当前位置:首页 » 语数英语 » 人教版八年级数学课本

人教版八年级数学课本

发布时间: 2023-12-01 06:46:12

1. 八年级上册数学课本人教版答案

八年级数学课本习题如赛场,路途似跑道,运动健儿们,到了你们一显身手的时候了,我整理了关于八年级上册数学课本人教版答案,希望对大家有帮助!

八年级上册数学课本人教版答案(一)

习题11.3

1.解:如图11-3 -17所示,共9条.

4. 108°,144° 5.答:这个多边形是九边形.

6.(1)三角形;

(2)解:设这个多边形是n边形.由题意得

(n-2)×180=2×360.解这个方程得n=6.

所以这个多边形为六边形.

7.AB//CD,BC//AD,理由略. 提示:由四边形的内角和可求得同旁内角互补.

8.解:(1)是.理由:由已知BC⊥CD,可得∠BCD=90。,又因为∠1=∠2=∠3,所以有∠1=∠2=∠3=45°,即△CBD为等腰直角三角形,且CO是∠DCB的平分线,所以CO是△BCD的高.

(2)由(1)知CO⊥BD,所以有AO⊥BD,即有∠4+∠5=90°.又因为∠4=60°,所以∠5=30°.

(3)由已知易得∠BCD= 90°,∠CDA=∠1+∠4=45°+60°=105°.∠DAB=∠5+∠6=2×30°=60°.又因为∠BCD+∠CDA+∠CBA+∠DAB=360°,所以∠CBA=105°.

9.解:因为五边形ABCDE的内角都相等,所以∠E=((5-2)×180°)/5=108°.

所以∠1=∠2=1/2(180°-108°)=36°.

同理∠3=∠4=36°,所以x=108 - (36+36) =36.

10.解:平行(证明略),BC与EF有这种关系.理由如下:

因为六边形ABCDEF的内角都相等,所以∠B=((6-2)×180°)/6=120。.

因为∠BAD= 60°,所以∠B+∠BAD=180°.所以BC//AD.

因为∠DAF=120°- 60°=60°,所以∠F +∠DAF=180°.

所以EF//AD.所以BC//EF.同理可证AB//DE.

八年级上册数学课本人教版答案(二)

第32页练习

1.解:在图12.1-2(2)中,AB和DB,AC和DC,BC和BC是对应边;∠A和∠D,∠ABC和∠DBC,∠ACB和∠DCB是对应角.在图12. 1-2(3)中,AB和AD,AC和AE,BC和DE是对应边;∠B和∠D,∠C和∠E,∠BAC和∠DAE是对应角.

2.解:相等的边有AC=DB,OC=OB,OA=OD;

相等得角有∠A=∠D,∠C=∠B,∠AOC=∠DOB.

八年级上册数学课本人教版答案(三)

第37页练习

1.证明:∵C是AB的中点,

∴AC= CB.

在△ACD和△CBE中,

∴△ACD≌△CBF.( SSS).

2.解:在△COM和△CON中,

∴△COM≌△CON(SSS).

∴△COM= ∠CON.

2. 八年级上册数学人教版课本答案

活着就意味必须要做点什么,请好好努力做八年级数学课本习题。我整理了关于八年级上册数学人教版课本答案,希望对大家有帮助!

八年级上册数学人教版课本答案(一)

第4页

1.解:有5个三角形,分别是△ABE,△ABC,△BEC,△BDC,△EDC.

2.解:(1)不能;(2)不能;(3)能.理由略.

八年级上册数学人教版课本答案(二)

第5页

1.解:图(1)中∠B为锐角,图(2)中∠B为直角,图(3)中∠B为钝角,图(1)中AD在三角形内部,图(2)中AD为三角形的 一条直角边,图(3)中AD在三角形的外部.

锐角三角形的高在三角形内部,直角三角形的直角边上的高与另一条直角边重合,钝角三角形有两条高在三角形外部.

2.(1)AF(或BF) CD AC (2)∠2 ∠ABC ∠4或∠ACF

八年级上册数学人教版课本答案(三)

习题11.1

1.解:图中共6个三角形,分别是△ABD,

△ADE,△AEC,△ABE,AADC,△ABC.

2. 解:2种.

