初一数学上册期末
❶ 初一上册数学期末试卷及答案
人教版初一上册数学期末试卷及答案
下面由我整理了关于人教版七年级上册数学期末考试卷及答案以供同学们及时的自我检测和查缺补漏,同时希望对于同学的数学备考有所帮助,希望对的就爱有帮助~
【人教版初一上册数学期末试卷】
一、填空:(每小题2分,共20分)
11. 的倒数是2
2.2007年12月21日中央气象台的天气预报,22日(冬至)北京市的最低气温为-4℃,南平市的最低气温为6℃,这一天北京市的最低气温比南平市的最低气温低 ℃
3.用四舍五入法对下列各数取近似数:(1)0.00356≈ (保留两个有效数字)
(2)1.8935≈ (精确到0.001)
4.建瓯市约51.5万人口,用科学记数法表示为 人
5.一件衣服的进价为50元,若要利润率是20%,应该把售价定为 元
6.关于x的方程2x3m1解为x1,则m
7.某校的早读时间是7:30-7:50,在这个时间中,分针旋转的角度为 度
8.若5xny2与12x3y2m是同类项,则mn9.若某三位数的个位数字为a,十位数字为b,百位数字为c,则此三位数可表示为
10.写出一个满足“①未知数的系数是1,②方程的解是3”的一元一次方程为 2
二、选择题(每小题2分,共12分)
11.下列各组数中,互为相反数的是( )
A.1与(1)2 B. (1)2与 1 C.2与1 D.2与2 2
C
E 12.若a是有理数,则4a与3a的大小关系是( ) A. 4a>3a B. 4a=3a C. 4a<3a D.不能确定
13.如图,OC是平角∠AOB的平分线,OD、OE分别是∠AOC和∠BOC的平分线, E
图中和∠COD互余的角有( )个
A.1 B.2 C.3 D.0 A
14.如果aman,那么下列等式不一定成立的是( ) .
A. am3an3 B. 5am5an C. mn D. O B 11aman 22
15.下列判断正确的是( )
A.锐角的补角不一定是钝角; B.一个角的补角一定大于这个角
C.如果两个角是同一个角的补角,那么它们相等; D.锐角和钝角互补
16.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏损20%,则本次出售中商场( )
A.不赔不赚 B.赚160元 C.赚80元 D.赔80元
三、解答题(共68分)
17.按下列语句画出图形(5分)
(1)作线段AB=3cm
(2)过线段AB中点C作射线CD
(3)作∠ACD的平分线CE
(4)量出∠BCD的.度数,求∠DCE的大小。
18.计算(每题4分,共8分)
(1)(2)2(4)
2219.化简求值:(6分)5a[3a2(2a3)4a],其中a31 (2)103[(4)2(132)2] 41 2
20.(6分)右表列出了几个国外城市与北京的时差(带正号的数表示同一时刻比北京时间晚的时数):例如:在卡塔尔首都多哈举行的第15届亚运会开幕式是在北京时间17:00开始进行的,而此时东京时间是18:00。①如果现在是北京时间9:00,那么纽约时间是多少? ②如果现在小东在北京想给远在巴黎的姨妈打电话,你认为是否合适,为什么?
人教版初一上册数学期末试卷及答案
人教版初一上册数学期末试卷及答案
③2001年9月11日上午9时许(纽约时间),美国纽约世贸中心姊妹楼先后分别遭恐怖的分子劫持的两架飞机的袭击,此时北京是什么时候?
