵ BC平分∠ABD,

∴ ∠ABD=2∠ABC=2×54°=108°,

∴ ∠BDC=180°-∠ABD=180°-108°=72°.

∵ ∠2与∠BDC是对顶角,

∴ ∠2=∠BDC=72°.

点拨:两直线平行,同位角相等,同旁内角互补.

20. 解析:因为

所以

因为 是 的平分线, ,

所以

所以

因为 是 的平分线,

所以

21.解:由已知可得, , , .

当 时, ;

当 时, .

22.解:情况一: 当x=-2时,x(x+6)=-8;

情况二: 当x=-2时,(x+1)(x-1)=3;

情况三: 当x=-2时,(x+1)2 =1.

23.解:因为 ,所以 ∥ ,

所以∠4=∠3=75°(两直线平行,内错角相等).

24.解: .理由如下:

因为 ,所以 ∥ ,所以 .

又因为 ,所以 ,故 ∥ .

因为 ,所以 .

25.解:平分.理由如下:

因为 于 , 于 (已知),

所以 (垂直的定义),

所以 ∥ (同位角相等,两直线平行),

所以 (两直线平行,内错角相等), (两直线平行,同位角相等).

又因为 (已知),所以 (等量代换).

所以 平分 (角平分线的定义).

26.解:(1)因为点 在同一直线上, 分别是AB,BC的中点,

所以 .

而MN=MB-NB,AB=20,BC=8,

所以MN= .

(2)根据(1)得 .

(3)根据(1)得

(4)从(1)(2)(3)的结果中能得到线段MN始终等于线段 的一半,与 点的位置无关.

⑶ 初二数学上册期末模拟试卷含答案

初二数学是一个至关重要的学年,同学们一定要在数学期末模拟考试中仔细审题和答题。以下是我为你整理的初二数学上册期末模拟试卷,希望对大家有帮助!

初二数学上册期末模拟试卷

一、细心选一选(本题共10小题,每小题3分,共30分)

【请将精心选一选的选项选入下列方框中,错选,不选,多选,轮碰皆不得分】

1、点(-1,2)位于( )

(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限

2、若∠1和∠3是同旁内角,∠腊斗谈1=78度,那么下列说法正确的是( )

(A)∠3=78度 (B) ∠3=102度 (C)∠1+∠3=180度(D)∠3的度数无法确定

3.如图,已知∠1=∠2,则下列结论一定正确的是( )

(A)∠3=∠4 (B) ∠1=∠3 (C) AB//CD (D) AD//BC

4.小明、小强、小刚家在如图所示的点A、B、C三个地方,它们的连线恰好构成一个直角三角形,B,C之间的距离为5km,新华书店恰好位于斜边BC的中点D,则新华书店D与小明家A的距离是( )

(A)2.5km (B)3km (C)4 km (D)5km

5.下列能断定△ABC为等腰三角形的是( )

(A)∠A=30º、∠B=60º (B)∠A=50º、∠B=80º

(C)AB=AC=2,BC=4 (D)AB=3、BC=7,周长为13

6.某游客为爬上3千米的山顶看日出,先用1小时爬了2千米,休息0.5小时后,用1小时爬上山顶。山高h与游客爬山所用时间t之间的函数关系大致图形表示是( )

7. 下列不等式一定成立的是( )

(A)4a>3a (B)3-x<4-x (C)-a>-3a (D)4a>3a

8.如图,长方形ABCD恰好可分成7个形状大小相同的小长方形,如果小长方形的面积是3,则长方形ABCD的周长是( )

(A)17 (B)18 (C)19 (D)

9. 一次函数y=x图象向下平移2个单位长度再向右平移3个单位长度后,对应函数关系式是( )

(A)y=2x -8 (B)y=12x (C)y=x+2 (D)y=x-5

10.在直线L上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+2S2+2S3+S4=( )

(A)5 (B)4 (C) 6 (D)、10

二、精心填一填(每小题3分,共24分)

11.点P(3,-2)关于y轴对称的点的坐标为 .

12.已知等腰三角形的两边长分别为3和5,则它的周长是 .

13.在Rt△ABC中,CD、CF是AB边上的高线与中线,若AC=4,BC=3 ,则CF= ;CD= .

14.已知等腰三角形一腰上的中线将它周长分成9cm和6cm 两部分,则这个等腰三角形的底边长是__

15.一次函数y=kx+b满足2k+b= -1,则它的图象必经过一定点,这定点的坐标是 .

16.已知坐标原点O和点A(1,1),试在X轴上找到一点P,使△AOP为等腰三角形,写出满销耐足条件的点P的坐标__

17.如图,△ABC中,∠C=90°,AB的中垂线DE交AB于E,交BC于D,若AB=10,AC=6,则△ABC的周长为 .

18. 如图,有八个全等的直角三角形拼成一个大四边形ABCD和中间一个小四边形MNPQ,连接EF、GH得到四边形EFGH,设S四边形ABCD=S1,S四边形EFGH=S2,S四边形MNPQ=S3,若S1+S2+S3,则S2= .