四根木条每三条组成一组可组成四组,分别为10,7,5;10,7,3;10,5,3;7,5,3.其中7+5>10,7+3=10,5+3<10,5+3>7,所以第二组、第三组不能构成三角形,只有第一组、第四组能构成三角形,

3.解:如图11-1-27所示,中线AD、高AE、角平分线AF.

4.(1) EC BC (2) ∠DAC ∠BAC (3)∠AFC (4)1/2BC.AF

5.C

6.解:(1)当长为6 cm的边为腰时,则另一腰长为6 cm,底边长为20-12=8(cm),

因为6+6>8,所以此时另两边的长为6 cm,8 cm.

(2)当长为6 cm的边为底边时,等腰三角形的腰长为(20-6)/2=7(cm),因为6+7>7,所以北时另两边的长分别为7 cm,7cm.

7.(1) 解:当等腰三角形的腰长为5时,三角形的三边为5,5,6,因为5+5>6,所以三角形周长为5+5+6=16:

当等腰三角形的腰长为6时,三角形的三边为6,6,5,因为6+5>6,所以三角形周长为6+6+5=17.

所以这个等腰三角形的周长为16或17;

(2)22.

8.1:2 提示:用41/2BC.AD—丢AB.CE可得.

9.解:∠1=∠2.理由如下:因为AD平分∠BAC,所以∠BAD=∠DAC.

又DE//AC,所以∠DAC=∠1.

又DF//AB,所以∠DAB=∠2.

所以∠1=∠2.

3. 新人教版八年级数学下册目录

八年级 数学教材随着社会的进步、人们对 教育 教材认识的改变、文学研究领域新成果的取得、不同时代学生特点的不同,不断在进行调整。目录有什么知识呢?我整理了关于新人教版八年级数学下册课本的目录,希望对大家有帮助!
新人教版八年级数学下册课本目录
第十六章 二次根式

16.1 二次根式

16.2 二次根式的乘除

16.3 二次根式的加减

数学活动

小结

复习题16

第十七章勾股定理

17.1 勾股定理

17.2 勾股定理的逆定理

数学活动

小结

复习题17

第十八章平行四边形

18.1 平行四边形

18.2 特殊的平行四边形

数学活动

小结

复习题18

第十九章一次函数

19.1 函数

19.2 一次函数

14.3 课题学习 选择方案

数学活动

小结

复习题19

第二十章数据的分析

20.1 数据的集中趋势

20.2 数据的波动程度

20.3 课题学习 体质健康测试中的数据分析

数学活动

小结

复习题20

部分中英文词汇索引
人教版八年级数学下册知识归纳:四边形
有两组对边分别平行的四边形叫做平行四边形。

平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。平行四边形的对角线互相平分。

平行四边形的判定:

1.两组对边分别相等的四边形是平行四边形;

2.对角线互相平分的四边形是平行四边形;

3.两组对角分别相等的四边形是平行四边形;

4.一组对边平行且相等的四边形是平行四边形。

三角形的中位线平行于三角形的第三边,且等于第三边的一半。

直角三角形斜边上的中线等于斜边的一半。

矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。

矩形判定定理:

1.有一个角是直角的平行四边形叫做矩形。

2.对角线相等的平行四边形是矩形。

3.有三个角是直角的四边形是矩形。

菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

菱形的判定定理:

1.一组邻边相等的平行四边形是菱形(rhombus)。

2.对角线互相垂直的平行四边形是菱形。

3.四条边相等的四边形是菱形。

S菱形=1/2×ab(a、b为两条对角线)

正方形的性质:四条边都相等,四个角都是直角。

正方形既是矩形,又是菱形。

正方形判定定理:

1.邻边相等的矩形是正方形。

2.有一个角是直角的菱形是正方形。

一组对边平行,另一组对边不平行的四边形叫做梯形(trapezium)。

等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。

等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。

线段的重心就是线段的中点。

平行四边形的重心是它的两条对角线的交点。

三角形的三条中线交于疑点,这一点就是三角形的重心。

宽和长的比是(根号5-1)/2(约为0.618)的矩形叫做黄金矩形。
人教版八年级数学下册知识归纳:数据的分析
1.算术平均数:

2.加权平均数:加权平均数的计算公式。

权的理解:反映了某个数据在整个数据中的重要程度。

而是以比的或百分比的形式出现及频数分布表求加权平均数的 方法 。

3.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

4.一组数据中出现次数最多的数据就是这组数据的众数(mode)。

5.一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。

6.方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。

数据的收集与整理的步骤:1.收集数据 2.整理数据 3.描述数据 4.分析数据 5.撰写调查 报告 6.交流

4. 8年级下册数学书 人教版 内容是什么

8年级下册数学书人教版内容是如下:

第一章、位置

第二章、分数乘法

第三章、分数除法

第四章、圆

第五章、百分数

第六章、统计

第七章、数学广角

第八章、总复习

第九章、负数

第十章、圆柱与圆锥

第十一章、比例

第十二章、统计

第十三章、数学广角

第十四章、整理与复习

5. 人教版八年级数学上下册课本目录

在八年级数学教育中,能对学生产生直接影响的就是数学教材。教材目录选用了什么知识呢?我整理了关于人教版八年级数学上下册课本目录,希望对大家有帮助!

人教版八年级数学上册课本目录

第十一章三角形

11.1与三角形有关的线段

信息技术应用 画图找规律

11.2 与三角形有关的角

阅读与思考 为什么要证明

11.3 多边形及其内角和

数学活动

小结

复习题11

第十二章全等三角形

12.1 全等三角形

12.2 三角形全等的判定

信息技术应用 探究三角形全等的条件

12.3 角的平分线的性质

数学活动

小结

复习题12

第十三章轴对称

13.1 轴对称

13.2 画轴对称图形

信息技术应用 用轴对称进行图案设计

13.3 等腰三角形

实验与探究 三角形中边与角之间的不等关系

13.4 课题学习最短路径问题

数学活动

小结

复习题13

第十四章整式的乘法与因式分解

14.1 整式的乘法

14.2 乘法公式

阅读与思考 杨辉三角

14.3 因式分解

数学活动

小结

复习题14

第十五章分式

15.1 分式

15.2 分式的运算

阅读与思考 容器中的水能倒完吧

15.3 分式方程

数学活动

小结

复习题15

部分中英文词汇索引

人教版八年级数学下册课本目录

第十六章 二次根式

16.1 二次根式

16.2 二次根式的乘除

16.3 二次根式的加减

数学活动

小结

复习题16

第十七章勾股定理

17.1 勾股定理

阅读与思考 勾股定理的证明

17.2 勾股定理的逆定理

阅读与思考 费马大定理

数学活动

小结

复习题17

第十八章平行四边形

18.1 平行四边形

18.2 特殊的平行四边形

实验与探究 丰富多彩的正方形

数学活动

小结

复习题18

第十九章一次函数

19.1 函数

阅读与思考 科学家如何测算岩石的年龄

19.2 一次函数

信息技术应用 用计算机画函数图象

14.3 课题学习 选择方案

数学活动

小结

复习题19

第二十章数据的分析

20.1 数据的集中趋势

20.2 数据的波动程度

阅读与思考 数据波动程度的几种度量

20.3 课题学习 体质健康测试中的数据分析

数学活动

小结

复习题20

6. 八年级上册数学书人教版答案

自信应该在心中,做八年级数学书本题目应知难而进。我整理了关于八年级上册数学书人教版答案,希望对大家有帮助!

八年级上册数学书人教版答案(一)

第14页

1.解:∠ACD=∠B.

理由:因为CD⊥AB,

所以△BCD是直角三角形,

∠BDC=90°,

所以∠B+∠BCD=90°,

又因为∠ACB= 90°,

所以∠ACD+∠BCD=∠ACB=90°,

所以∠ACD=∠B(同角的余角相等).

2.解:△ADE是直角三角形,

理由:因为∠C=90。,

所以∠A+∠2=90。.

又因为∠1= ∠2,

所以∠A+∠1=90°.

所以△ADE是直角三角形(有两个角互余的三角形是直角三角形).

八年级上册数学书人教版答案(二)

习题12.2

∵BD是△ABC中∠ABC外角的平分线,点P在BD上,∴PG=PH.同理PE=PG.∴PF=PC=PH.