21.(6分)如图,将两块直角三角尺的直角顶点C叠放在一起,
① 若∠DCB=35°,求ACB的度数
② 若∠ACB=140°,求DCE的度数
③ 猜想∠ACB与∠DCE的大小关系,并写出你的猜想,但不要说明理由。
E D
A
B C
22.(6分)轮船在点O测得岛A在北偏东60°,距离为4千米,以测得岛B在北偏西30°,距离为3千米。用1厘米代表1千米画出A、B的位置,量出图上线段AB的长度,并计算岛A和岛B间的实际距离。
西东 O
南
23.(7分)老师在黑板上出了一道解方程的题2x1x21,小明马上举起了手,要求到34
黑板上去做,他是这样做的:4(2x1)13(x2) ①
8x413x6 ②
8x3x164 ③
11x1 ④
1x ⑤ 11
老师说:小明解一元一次方程的一般步骤都掌握了,但解题时有一步做错了,请你指出他错在第 步(填编号0;然后,你自己细心地解下列方程:
第3 / 5页
2x1x12 相信你,一定能做对! 43
24.(7分)某校整理一批图书,由一个人做要48小时完成,现在计划由一部分人先做4小时,再增加3人和他们一起做6小时,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?
25.(8分)某中学库存若干套桌椅,准备修理后支援贫困山区学校。现有甲、乙两木工组,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲单独修完这些桌椅比乙单独修完多用20天,学校每天付甲组80元修理费。(1)该中学库存多少套桌椅?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:a、由甲单独修理;b、由乙单独修理;c、甲、乙合作同时修理。你认为哪种方案省时又省钱?为什么?
26. (9分)
(1)某用户1(2)若该用户水表有故障,每次用水只有60%记入用水量,这样在2月份交水费43. 2元,该
用户2月份实际应交水费多少元?
【人教版初一上册数学期末试卷答案参考】
一、填空:1.-2;2.10;3.(1)0.036;(2)1.894;4. 5.1510;5.60;6.-1;7.120;8.1;
3;9.100c+10b+a;10. 513x; 22
二、选择题:11.A;12.D;13.C;14.C;15.C;16.D
三、解答题:17.正确作出(1)(2)(3)各得1分(4)量出并求出答案各得1分
18.(1)24;(2)-968
19.原式=9aa6;-2;
20.(1)纽约时间是昨天20:00;(2)不合适。现在巴黎时间是凌晨2:00,姨妈在休息;
(3)此时北京时间是22:00
21.(1)∠ACB=∠ACE+∠ECB=90°-35°+90°(2)∠DCE=∠ACD-∠ACE=90°-(140°-90°)=40°(3)∠ACB与∠DCE互补
22.正确画出OA、OB各得2分;量得AB的长为5cm,岛A和岛B间的实际距离是5千米。
23.错在第①步。x217 2
24.解:设先安排x人工作4小时,则依题意得:
4x6(x3)1;解得x=3;答:应先安排3人工作。 4848
xx2025.解:设该中学库存x套桌椅,则;解得x=960。方案C省时省钱。 16168
26.略。
;❷ 七年级上册数学人教版期末试卷及答案
此刻打盹,你将做梦;而此刻学习,你将圆梦。我在这里支持着你,鼓励着你,为你祝福!祝: 七年级数学 期末考试时能超水平发挥。下面是我为大家精心整理的七年级上册数学人教版期末试卷,仅供参考。
七年级上册数学人教版期末试题
一、选择题:本大题共有10小题,每小题2分,共20分.
1. 的相反数是()
A.﹣ B. C.﹣2 D.2
2.﹣6的绝对值等于()
A.6 B. C.﹣ D.﹣6
3.多项式3x2﹣xy2 是()
A.二次四项式 B.三次三项式 C.四次四项式 D.三次四项式
4.已知下列方程:其中一元一次方程有()
①x﹣2= ;②0.2x﹣2=1;③ ;④x2﹣3x﹣4=0;⑤2x=0;⑥x﹣y=6.
A.2个 B.3个 C.4个 D.5个
5.方程3x+2(1﹣x)=4的解是()
A.x= B.x= C.x=2 D.x=1
6.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()
A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b
7.若关于x的方程2x﹣4=3m与方程 =﹣5有相同的解,则m的值是()
A.10 B.﹣8 C.﹣10 D.8
8.下列几何语言描述正确的是()
A.直线mn与直线ab相交于点D B.点A在直线M上
C.点A在直线AB上 D.延长直线AB
9.一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是()
A.106元 B.105元 C.118元 D.108元
10.如图是一个三棱柱.下列图形中,能通过折叠围成一个三棱柱的是()
A. B. C. D.
二、填空题:本大题共6小题,每小题3分,共18分.