三、仔细画一画(6分)

19.(1)已知线段a,h,用直尺和圆规作等腰三角形ABC,底边BC=a,BC边上的高为h

└─────┘a └──────┘h

(2)如图,已知△ABC,请作出△ABC关于X轴对称的图形.并写出A、B、C 关于X轴对称的点坐标。

四、用心做一做(40分)

20.(本题6分)解下列不等式(组),并将其解集在数轴上表示出来。

(1)x+16 <5-x4 +1 (2) 2x>x+2;①

x+8>x-1;②

21.(本题5分)如图,已知AD∥BC,∠1=∠2,说明∠3+∠4=180°,请完成说明过程,并在括号内填上相应依据:

解:∠3+∠4=180°,理由如下:

∵AD∥BC(已知),

∴∠1=∠3( )

∵∠1=∠2(已知)

∴∠2=∠3(等量代换);

∴ ∥ ( )

∴∠3+∠4=180°( )

22.(本题5分)如图,在△ABC中,点D、E在边BC上,且AB=AC,AD=AE,请说明BE=CD的理由.

23.(本题6分)某软件公司开发出一种图书管理软件,前期投入的各种费用总共50000元,之后每售出一套软件,软件公司还需支付安装调试费用200元,设销售套数x(套)。

(1)试写出总费用y(元)与销售套数x(套)之间的函数关系式.

(2)该公司计划以400元每套的价格进行销售,并且公司仍要负责安装调试,试问:软件公司售出多少套软件时,收入超出总费用?

24.(本题8分)“十一黄金周”的某一天,小刚全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩,该小汽车离家的路程S(千米)与时间t (时)的关系可以用右图的折线表示。根据图象提供的有关信息,解答下列问题:

(1)小刚全家在旅游景点游玩了多少小时?

(2)求出整个旅程中S(千米)与时间t (时)的函数关系式,并求出相应自变量t的取值范围。

(3)小刚全家在什么时候离家120㎞?什么时候到家?

25.(本题10分)如图,已知直线y=﹣34 x+3与x轴、y轴分别交于点A、B,线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°.

(1)求△AOB的面积;

(2)求点C坐标;

(3)点P是x轴上的一个动点,设P(x,0)

①请用x的代数式表示PB2、PC2;

②是否存在这样的点P,使得|PC-PB|的值最大?如果不存在,请说明理由;

如果存在,请求出点P的坐标.

初二数学上册期末模拟试卷参考答案

一、细心选一选(本题共10小题,每小题3分,共30分)

【请将精心选一选的选项选入下列方框中,错选,不选,多选,皆不得分】

题号 1 2 3 4 5 6 7 8 9 10

答案 B D D A B D B C D C

X k B 1 . c o m

二、精心填一填(每小题3分,共24分)

11. (-3,-2) 12. 11或3

13 2.5 , 2.4 14 3或7

15 (2,-1) 16 (1,0) (2,0) (2 ,0) (- ,0)

17 14 18 203

三、仔细画一画(6分)

19.(1)图形略 图形画正确得2分,结论得1分.

(2)解:A1 (2 ,-3) B1(1 ,-1) C1(3 ,2)…………得2分 画出图形得 1分

四、用心做一做(40分)

20.(本题6分)(1)解:去分母,得2(x+1)<3(5-x)+12

去括号移项,得2x+3x<15+12-2

合并同类项,得5x<25

方程两边都除5,得x<5

∴原不等式的解集为x<5如图所示:

(2)解:由①得,x>2

由②得,x<3

∴原不等式的解集为2

21.(本题5分)解:∠3+∠4=180°,理由如下:

∵AD∥BC(已知),

∴∠1=∠3(两直线平行,内错角相等);

∵∠1=∠2(已知)

∴∠2=∠3(等量代换);

∴EB∥DF(同位角相等,两直线平行)

∴∠3+∠4=180°(两直线平行,同胖内角互补)

w W w .x K b 1.c o M

22.(本题5分)解:∵AB=AC,AD=AE

∴∠ABC=∠ACB,∠ADC=∠AEB(等角对等边)

又∵在△ABE和△ACD中,

∠ABC=∠ACB(已证)

∠ADC=∠AEB(已证)

AB=AC(已知)

∴△ABE≌△ACD(AAS)

∴BE=CD(全等三角形的对应边相等)

23.(本题6分)

解(1):设总费用y(元)与销售套数x(套),

根据题意得到函数关系式:y=50000+200x.

解(2):设软件公司至少要售出x套软件才能确保不亏本,

则有:400x≥50000+200x 解得:x≥250

答:软件公司至少要售出250套软件才能确保不亏本.