7. 八年级上册数学课本答案人教版

认真做 八年级 数学课本习题,就一定能成功!我整理了关于人教版八年级数学上册课本的答案,希望对大家有帮助!
八年级上册数学课本答案人教版(一)
第41页练习

1.证明:∵ AB⊥BC,AD⊥DC,垂足分为B,D,

∴∠B=∠D=90°.

在△ABC和△ADC中,

∴△ABC≌△ADC(AAS).

∴AB=AD.

2.解:∵AB⊥BF ,DE⊥BF,

∴∠B=∠EDC=90°.

在△ABC和△EDC,中,

∴△ABC≌△EDC(ASA).

∴AB= DE.
八年级上册数学课本答案人教版(二)
习题12.2

1.解:△ABC与△ADC全等.理由如下:

在△ABC与△ADC中,

∴△ABC≌△ADC(SSS).

2.证明:在△ABE和△ACD中,

∴△ABE≌△ACD(SAS).

∴∠B=∠C(全等三角形的对应角相等).

3.只要测量A'B'的长即可,因为△AOB≌△A′OB′.

4.证明:∵∠ABD+∠3=180°,

∠ABC+∠4=180°,

又∠3=∠4,

∴∠ABD=∠ABC(等角的补角相等).

在△ABD和△ABC中,

∴△ABD≌△ABC(ASA).

∴AC=AD.

5.证明:在△ABC和△CDA中,

∴△ABC≌△CDA(AAS).

∴AB=CD.

6.解:相等,理由:由题意知AC= BC,∠C=∠C,∠ADC=∠BEC=90°,

所以△ADC≌△BEC(AAS).

所以AD=BE.

7.证明:(1)在Rt△ABD和Rt△ACD中,

∴Rt△ABD≌Rt△ACD( HL).

∴BD=CD.

(2)∵Rt△ABD≌ Rt△ACD,

∴∠BAD=∠CAD.

8.证明:∵AC⊥CB,DB⊥CB,

∴∠ACB=∠DBC=90°.

∴△ACB和△DBC是直角三角形.

在Rt△ACB和Rt△DBC中,

∴Rt△ACB≌Rt△DBC(HL).

∴∠ABC=∠DCB(全等三角形的对应角相等).

∴∠ABD=∠ACD(等角的余角相等).

9.证明:∵BE=CF,

∴BE+EC=CF+EC.∴BC=EF.

在△ABC和△DEF中,

∴△ABC≌△DEF(SSS).

∴∠A=∠D.

10.证明:在△AOD和△COB中.

∴△AOD≌△COB(SAS).(6分)

∴∠A=∠C.(7分)

11.证明:∵AB//ED,AC//FD,

∴∠B=∠E,∠ACB=∠DFE.

又∵FB=CE,∴FB+FC=CE+FC,

∴BC= EF.

在△ABC和△DEF中,

∴△ABC≌△DEF(ASA).

∴AB=DE,AC=DF(全等三角形的对应边相等).

12.解:AE=CE.

证明如下:∵FC//AB,

∴∠F=∠ADE,∠FCE=∠A.

在△CEF和△AED中,

∴△CEF≌△AED(AAS).

∴ AE=CE(全等三角形的对应边相等).

13.解:△ABD≌△ACD,△ABE≌△ACE,△EBD≌△ECD.

在△ABD和△ACD中,

∴△ABD≌△ACD(SSS).

∴∠BAE= ∠CAE.

在△ABE和△ACE中,

∴△ABE≌△ACE(SAS).

∴BD=CD,

在△EBD和△ECD中,

:.△EBD≌△ECD(SSS).
八年级上册数学课本答案人教版(三)
习题12.3

1.解:∵PM⊥OA,PN⊥OB,∴∠OMP=∠ONP=90°.
在Rt△OPM和Rt△ONP中, ∴Rt△OMP≌Rt△ONP(HL).
∴PM=PN(全等三角形的对应边相等).∴OP是∠AOB的平分线.

2.证明:∵AD是∠BAC的平分线,且DE,DF分别垂直于AB ,AC,垂足分别为E,F,∴DE=DF.
在Rt△BDE和Rt△CDF中, Rt△BDE≌Rt△CDF(HL).
∴EB=FC(全等三角形的对应边相等)

3.证明:∵CD⊥AB, BE⊥AC,∴∠BDO=∠CEO= 90°.