11.2013年4月20日,四川省雅安市芦山县发生7.0级地震.我市爱心人士情系灾区,积极捐款,截止到5月6日,市红十字会共收到捐款约1400000元,这个数据用科学记数法可表示为元.
12.计算:﹣(﹣1)2=.
13.学校购买了一批图书,共a箱,每箱有b册,将这批图书的一半捐给社区,则捐给社区的图书为册(用含a、b的代数式表示).
14.已知在月历中竖列上三个数的和是45,则这三个数中最小的数是.
15.如图,C、D为线段AB上的任意两点,那么图中共有条线段.
16.如图,射线OA表示的方向是.
三、解答题:本题共7题,共62分.
17.计算:
(1)12+(﹣17)﹣(﹣23)
(2) .
18.计算:
(1)﹣72+2×
(2)﹣14 .
19.化简:(1)5a2+3ab﹣4﹣2ab﹣5a2 (2)﹣x+2(2x﹣2)﹣3(3x+5)
20.计算:
(1)7(3﹣x)﹣5(x﹣3)=8
(2) .
21.已知线段AC=8cm,点B是线段AC的中点,点D是线段BC的中点,求线段AD的长.
22.汽车上坡时每小时走28km,下坡时每小时走35km,去时,下坡路的路程比上坡路的路程的2倍还少14km,原路返回比去时多用了12分钟.求去时上、下坡路程各多少千米?
23.如图,已知同一平面内,∠AOB=90゜,∠AOC=60゜.
(1)填空:∠COB=;
(2)如OD平分∠BOC,OE平分∠AOC,直接写出∠DOE的度数为;
(3)试问在(2)的条件下,如果将题目中∠AOC=60゜改成∠AOC=2α(α<45゜),其他条件不变,你能求出∠DOE的度数吗?若能,请你写出求解过程;若不能,请说明理由.
七年级上册数学人教版期末试卷参考答案
一、选择题:本大题共有10小题,每小题2分,共20分.
1. 的相反数是()
A.﹣ B. C.﹣2 D.2
【考点】相反数.
【专题】常规题型.
【分析】根据只有符号不同的两个数互为相反数解答.
【解答】解: 的相反数是﹣ .
故选A.
【点评】本题主要考查了互为相反数的定义,是基础题,熟记概念是解题的关键.
2.﹣6的绝对值等于()
A.6 B. C.﹣ D.﹣6
【考点】绝对值.
【专题】计算题.
【分析】根据绝对值的性质解答即可.
【解答】解:根据绝对值的性质,
|﹣6|=6,
故选:A.
【点评】本题考查了绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,难度适中.
3.多项式3x2﹣xy2 是()
A.二次四项式 B.三次三项式 C.四次四项式 D.三次四项式
【考点】多项式.
【分析】根据多项式的项和次数的概念解题即可.
【解答】解:多项式3x2﹣xy2 是三次四项式,
故选D
【点评】此题主要考查了多项式,此类题目时要明确以下概念:
(1)组成多项式的每个单项式叫做多项式的项;(2)多项式中次数最高项的次数叫做多项式的次数.
4.已知下列方程:其中一元一次方程有()
①x﹣2= ;②0.2x﹣2=1;③ ;④x2﹣3x﹣4=0;⑤2x=0;⑥x﹣y=6.
A.2个 B.3个 C.4个 D.5个
【考点】一元一次方程的定义.
【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).
【解答】解:①x﹣2= 是分式方程;
②0.2x﹣2=1是一元一次方程;
③ 是一元一次方程;
④x2﹣3x﹣4=0是一元二次方程;
⑤2x=0是一元一次方程;
⑥x﹣y=6是二元一次方程;
故选:B.