24.(本题8分)

解: (1)4小时

(2)①当 8≤t≤10 时,

设s=kt+b 过点(8,0),(10,180) 得 s=90t-720

②当10≤t≤14 时,得s=180

③当14≤t时 过点 (14,180),(15,120)

∴ s=90t-720(8≤t≤10) s=180(10≤t≤14) s= -60t +1020(14≤t)

(3)①当s=120 km时,90t-720=120 得 t=9 即 9时20分

-60t+1020=120 得 t=15

②当s=0时 -60t+1020=0 得 t=17

答:9时20分或15时离家120㎞,17时到家。

25.(本题10分)

(1)由直线y=- x +3,令y=0,得OA=x=4,令x=0,得OB=y=3,

(2)过C点作CD⊥x轴,垂足为D,

∵∠BAO+∠CAD=90°,∠ACD+∠CAD=90°,

∴∠BAO=∠ACD,

又∵AB=AC,∠AOB=∠CDA=90°,

∴△OAB≌△DCA,

∴CD=OA=4,AD=OB=3,则OD=4+3=7,

∴C(7,4);

(3)①由(2)可知,PD=7-x,

在Rt△OPB中,PB2=OP2+OB2=x2+9,

Rt△PCD中,PC2=PD2+CD2=(7-x)2+16=x2-14x+65,

②存在这样的P点.

设B点关于 x轴对称的点为B′,则B′(0,-3),

连接CB′,设直线B′C解析式为y=kx+b,将B′、C两点坐标代入,得

b=-3;

7k+b=4;

k=1

解得 b=-3

所以,直线B′C解析式为y=x-3,

令y=0,得P(3,0),此时|PC-PB|的值最大,

故答案为:(3,0).

⑷ 八年级数学期末试卷及答案

数学期末考试快到了,不知道 八年级 的同学们是否准备好考试前的准备呢?下面是我为大家整编的 八年级数学 期末试卷,感谢欣赏。

八年级数学期末试卷试题
一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.

1.在平面直角坐标系中,点( , )关于 轴对称的点的坐标是( )

A.( , ) B.( , ) C.( , ) D.( , )

2.函数 中,自变量 的取值范围是( )

A. > B. C. ≥ D.

3.要判断甲、乙两队舞蹈队的身高哪队比较整齐,通常需要比较这两队舞蹈队身高的( ).

A. 方差 B.中位数 C. 众数 D.平均数

4.下列说法中错误的是()

A.两条对角线互相平分的四边形是平行四边形;B.两条对角线相等的四边形是矩形;

C.两条对角线互相垂直的矩形是正方形; D.两条对角线相等的菱形是正方形.

5.已知反比例函数 ,在下列结论中,不正确的是( ).

A.图象必经过点(1,2) B. 随 的增大而减少

C.图象在第一、三象限 D.若 >1,则 <2

6.如图,菱形ABCD中,∠ A=60°,周长是16,则菱形的面积是()

A.16 B.16 C.16 D.8

7.如图,矩形 的边 ,且 在平面直角坐标系中 轴的正半轴上,点 在点 的左侧,直线 经过点 (3,3)和点 ,且 .将直线 沿 轴向下平移得到直线 ,若点 落在矩形 的内部,则 的取值范围是()

A. B. C. D.

二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.

8.化简: .

9.将0.000000123用科学记数法表示为 .

10.在□ABCD中,∠A:∠B=3:2,则∠D =度.

11.一次函数 的图象如图所示,当 时, 的取值范围是.

12.某校为了发展校园 足球 运动,组建了校足球队,队员年龄分布如右上图所示,则这些队员年龄的众数是.

13.化简: =.

14.若点M(m,1)在反比例函数 的图象上,则m =.

15.直线 与 轴的交点坐标为 .

16.在平面直角坐标系中,正方形 的顶点 、 、 的坐标分别为(﹣1,1)、

(﹣1,﹣1)、(1,﹣1),则顶点 的坐标为.

17.如图,在△ABC中,BC =10,AB = 6,AC = 8,P为

边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF的

中点,则(1) 度;(2)AM的最小值是.

三、解答题(9题,共89分)在答题卡上相应题目的答题区域内作答.

18.(9分)计算:

19.(9分)先化简,再求值: ,其中

20.(9分)如图,在矩形 中,对角线 与 相交于点 , , ,求 的长.

21.(9分)如图,一次函数 的图象与反比例函数 的图象交于点A ,C ,交y轴于点B,交x轴于点D.

(1) 求反比例函数 和一次函数 的表达式;

(2) 连接OA,OC.求△AOC的面积.

22.(9分)某学校设立学生奖学金时规定:综合成绩最高者得一等奖,综合成绩包括体育成绩、德育成绩、学习成绩三项,这三项成绩分别按1︰3︰6的比例计入综合成绩.小明、小亮两位同学入围测评,他们的体育成绩、德育成绩、学习成绩如下表.请你通过计算他们的综合成绩,判断谁能拿到一等奖?

体育成绩 德育成绩 学习成绩

小明 96 94 90

小亮 90 93 92

23.(9分)某校初二年学生乘车到距学校40千米的 社会实践 基地进行社会实践.一部分学生乘旅游车,另一部分学生乘中巴车,他们同时出发,结果乘中巴车的同学晚到8分钟.已知旅游车速度是中巴车速度的1.2倍,求中巴车的速度.

24.(9分)如图,在矩形ABCD中,AB =4cm,BC =8cm,AC的垂直平分线EF分别交AD,BC于点E,F,垂足为点O.

(1)连接AF,CE,求证:四边形AFCE为菱形;

(2)求AF的长.

25.(13分)甲、乙两人从学校出发,沿相同的线路跑向体育馆,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度跑向体育馆,如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,请根据题意解答下列问题.