∵∠DOB=∠EOC,OB=OC,

∴△DOB≌△EOC

∴OD= OE.

∴AO是∠BAC的平分线.

∴∠1=∠2.

4.证明:如图12 -3-26所示,作DM⊥PE于M,DN⊥PF于N,

∵AD是∠BAC的平分线,

∴∠1=∠2.

又:PE//AB,PF∥AC,

∴∠1=∠3,∠2=∠4.

∴∠3 =∠4.

∴PD是∠EPF的平分线,

又∵DM⊥PE,DN⊥PF,∴DM=DN,即点D到PE和PF的距离相等.

5.证明:∵OC是∠ AOB的平分线,且PD⊥OA,PE⊥OB,

∴PD=PE,∠OPD=∠OPE.

∴∠DPF=∠EPF.
在△DPF和△EPF中,
∴△DPF≌△EPF(SAS).

∴DF=EF(全等三角形的对应边相等).

6.解:AD与EF垂直.

证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF.
在Rt△ADE和Rt△ADF中, ∴Rt△ADE≌Rt△ADF(HL).
∴∠ADE=∠ADF.
在△GDE和△GDF中,
∴△GDF≌△GDF(SAS).

∴∠DGE=∠DGF.又∵∠DGE+∠DGF=180°,∴∠DGE=∠DGF=90°,∴AD⊥EF.

7,证明:过点E作EF上AD于点F.如图12-3-27所示,

∵∠B=∠C= 90°,

∴EC⊥CD,EB⊥AB.

∵DE平分∠ADC,

∴EF=EC.

又∵E是BC的中点,

∴EC=EB.

∴EF=EB.

∵EF⊥AD,EB⊥AB,

8. 人教版八年级上册数学课本目录

人教版 八年级 数学教材是十分重要的教学资源。教材目录是什么知识你知道吗?我整理了关于人教版八年级数学上册课本的目录,希望对大家有帮助!
人教版八年级上册数学教材目录
第十一章三角形

11.1与三角形有关的线段

信息技术应用 画图找规律

11.2 与三角形有关的角

阅读与思考 为什么要证明

11.3 多边形及其内角和

数学活动

小结

复习题11

第十二章全等三角形

12.1 全等三角形

12.2 三角形全等的判定

信息技术应用 探究三角形全等的条件

12.3 角的平分线的性质

数学活动

小结

复习题12

第十三章轴对称

13.1 轴对称

13.2 画轴对称图形

信息技术应用 用轴对称进行图案设计

13.3 等腰三角形

实验与探究 三角形中边与角之间的不等关系

13.4 课题学习最短路径问题

数学活动

小结

复习题13

第十四章整式的乘法与因式分解

14.1 整式的乘法

14.2 乘法公式

阅读与思考 杨辉三角

14.3 因式分解

数学活动

小结

复习题14

第十五章分式

15.1 分式

15.2 分式的运算

阅读与思考 容器中的水能倒完吧

15.3 分式方程

数学活动

小结

复习题15

部分中英文词汇索引
人教版八年级数学上册知识归纳
(一)运用公式法:

我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:

a2-b2=(a+b)(a-b)

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的 方法 叫做运用公式法。

(二)平方差公式

1.平方差公式

(1)式子: a2-b2=(a+b)(a-b)

(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。

(三)因式分解

1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反过来,就可以得到:

a2+2ab+b2 =(a+b)2

a2-2ab+b2 =(a-b)2

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点

①项数:三项

②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

(五)分组分解法

我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.

如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.

原式=(am +an)+(bm+ bn)

=a(m+ n)+b(m +n)

做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以

原式=(am +an)+(bm+ bn)

=a(m+ n)+b(m+ n)

=(m +n)??(a +b).

这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.

(六)提公因式法

1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.

2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:

1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于

一次项的系数.

2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:

① 列出常数项分解成两个因数的积各种可能情况;

②尝试其中的哪两个因数的和恰好等于一次项系数.

9. 人教版八年级上册数学书答案

做八年级数学书习题一定要认真,马虎一点就容易出错。下面我给大家分享一些人教版八年级上册数学书答案,大家快来跟我一起欣赏吧。

人教版八年级上册数学书答案(一)

第24页

1.(1)x=65;(2)x=60; (3)x=95.