【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.
5.方程3x+2(1﹣x)=4的解是()
A.x= B.x= C.x=2 D.x=1
【考点】解一元一次方程.
【专题】计算题.
【分析】方程去括号,移项合并,把x系数化为1,即可求出解.
【解答】解:去括号得:3x+2﹣2x=4,
解得:x=2,
故选C.
【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.
6.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()
A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b
【考点】实数与数轴.
【分析】根据数轴判断出a、b、c的正负情况,然后根据不等式的性质解答.
【解答】解:由图可知,a
❸ 初一数学上册期末试卷答案
寒窗苦读为前途,望子成龙父母情。放下包袱开动脑筋,勤于思考好好复习,祝你 七年级数学 期末考试取得好成绩,期待你的成功!我整理了关于初一数学上册期末试卷,希望对大家有帮助!
初一数学上册期末试题
第1卷(选择题共48分)
一、选择题(本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.甲、乙、丙三地的海拔高度分别为20m,-15m,-10m,那么最高的地方比最低的地方高
A.5m B.10m C.25m D.35m
2.下列说法错误的是
A.-2的相反数是2 B.3的倒数13
C.(一3)一(一5)=2 D.-11,0,4这三个数中最小的数是0
3.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学圮数法表示为
A.1.94×l010 B.0.194×1010 C.19.4×l09 D.1.94×109
4.如图是一个长方体包装盒,它的平面展开图是
5.下列运算中,正确的是
A.3a+2b=5ab B.2a3+3a2=5a5 C.5a2―4a2=1 D.3a2b―3ba2=0
6.在下列调查中,适宜采用普查的是
A.了解我省中学生的视力情况 B.了解九(1)班学生校服的尺码情况
C.检测一批电灯泡的使用寿命 D.调查某电视台《全民新闻》栏目的收视率
7.12点15分,钟表上时针与分针所夹角的度数为
A.90° B.67.5° C.82.5° D.60°
8.从一个n边形的一个顶点出发,分别连接该顶点与 其它 不相邻的各顶点,把这个多边形分 成6个三角形,则n的值是
A.6 B.7 C.8 D.9
9.若方程2x=8和方程ax+2x=4的解相同,则a的值为
A.1 B. -1 C.士1 D. 0
10.有理数a、b在数轴上的位置如图所示,则化简|a-b|十a的结果为
A.6 B.-b C.-2a-b D.2a-b
10题图
11.甲队有工人96人,乙队有工人72人,如果要求乙队的人数是甲队人数的13,应从乙队调 多少人去甲队?如果设应从乙队调x人到甲队,列出的方程正确的是
A.96+x=13(72一x) B.13(96+x)=72一x
C.13(96-x)=72-x D.13×96+x=72一x
12.已知整数a1,a2,a3,a4……满足下列条件:a1=0,a2=-|a1+1| a3=-|a2+2|,
a4=-|a3+3|……依次类推,则a2017的值为
A.-1009 B.-1008 C.-2017 D.-2016
第Ⅱ卷(非选择题共102分)
二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)
13.如图,从A到B有多条道路,人们通常会走中间的直路,而不走其他的路,这其中的道理是_________________.
14.已知代数式6x-12与4+2x的值互为相反数,那么x的值等于_________
15.若(1―m)2+ | n+2| =0,则m+n的值为______________
16.如果单项式5am+1bn+5与a2m+1b2n+3是同类项,则m=_________,n=___________
17.34.37°=34°____′_____″.
18.平面上任意两点确定一条直线,任意三点最多可确定3条直线,若平面上任意n个点最多可确定28条直线,则n的值是________________________
三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)
19.(本小题满分6分)计算:
(1) -8×2-(-10) (2)一9÷3一(12一23)×12—32
20.(本小题满分6分)
己知:四点A、B、C、D的位置如图所示,根据下列语句,画出图形.