(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒;

(2)求乙跑步的速度及乙在途中等候甲的时间;

(3)求乙出发多长时间第一次与甲相遇?

26.(13分)如图,在平面直角坐标系中,直线 : 分别与 轴、 轴交于点 、 ,且与直线 : 交于点 .

(1)点 的坐标是;点 的坐标是;点 的坐标是;

(2)若 是线段 上的点,且 的面积为12,求直线 的函数表达式;

(3)在(2)的条件下,设 是射线 上的点,在平面内是否存在点 ,使以 、 、 、 为顶点的四边形是菱形?若存在,直接写出点 的坐标;若不存在,请说明理由.
八年级数学期末试卷参考答案
一、选择题(每小题3分,共21分)

1.D; 2.B; 3.A; 4.B;5.B;6.D; 7.C;

二、填空题(每小题4分,共40分)

8. ; 9. ; 10. 72; 11. ; 12. 14岁(没有单位不扣分); 13. ; 14. ;

15.(0,2); 16.(1,1); 17. (1)90;(2) 2.4

三、解答题(共89分)

18.(9分) 解:

= …………………………8分

=6………………………………………9分

19.(9分)解:

= …………3分

= …………………………5分

= …………………………………6分

当 时,原式= …………………7分

=2………………………9分

20. (9分) 解:在矩形 中

,………………2分

……………………………3分



∴ 是等边三角形………………5分

∴ ………………………6分

在Rt 中,

………………9分

21.(9分) 解:(1)∵ 反比例函数 的图象经过点A﹙-2,-5﹚,

∴ m=(-2)×( -5)=10.

∴ 反比例函数的表达式为 . ……………………………………………………2分

∵ 点C﹙5,n﹚在反比例函数的图象上,

∴ .

∴ C的坐标为﹙5,2﹚. …………………………………………………………………3分

∵ 一次函数的图象经过点A,C,将这两个点的坐标代入 ,得

解得 ………………………………………………………5分

∴ 所求一次函数的表达式为y=x-3. …………………………………………………6分

(2) ∵ 一次函数y=x-3的图像交y轴于点B,

∴ B点坐标为﹙0,-3﹚. ………………………………………………………………7分

∴ OB=3.

∵ A点的横坐标为-2,C点的横坐标为5,

∴ S△AOC= S△AOB+ S△BOC= . ………………9分

22.(9分)解:小明的综合成绩= …………………………(4分)

小亮的综合成绩= ………………………(8分)

∵92.1>91.8 , ∴小亮能拿到一等奖. …………………………………………(9分)

23.(9分)

解:设中巴车速度为 千米/小时,则旅游车的速度为 千米/小时.………1分

依题意得 ………………………5分

解得 ………………………7分

经检验 是原方程的解且符合题意………………………8分

答:中巴车的速度为50千米/小时. ………………………9分

24.(9分)(1)证明:

∵四边形ABCD是矩形,

∴AD∥BC,

∴∠AEO =∠CFO,

∵AC的垂直平分线EF,

∴AO = OC,AC⊥EF,………………………………2分

在△AEO和△CFO中



∴△AEO ≌△CFO(AAS),………………………………3分

∴OE = OF,

∵O A= OC,

∴四边形AECF是平行四边形,………………………………4分

∵AC⊥EF,

∴平行四边形AECF是菱形;……………………………………5分

(2)解:设AF=acm,

∵四边形AECF是菱形,

∴AF=CF=acm,…………………………………………6分

∵BC=8cm,

∴BF=(8-a)cm,

在Rt△ABF中,由勾股定理得:42+(8-a)2=a2,…………8分

a=5,即AF=5cm。………………………………………………9分

25.(13分) 解:(1)900,1.5.…………………………4分

(2)过B作BE⊥x轴于E.

甲跑500秒的路程是500×1.5=750米,……………………5分

甲跑600米的时间是(750﹣150)÷1.5=400秒,…………6分

乙跑步的速度是750÷(400﹣100)=2.5米/秒,……………7分

乙在途中等候甲的时间是500﹣400=100秒.………………8分

(3)∵D(600,900),A(100,0),B(400,750),

∴OD的函数关系式是 ……………………9分

AB的函数关系式是 ……………11分

根据题意得

解得 ,…………………………12分

∴乙出发150秒时第一次与甲相遇.…………13分

26. (13分)解:(1)(6,3);(12,0);(0,6);………………3分

(2)设D(x, x),

∵△COD的面积为12,

∴ ,

解得: ,

∴D(4,2),………………………………………………5分

设直线CD的函数表达式是 ,

把C(0,6),D(4,2)代入得: ,

解得: ,

则直线CD解析式为 ;……………………7分

(3)存在点Q,使以O、C、P、Q为顶点的四边形是菱形,

如图所示,分三种情况考虑:

(i)当四边形 为菱形时,由 ,得到四边形 为正方形,此时 ,即 (6,6);………………………………………………9分

(ii)当四边形 为菱形时,由 坐标为(0,6),得到 纵坐标为3,

把 代入直线 解析式 中,得: ,此时 (﹣3,3);…………11分

(iii)当四边形 为菱形时,则有 ,

此时 (3 ,﹣3 ),……………………………………13分

综上,点 的坐标是(6,6)或(﹣3,3)或(3 ,﹣3 ).