2.六边形3.四边形

人教版八年级上册数学书答案(二)

第28页

1•解:因为S△ABD=1/2BD.AE=5 cm²,

AE=2 cm,所以BD=5cm. 又因为AD是BC边上的中线,

所以DC=BD=5 cm,BC=2BD=10 cm.

2.(1)x=40;(2)x=70;(3)x=60;(4)x=100; (5)x=115.

3.多边形的边数:17,25;内角和:5×180°,18×180°;外角和都是360°.

4.5条,6个三角形,这些三角形内角和等于八边形的内角和.

5.(900/7)°

6.证明:由三角形内角和定理,

可得∠A+∠1+42°=180°.

又因为∠A+10°=∠1,

所以∠A十∠A+10°+42°=180°.

则∠A=64°.

因为∠ACD=64°,所以∠A= ∠ACD.

根据内错角相等,两直线平行,可得AB//CD.

7.解:∵∠C+∠ABC+∠A=180°,

∴∠C+∠C+1/2∠C=180°,解得∠C=72°.又∵BD是AC边上的高,

∴∠BDC=90°,

∴∠DBC=90°-72°=18°.

8.解:∠DAC=90°-∠C= 20°,

∠ABC=180°-∠C-∠BAC=60°.

又∵AE,BF是角平分线,

∴∠ABF=1/2∠ABC=30°,∠BAE=1/2∠BAC=25°,

∴∠AOB=180°-∠ABF-∠BAE=125°.

9.BD PC BD+PC BP+CP

10.解:因为五边形ABCDE的内角都相等,所以∠B=∠C=((5-2)×180°)/5=108°.

又因为DF⊥AB,所以∠BFD=90°,

在四边形BCDF中,∠CDF+∠BFD+∠B+∠C=360°,

所以∠CDF=360°-∠BFD-∠B-∠C=360°-90°-108°-108°=54°.

11.证明:(1)如图11-4-6所示,因为BE和CF是∠ABC和∠ACB的平分线,所以∠1=1/2∠ABC,∠2=1/2∠ACB.

因为∠BGC+∠1+∠2 =180°,所以BGC=180°-(∠1+∠2)=180°-1/2(∠ABC+∠ACB).

(2)因为∠ABC+∠ACB=180°-∠A,

所以由(1)得,∠BGC=180°-1/2(180°-∠A)=90°+1/2∠A.

12.证明:在四边形ABCD中,

∠ABC+∠ADC+∠A+∠C=360°.

因为∠A=∠C=90°,

所以∠ABC+∠ADC= 360°-90°-90°=180°.

又因为BE平分∠ABC,DF平分∠ADC,

所以∠EBC=1/2∠ABC, ∠CDF=1/2∠ADC,

所以∠EBC+∠CDF=1/2(∠ABC+∠ADC)=1/2×180°=90°.

又因为∠C=90°,

所以∠DFC+∠CDF =90°.

所以∠EBC=∠DFC.

所以BE//DF.

人教版八年级上册数学书答案(三)

第32页

1.解:在图12.1-2(2)中,AB和DB,AC和DC,BC和BC是对应边;∠A和∠D,∠ABC和∠DBC,∠ACB和∠DCB是对应角.在图12. 1-2(3)中,AB和AD,AC和AE,BC和DE是对应边;∠B和∠D,∠C和∠E,∠BAC和∠DAE是对应角.

2.解:相等的边有AC=DB,OC=OB,OA=OD;

热点内容
师德先进个人推荐材料 发布:2024-11-24 16:04:48 浏览:580
优酷校园大使 发布:2024-11-24 16:01:06 浏览:723
班主任感怀 发布:2024-11-24 15:55:55 浏览:920
扬大汤老师 发布:2024-11-24 15:50:48 浏览:292
闵行区十佳师德标兵 发布:2024-11-24 14:17:16 浏览:853
合肥特岗教师 发布:2024-11-24 13:22:16 浏览:105
火眼教学 发布:2024-11-24 13:17:16 浏览:615
长丰在哪里 发布:2024-11-24 11:49:23 浏览:970
儿童英语基础 发布:2024-11-24 11:16:49 浏览:293
夜钓教学 发布:2024-11-24 10:55:55 浏览:337