(1)画直线AD、直线BC相交于点O;
(2)画射线AB.
21.(本小题满分6分)
(1)化简:3x2-5x一6-7x2-6x+15
(2)先化简,再求值:-2x2-2[3y2-2(x2- y2)+6],其中x=-1,y=-2.
22.(本小题满分8分)解下列方程:
(1)4-x=7x+6
(2)2x-13-x+14=4
23.(本小题满分8分)
(1)如图1,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.
(2)如图2,∠BOE=2∠AOE,OF平分∠AOB,∠EOF=20°.求∠AOB.
24.(本小题满分14分) 列方程解应用题
(1)在“十一”期间,小明等同学随家长共15人到游乐园游玩,成人门票每张50元,学生门票是6折优惠.他们购票共花了650元,求一共去了几个家长、几个学生?
(2)甲、乙两人骑自行车同时从相距65千米的两地出发相向而行,甲的速度是每小时17.5千米,乙的速度是每小时15千米,求经过几小时甲、乙两人相距32.5千米?
25.(本小题满分8分)
某商场今年1~5月每个月的销售总额如图甲,商场服装部每个月销售额占商场当月销售总额的百分比如图乙.
(1)来自商场财务部的数据 报告 表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将图甲中的统计图补充完整;
(2)商场服装部5月份的销售额是多少万元?
(3)小刚观察图乙后认为,5月份商场服装部的销售额比4月份减少了,你同意他的看法吗?请说明理由.
26.(本小题满分10分)请根据图中提供的信息,回答下列问题:
(1)-个水瓶与一个水杯分别是多少元?
(2)甲、乙两家商场都销售该水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,单独购买的水杯按原价销售.若某单位想在一家商场买5个水瓶和20个水杯,请问选择哪家商场更合算?请说明理由,
27.(本小题满分12分)
如图,数轴上点A表示的数为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(l)点B表示的数为______,点P表示的数为_______(用含t的式子表示);
(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P,H同时出发,问点P运动多少秒时追上点H?
初一数学上册期末试卷参考答案
一、选择题
题号 1 2 3 4 5 6 7 8 9 10 11 12
答案 D D A A D B C C B A B B
二、填空
13. 两点之间,线段最短
14. 1
15. -1
16. 0,2
17. 22,12
18. 8
三、解答题
19.解:
(1)-8×2 -(-10)
=-16+10 1分
=-6 2分
(2) -9÷3- (12-23)×12 -32;
=-3-(6-8) -9 3分
=-3-(-2) -9 4分
=-3+2-9 5分
=-10 6分
20.(1)画图正确 2分
结论 3分
(2)画图正确 5分
结论 6分
21.解:(1) 3x2-5x–6-7x2-6x +15
=(3-7)x2+(-5-6)x +(-6+15) 1分
= -4x2-11 x +9 2分
(2) -2x2-2[3y2-2(x2-y2)+6]
=-2x2-2[3y2-2x2 + 2y2+6] 3分
=-2x2-6y2 + 4x2 -4y2-12 4分
=2x2-10y2 -12 5分
当x=-1,y=-2时
原式=2×(-1)2-10×(-2)2-12
=2×1-10×4-12
=2-40-12
=-50 6分
22. 解:(1) 4-x=7x + 6
-x-7x = 6-4 1分
-8x=2 2分
x= 3分
(2)
4(2 x-1)-3(x+1) = 48 4分
8x-4-3x-3=48 5分
8 x-3 x=48+4+3 6分
5 x=55 7分
x= 11 8分
23(1)解:∵M是AC的中点,AC=6,
∴MC=12AC=6×12=3, 1分
又因为CN∶NB=1∶2,BC=15,
∴CN=15×13=5, 3分
∴MN=MC+CN=3+5=8,
∴MN的长为8 cm 4分