八年级数学期末试卷及答案相关 文章 :

1. 2016八年级数学期末试卷及答案

2. 2017八年级数学期末试卷及答案

3. 八年级数学期末测试题

4. 八年级数学上册期末试卷

5. 八年级期末数学试卷

⑸ 八年级数学上册期末试卷及答案

关键的八年级数学期末考试就临近了,只要努力过、奋斗过,就不会后悔。下面是我为大家精心整理的八年级数学上册期末试卷,仅供参考。

八年级数学上册期末试题

一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,第1-8小题选对每小题得3分,第9-12小题选对每小题得4分,选错、不选或选出的答案超过一个均记零分.

1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()

A. B. C. D.

2.下列运算正确的是()

A.a+a=a2 B.a3•a2=a5 C.2 =2 D.a6÷a3=a2

3. 的平方根是()

A.2 B.±2 C. D.±

4.用科学记数法表示﹣0.00059为()

A.﹣59×10﹣5 B.﹣0.59×10﹣4 C.﹣5.9×10﹣4 D.﹣590×10﹣7

5.使分式 有意义的x的取值范围是()

A.x≤3 B.x≥3 C.x≠3 D.x=3

6.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()

A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC

7.若 有意义,则 的值是()

A. B.2 C. D.7

8.已知a﹣b=1且ab=2,则式子a+b的值是()

A.3 B.± C.±3 D.±4

9.如图所示,平行四边形ABCD的周长为4a,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长是()

A.a B.2a C.3a D.4a

10.已知xy<0,化简二次根式y 的正确结果为()

A. B. C. D.

11.如图,小将同学将一个直角三角形的纸片折叠,A与B重合,折痕为DE,若已知AC=4,BC=3,∠C=90°,则EC的长为()

A. B. C.2 D.

12.若关于x的分式方程 无解,则常数m的值为()

A.1 B.2 C.﹣1 D.﹣2

二、填空题:本大题共4小题,共16分,只要求填写最后结果,每小题填对得4分.

13.将xy﹣x+y﹣1因式分解,其结果是.

14.腰长为5,一条高为3的等腰三角形的底边长为.

15.若x2﹣4x+4+ =0,则xy的值等于.

16.如图,在四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,则∠A+∠C=度.

三、解答题:本大题共6小题,共64分。解答时要写出必要的文字说明、证明过程或演算步骤。

17.如图所示,写出△ABC各顶点的坐标以及△ABC关于x对称的△A1B1C1的各顶点坐标,并画出△ABC关于y对称的△A2B2C2.

18.先化简,再求值:

(1)5x2﹣(y+x)(x﹣y)﹣(2x﹣y)2,其中x=1,y=2.

(2)( )÷ ,其中a= .

19.列方程,解应用题.

中学在莒县服装厂订做一批棉学生服,甲车间单独生产3天完成总量的 ,这时天气预报近期要来寒流,需要加快制作速度,这时增加了乙车间,两个车间又共同生产两天,完成了全部订单,如果乙车间单独制作这批棉学生服需要几天?

20.△ABC三边的长分别为a、b、c,且满足a2﹣4a+b2﹣4 c=4b﹣16﹣c2,试判定△ABC的形状,并证明你的结论.

21.如图,四边形ABCD是平行四边形,并且∠BCD=120°,CB=CE,CD=CF.

(1)求证:AE=AF;

(2)求∠EAF的度数.

22.阅读材料:

小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2 =(1+ )2,善于思考的小明进行了以下探索:

设a+b =(m+n )2(其中a、b、m、n均为整数),则有a+b =m .

a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b 的式子化为平方式的方法.

请你仿照小明的方法探索并解决下列问题:

(1)当a、b、m、n均为正整数时,若a+b =(m+n )2,用含m、n的式子分别表示a,b,得a=,b=.

(2)利用所探索的结论,用完全平方式表示出: =.

(3)请化简: .

八年级数学上册期末试卷参考答案

一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,第1-8小题选对每小题得3分,第9-12小题选对每小题得4分,选错、不选或选出的答案超过一个均记零分.

1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()

A. B. C. D.

【考点】轴对称图形.

【分析】根据轴对称图形的概念求解.

【解答】解:A、不是轴对称图形,故本选项错误;

B、不是轴对称图形,故本选项错误;

C、不是轴对称图形,故本选项错误;

D、是轴对称图形,故本选项正确.

故选D.

【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.

2.下列运算正确的是()

A.a+a=a2 B.a3•a2=a5 C.2 =2 D.a6÷a3=a2

【考点】同底数幂的除法;合并同类项;同底数幂的乘法;二次根式的加减法.

【分析】根据合并同类项、同底数幂的乘法、除法,即可解答.

【解答】解:A、a+a=2a,故错误;

B、a3•a2=a5,正确;

C、 ,故错误;

D、a6÷a3=a3,故错误;

故选:B.

【点评】本题考查了合并同类项、同底数幂的乘法、除法,解决本题的关键是熟记合并同类项、同底数幂的乘法、除法.

3. 的平方根是()

A.2 B.±2 C. D.±

【考点】算术平方根;平方根.

【专题】常规题型.

【分析】先化简 ,然后再根据平方根的定义求解即可.

【解答】解:∵ =2,

∴ 的平方根是± .

故选D.

【点评】本题考查了平方根的定义以及算术平方根,先把 正确化简是解题的关键,本题比较容易出错.

4.用科学记数法表示﹣0.00059为()

A.﹣59×10﹣5 B.﹣0.59×10﹣4 C.﹣5.9×10﹣4 D.﹣590×10﹣7

【考点】科学记数法—表示较小的数.

【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.

【解答】解:﹣0.00059=﹣5.9×10﹣4,

故选:C.

【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.

5.使分式 有意义的x的取值范围是()

A.x≤3 B.x≥3 C.x≠3 D.x=3

【考点】分式有意义的条件.

【分析】分式有意义的条件是分母不等于零,从而得到x﹣3≠0.

【解答】解:∵分式 有意义,

∴x﹣3≠0.

解得:x≠3.

故选:C.

【点评】本题主要考查的是分式有意义的条件,掌握分式有意义时,分式的分母不为零是解题的关键.

6.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()

A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC

【考点】平行四边形的判定.

【分析】根据平行四边形判定定理进行判断.

【解答】解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;

B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;

C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;

D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;

故选D.

【点评】本题考查了平行四边形的判定.

(1)两组对边分别平行的四边形是平行四边形.

(2)两组对边分别相等的四边形是平行四边形.

(3)一组对边平行且相等的四边形是平行四边形.

(4)两组对角分别相等的四边形是平行四边形.

(5)对角线互相平分的四边形是平行四边形.

7.若 有意义,则 的值是()

A. B.2 C. D.7

【考点】二次根式有意义的条件.

【分析】根据二次根式中的被开方数必须是非负数求出x的值,根据算术平方根的概念计算即可.

【解答】解:由题意得,x≥0,﹣x≥0,

∴x=0,

则 =2,

故选:B.

【点评】本题考查的是二次根式有意义的条件以及算术平方根的概念,掌握二次根式中的被开方数必须是非负数是解题的关键.

8.已知a﹣b=1且ab=2,则式子a+b的值是()

A.3 B.± C.±3 D.±4

【考点】完全平方公式.

【专题】计算题;整式.

【分析】把a﹣b=1两边平方,利用完全平方公式化简,将ab=2代入求出a2+b2的值,再利用完全平方公式求出所求式子的值即可.

【解答】解:把a﹣b=1两边平方得:(a﹣b)2=a2+b2﹣2ab=1,

将ab=2代入得:a2+b2=5,

∴(a+b)2=a2+b2+2ab=5+4=9,

则a+b=±3,

故选C

【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.

9.如图所示,平行四边形ABCD的周长为4a,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长是()

A.a B.2a C.3a D.4a

【考点】平行四边形的性质.

【分析】由▱ABCD的周长为4a,可得AD+CD=2a,OA=OC,又由OE⊥AC,根据线段垂直平分线的性质,可证得AE=CE,继而求得△DCE的周长=AD+CD.

【解答】解:∵▱ABCD的周长为4a,

∴AD+CD=2a,OA=OC,

∵OE⊥AC,

∴AE=CE,

∴△DCE的周长为:CD+DE+CE=CD+DE+AE=CD+AD=2a.

故选:B.

【点评】此题考查了平行四边形的性质以及线段垂直平分线的性质.注意得到△DCE的周长=AD+CD是关键.

10.已知xy<0,化简二次根式y 的正确结果为()

A. B. C. D.

【考点】二次根式的性质与化简.

【分析】先求出x、y的范围,再根据二次根式的性质化简即可.

【解答】解:∵要使 有意义,必须 ≥0,

解得:x≥0,

∵xy<0,

∴y<0,

∴y =y• =﹣ ,

故选A.

【点评】本题考查了二次根式的性质的应用,能正确根据二次根式的性质进行化简是解此题的关键.

11.如图,小将同学将一个直角三角形的纸片折叠,A与B重合,折痕为DE,若已知AC=4,BC=3,∠C=90°,则EC的长为()

A. B. C.2 D.

【考点】翻折变换(折叠问题).

【分析】DE是边AB的垂直平分线,则AE=BE,设AE=x,在直角△BCE中利用勾股定理即可列方程求得x的值,进而求得EC的长.

【解答】解:∵DE垂直平分AB,

∴AE=BE,

设AE=x,则BE=x,EC=4﹣x.

在直角△BCE中,BE2=EC2+BC2,则x2=(4﹣x)2+9,

解得:x= ,

则EC=AC﹣AE=4﹣ = .

故选B.

【点评】本题考查了图形的折叠的性质以及勾股定理,正确理解DE是AB的垂直平分线是本题的关键.

12.若关于x的分式方程 无解,则常数m的值为()

A.1 B.2 C.﹣1 D.﹣2

【考点】分式方程的解;解一元一次方程.