(2)解:∵∠BOE=2∠AOE,∠AOB=∠BOE+∠AOE,
∴∠BOE= ∠AOB, 5分
∵OF平分∠AOB,
∴∠BOF= ∠AOB, 6分
∴∠EOF=∠BOE-∠BOF= ∠AOF, 7分
∵∠EOF=20°,
∴∠AOB=120°. 8分
24.(1)解:设一共去了x个家长,则去了(15-x)个学生, 1分
根据题意得50x+50×0.6(15-x)=650, 3分
解得x=10, 4分
15-10=5, 5分
答:一共去了10个家长、5个学生. 6分
(2)解:设经过x小时,甲、乙两人相距32.5千米 7分
17.5x+15x = 65-32.5或 17.5x+15x = 65+32.5 11分
解方程(1)得x=1,解方程(2)得x=3 13分
答:经过1小时或3小时,甲、乙两人相距32.5千米. 14分
25解(1)410-100-90-65-80=75(万元) 1分
图略 2分
(2)∵商场5月份销售额为80万元,
∴5月份的销售额为80×16%=12.8(万元) 4分
(3)不同意他的看法. 6分
∵商场服装部4月份销售额为75×17%=12.75(万元), 7分
12.75<12.8,
所以不同意他的看法 8分
26.解:(1)设一个水瓶是x元,则一个水杯是(48-x)元, 1分
由题意得3x+4(48-x)=152 3分
解得x=40 4分
48-x=8 5分
答:一个水瓶40元,一个水杯8元. 6分
(2)在甲商场购买:5×40×0.8+20×8×0.8=288(元); 7分
在乙商场购买:5×40+8×(20-5×2)=280(元), 8分
因为288>280, 9分
所以在乙商场购买更合算. 10分
27. (1)-6,8-5t 4分
(第一空1分,第二空3分)
(2)设P运动x秒时追上点H, 5分
则3x+14=5x 9分
3x-5x=14,解得x=7 11分
答:点P运动7秒时追上点H. 12分
❹ 七年级数学上册期末测试题人教版
到了初中,如果还想要提高七年级数学成绩的话,平时做试题就要多注意一些细节。以下是我为你整理的七年级数学上册期末测试题,希望对大家有帮助!
七年级数学上册期末测试题
一、选择题(每小题3分,共36分)
1.下列方程中,是一元一次方程的是()
A.x2-2x=4
B.x=0
C.x+3y=7
D.x-1=
2.下列计算正确的是()
A.4x-9x+6x=-x
B.a-a=0
C.x3-x2=x
D.xy-2xy=3xy
3.数据1 460 000 000用科学记数法表示应是()
A.1.46×107
B.1.46×109
C.1.46×1010
D.0.146×1010
4.用科学计算器求35的值,按键顺序是()
A.3,x■,5,= B.3,5,x■
C.5,3,x■ D.5,x■,3,=
5.
在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,则∠AOB的大小为()
A.69° B.111°
C.159° D.141°
6.一件衣服按原价的九折销售,现价为a元,则原价为()
A.a B.a
C.a D.a
7.下列各式中,与x2y是同类项的是()
A.xy2 B.2xy
C.-x2y D.3x2y2
8.若长方形的周长为6m,一边长为m+n,则另一边长为()
A.3m+n
B.2m+2n
C.2m-n
D.m+3n
9.已知∠A=37°,则∠A的余角等于()
A.37° B.53°
C.63° D.143°
10.将下边正方体的平面展开图重新折成正方体后,“董”字对面的字是()
A.孝 B.感
C.动 D.天
11.若规定:[a]表示小于a的最大整数,例如:[5]=4,[-6.7]=-7,则方程3[-π]-2x=5的解是()
A.7 B.-7
C.- D.
12.同一条直线上有若干个点,若构成的射线共有20条,则构成的线段共有()
A.10条 B.20条
C.45条 D.90条
二、填空题(每小题4分,共20分)
13.已知多项式2mxm+2+4x-7是关于x的三次多项式,则m=.
14.在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(倍加增指从塔的顶层到底层).则塔的顶层有盏灯.