【专题】计算题;转化思想;一次方程(组)及应用;分式方程及应用.

【分析】将分式方程去分母化为整式方程,由分式方程无解得到x=3,代入整式方程可得m的值.

【解答】解:将方程两边都乘以最简公分母(x﹣3),得:1=2(x﹣3)﹣m,

∵当x=3时,原分式方程无解,

∴1=﹣m,即m=﹣1;

故选C.

【点评】本题主要考查分式方程的解,对分式方程无解这一概念的理解是此题关键.

二、填空题:本大题共4小题,共16分,只要求填写最后结果,每小题填对得4分.

13.将xy﹣x+y﹣1因式分解,其结果是(y﹣1)(x+1).

【考点】因式分解-分组分解法.

【分析】首先重新分组,进而利用提取公因式法分解因式得出答案.

【解答】解:xy﹣x+y﹣1

=x(y﹣1)+y﹣1

=(y﹣1)(x+1).

故答案为:(y﹣1)(x+1).

【点评】此题主要考查了分组分解法分解因式,正确分组是解题关键.

14.腰长为5,一条高为3的等腰三角形的底边长为8或 或3 .

【考点】等腰三角形的性质;三角形三边关系.

【分析】根据不同边上的高为3分类讨论,利用勾股定理即可得到本题的答案.

【解答】解:①如图1.

当AB=AC=5,AD=3,

则BD=CD=4,

所以底边长为8;

②如图2.

当AB=AC=5,CD=3时,

则AD=4,

所以BD=1,

则BC= = ,

即此时底边长为 ;

③如图3.

当AB=AC=5,CD=3时,

则AD=4,

所以BD=9,

则BC= =3 ,

即此时底边长为3 .

故答案为:8或 或3 .

【点评】本题考查了等腰三角形的性质,勾股定理,解题的关键是分三种情况分类讨论.

15.若x2﹣4x+4+ =0,则xy的值等于6.

【考点】解二元一次方程组;非负数的性质:偶次方;非负数的性质:算术平方根;配方法的应用.

【专题】计算题;一次方程(组)及应用.

【分析】已知等式变形后,利用非负数的性质列出方程组,求出方程组的解得到x与y的值,即可确定出xy的值.

【解答】解:∵x2﹣4x+4+ =(x﹣2)2+ =0,

∴ ,

解得: ,

则xy=6.

故答案为:6

【点评】此题考查了解二元一次方程组,配方法的应用,以及非负数的性质,熟练掌握运算法则是解本题的关键.

16.如图,在四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,则∠A+∠C=180度.

【考点】勾股定理的逆定理;勾股定理.

【分析】勾股定理的逆定理是判定直角三角形的方法之一.

【解答】解:连接AC,根据勾股定理得AC= =25,

∵AD2+DC2=AC2即72+242=252,

∴根据勾股定理的逆定理,△ADC也是直角三角形,∠D=90°,

故∠A+∠C=∠D+∠B=180°,故填180.

【点评】本题考查了勾股定理和勾股定理的逆定理,两条定理在同一题目考查,是比较好的题目.

三、解答题:本大题共6小题,共64分。解答时要写出必要的文字说明、证明过程或演算步骤。

17.如图所示,写出△ABC各顶点的坐标以及△ABC关于x对称的△A1B1C1的各顶点坐标,并画出△ABC关于y对称的△A2B2C2.

【考点】作图-轴对称变换.

【分析】分别利用关于x轴、y轴对称点的坐标性质得出各对应点的位置,进而得出答案.

【解答】解:△ABC各顶点的坐标以及△ABC关于x轴对称的△A1B1C1的各顶点坐标:

A1(﹣3,﹣2),B1(﹣4,3),C1(﹣1,1),

如图所示:△A2B2C2,即为所求.

【点评】此题主要考查了轴对称变换,得出对应点位置是解题关键.

18.先化简,再求值:

(1)5x2﹣(y+x)(x﹣y)﹣(2x﹣y)2,其中x=1,y=2.

(2)( )÷ ,其中a= .

【考点】分式的化简求值;整式的混合运算—化简求值.

【分析】(1)先根据整式混合运算的法则把原式进行化简,再把x、y的值代入进行计算即可;

(2)先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.

【解答】解:(1)原式=5x2﹣x2+y2﹣4x2+4xy﹣y2

=4xy,

当x=1,y=2时,原式=4×1×2=8;

(2)原式= •

= •

=a﹣1,

当a= 时,原式= ﹣1.

【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.

19.列方程,解应用题.

某中学在莒县服装厂订做一批棉学生服,甲车间单独生产3天完成总量的 ,这时天气预报近期要来寒流,需要加快制作速度,这时增加了乙车间,两个车间又共同生产两天,完成了全部订单,如果乙车间单独制作这批棉学生服需要几天?

【考点】分式方程的应用.

【分析】设乙车间单独制作这批棉学生服需要x天,则每天能制作总量的 ;甲车间单独生产3天完成总量的 ,则每天能制作总量的 ,根据总的工作量为1列出方程并解答.