15.如图,点B,C在线段AD上,M是AB的中点,N是CD的中点.若MN=a,BC=b,则AD的长是.
16.瑞士中学教师巴尔末成功地从光谱数据,…中得到巴尔末公式,从而打开了光谱奥妙的大门.请你按这种规律写出第七个数据是.
17.如图,现用一个矩形在数表中任意框出ab
cd4个数,则
(1)a,c的关系是;
(2)当a+b+c+d=32时,a=.
三、解答题(共64分)
18.(24分)(1)计算:-12 016-[5×(-3)2-|-43|];
(2)解方程:=1;
(3)先化简,再求值:
a2b-5ac-(3a2c-a2b)+(3ac-4a2c),其中a=-1,b=2,c=-2.
19.(8分)解方程:14.5+(x-7)=x+0.4(x+3).
20.(8分)如图,O为直线BE上的一点,∠AOE=36°,OC平分∠AOB,OD平分∠BOC,求∠AOD的度数.
21.(8分)某项工程,甲单独做需20天完成,乙单独做需12天完成,甲、乙二人合做6天以后,再由乙继续完成,乙再做几天可以完成全部工程?
22.(8分)一位商人来到一个新城市,想租一套房子,A家房主的条件是:先交2 000元,然后每月交租金380元,B家房主的条件是:每月交租金580元.
(1)这位商人想在这座城市住半年,那么租哪家的房子合算?
(2)这位商人住多长时间时,租两家房子的租金一样?
23.(8分)阅读下面的材料:
高斯上小学时,有一次数学老师让同学们计算“从1到100这100个正整数的和”.许多同学都采用了依次累加的计算方法,计算起来非常烦琐,且易出错.聪明的小高斯经过探索后,给出了下面漂亮的解答过程.
解:设S=1+2+3+…+100, ①
则S=100+99+98+…+1. ②
①+②,得
2S=101+101+101+…+101.
(①②两式左右两端分别相加,左端等于2S,右端等于100个101的和)
所以2S=100×101,
S=×100×101. ③
所以1+2+3+…+100=5 050.
后来人们将小高斯的这种解答方法概括为“倒序相加法”.
解答下面的问题:
(1)请你运用高斯的“倒序相加法”计算:1+2+3+…+101.
(2)请你认真观察上面解答过程中的③式及你运算过程中出现类似的③式,猜想:
1+2+3+…+n=.
(3)请你利用(2)中你猜想的结论计算:1+2+3+…+1 999.
七年级数学上册期末测试题答案
一、选择题
1.B选项A中,未知数的最高次数是二次;选项C中,含有两个未知数;选项D中,未知数在分母上.故选B.
2.B选项A中,4x-9x+6x=x;选项C中,x3与x2不是同类项,不能合并;选项D中,xy-2xy=-xy.故选B.
3.B4.A5.D
6.B由原价×=现价,得
原价=现价÷=现价×.
7.C
8.C另一边长=×6m-(m+n)=3m-m-n=2m-n.
9.B10.C
11.C根据题意,得[-π]=-4,
所以3×(-4)-2x=5,解得x=-.
12.C由构成的射线有20条,可知这条直线上有10个点,所以构成的线段共有=45条.
二、填空题
13.1由题意得m+2=3,解得m=1.
14.3
15.2a-bAM+ND=MB+CN=a-b,AD=AM+ND+MN=a-b+a=2a-b.
16.这些数据的分子为9,16,25,36,分别是3,4,5,6的平方,
所以第七个数据的分子为9的平方是81.
而分母都比分子小4,所以第七个数据是.
17.(1)a+5=c或c-a=5(2)5(1)a与c相差5,所以关系式是a+5=c或c-a=5.
(2)由数表中数字间的关系可以用a将其他三个数都表示出来,分别为a+1,a+5,a+6;当a+b+c+d=32时,有a+a+1+a+5+a+6=32,解得a=5.