【解答】解:设乙车间单独制作这批棉学生服需要x天,则每天能制作总量的 ;甲车间单独生产3天完成总量的 ,则每天能制作总量的 ,

根据题意,得: +2×( + )=1,

解得x=4.5.

经检验,x=4.5是原方程的根.

答:乙车间单独制作这批棉学生服需要4.5天.

【点评】本题考查了分式方程的应用.利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.

20.△ABC三边的长分别为a、b、c,且满足a2﹣4a+b2﹣4 c=4b﹣16﹣c2,试判定△ABC的形状,并证明你的结论.

【考点】因式分解的应用.

【分析】根据完全平方公式,可得非负数的和为零,可得每个非负数为零,可得a、b、c的值,根据勾股定理逆定理,可得答案.

【解答】解:△ABC是等腰直角三角形.

理由:∵a2﹣4a+b2﹣4 c=4b﹣16﹣c2,

∴(a2﹣4a+4)+(b2﹣4b+4)+(c2﹣4 c+8)=0,

即:(a﹣2)2+(b﹣2)2+(c﹣2 )2=0.

∵(a﹣2)2≥0,(b﹣2)2≥0,(c﹣2 )2≥0,

∴a﹣2=0,b﹣2=0,c﹣2 =0,

∴a=b=2,c=2 ,

∵22+22=(2 )2,

∴a2+b2=c2,

所以△ABC是以c为斜边的等腰直角三角形.

【点评】本题考查了因式分解的应用,勾股定理逆定理,利用了非负数的和为零得出a、b、c的值是解题关键.

21.如图,四边形ABCD是平行四边形,并且∠BCD=120°,CB=CE,CD=CF.

(1)求证:AE=AF;

(2)求∠EAF的度数.

【考点】全等三角形的判定与性质;平行四边形的性质.

【分析】(1)寻找分别含有AE和AF的三角形,通过证明两三角形全等得出AE=AF.

(2)在∠BAD中能找出∠EAF=∠BAD﹣(∠BAE+∠FAD),在(1)中我们证出了三角形全等,将∠FAD换成等角∠AEB即可解决.

【解答】(1)证明:∵四边形ABCD是平行四边形,并且∠BCD=120°,

∴∠BCE=∠DCF=60°,CB=DA,CD=BA,∠ABC=∠ADC,

∵CB=CE,CD=CF,

∴△BEC和△DCF都是等边三角形,

∴CB=CE=BE=DA,CD=CF=DF=BA,

∴∠ABC+∠CBE=∠ADC+∠CDF,

即:∠ABE=∠FDA

在△ABE和△FDA中,AB=DF,∠ABE=∠FDA,BE=DA,

∴△ABE≌△FDA (SAS),

∴AE=AF.

(2)解:∵在△ABE中,∠ABE=∠ABC+∠CBE=60°+60°=120°,

∴∠BAE+∠AEB=60°,

∵∠AEB=∠FAD,

∴∠BAE+∠FAD=60°,

∵∠BAD=∠BCD=120°,

∴∠EAF=∠BAD﹣(∠BAE+∠FAD)=120°﹣60°=60°.

答:∠EAF的度数为60°.

【点评】本题考查全等三角形的判定与性质,解题的关键是寻找合适的全等三角形,通过寻找等量关系证得全等,从而得出结论.

22.阅读材料:

小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2 =(1+ )2,善于思考的小明进行了以下探索:

设a+b =(m+n )2(其中a、b、m、n均为整数),则有a+b =m .

a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b 的式子化为平方式的方法.

请你仿照小明的方法探索并解决下列问题:

(1)当a、b、m、n均为正整数时,若a+b =(m+n )2,用含m、n的式子分别表示a,b,得a=m2+3n2,b=2mn.

(2)利用所探索的结论,用完全平方式表示出: =(2+ )2.

(3)请化简: .

【考点】二次根式的性质与化简.

【专题】阅读型.

【分析】(1)利用已知直接去括号进而得出a,b的值;

(2)直接利用完全平方公式,变形得出答案;

(3)直接利用完全平方公式,变形化简即可.

【解答】解:(1)∵a+b =(m+n )2,

∴a+b =(m+n )2=m2+3n2+2 mn,

∴a=m2+3n2,b=2mn;

故答案为:m2+3n2;2mn;

(2) =(2+ )2;

故答案为:(2+ )2;

(3)∵12+6 =(3+ )2,

∴ = =3+ .

热点内容
师德先进个人推荐材料 发布:2024-11-24 16:04:48 浏览:580
优酷校园大使 发布:2024-11-24 16:01:06 浏览:723
班主任感怀 发布:2024-11-24 15:55:55 浏览:920
扬大汤老师 发布:2024-11-24 15:50:48 浏览:292
闵行区十佳师德标兵 发布:2024-11-24 14:17:16 浏览:853
合肥特岗教师 发布:2024-11-24 13:22:16 浏览:105
火眼教学 发布:2024-11-24 13:17:16 浏览:615
长丰在哪里 发布:2024-11-24 11:49:23 浏览:970
儿童英语基础 发布:2024-11-24 11:16:49 浏览:293
夜钓教学 发布:2024-11-24 10:55:55 浏览:337