三、解答题
18.解:(1)原式=-1-(45-64)=-1+19=18.
(2)2(2x+1)-(10x+1)=6,
4x+2-10x-1=6,
4x-10x=6-2+1,
-6x=5,x=-.
(3)a2b-5ac-(3a2c-a2b)+(3ac-4a2c)
=a2b-5ac-3a2c+a2b+3ac-4a2c
=a2b-2ac-7a2c.
当a=-1,b=2,c=-2时,原式=×(-1)2×2-2×(-1)×(-2)-7×(-1)2×(-2)=3-4+14=13.
19.解:(x-7)=x+(x+3).
15×29+20(x-7)=45x+12(x+3).
435+20x-140=45x+12x+36.
20x-45x-12x=36-435+140.
-37x=-259.解得x=7.
20.解:因为∠AOE=36°,所以∠AOB=180°-∠AOE=180°-36°=144°.
又因为OC平分∠AOB,
所以∠BOC=∠AOB=×144°=72°.
因为OD平分∠BOC,
所以∠BOD=∠BOC=×72°=36°.
所以∠AOD=∠AOB-∠BOD=144°-36°=108°.
21.解:设乙再做x天可以完成全部工程,则
×6+=1,解得x=.
答:乙再做天可以完成全部工程.
22.解:(1)A家租金是380×6+2000=4280(元).
B家租金是580×6=3480(元),所以租B家房子合算.
(2)设这位商人住x个月时,租两家房子的租金一样,则380x+2000=580x,解得x=10.
答:租10个月时,租两家房子的租金一样.
23.解:(1)设S=1+2+3+…+101, ①
则S=101+100+99+…+1. ②
①+②,得2S=102+102+102+…+102.
(①②两式左右两端分别相加,左端等于2S,右端等于101个102的和)
∴2S=101×102.∴S=×101×102.
∴1+2+3+…+101=5151.
(2)n(n+1)
(3)∵1+2+3+…+n=n(n+1),
∴1+2+3+…+1998+1999
=×1999×2000=1999000.
❺ 初一上册数学期末知识点
初一上册数学期末知识点 篇1
一.线段、射线、直线
1.正确理解直线、射线、线段的概念以及它们的区别:
名称图形表示方法端点长度
直线直线AB(或BA)
直线l无端点无法度量
射线射线OM1个无法度量
线段线段AB(或BA)
线段l2个可度量长度
2.直线公理:经过两点有且只有一条直线。
二.比较线段的长短
1.线段公理:两点间线段最短;两之间线段的长度叫做这两点之间的距离。
2.比较线段长短的两种方法:
①圆规截取比较法;
②刻度尺度量比较法。
3.用刻度尺可以画出线段的中点,线段的和、差、倍、分;
用圆规可以画出线段的和、差、倍。
三.角的度量与表示
1.角:有公共端点的两条射线组成的图形叫做角;
这个公共端点叫做角的顶点;
这两条射线叫做角的边
2.角的表示法:角的符号为“∠”
初一上册数学期末知识点 篇2
①求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数(负奇负,负偶正)。正数的任何次幂都是正数,0的任何次幂都是0。
②偶次方等于一个正数的值有两个(两个互为相反数)如:a2=4,a=2或a=-2
注意:|a|+b2=0 得:a=0 且 b=0
强记:a0=1(a≠0);(-1)2=1 ;-12=-1;(-1)3=-1;
-13=-1; (-2)2 =4;-22=-4;(-2)3 =-8;-23=-8
③有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。注意:12-4×5=12-20(不能把-变+)
④把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a n比原整数位减1。(注意科学计数法与原数的互划。
⑤四舍五入到哪一位就是精确到哪一位,四舍五入时望后多看一位采用四舍五入。比如:3.5449精确到0.01就是3.54而不是3.55. (再如: 2.40万:精确到百位;6.5×104精确到千位,有数量级和科学计数法的要还原成原数,看数量级和科学计数法的最后一个数)。
初一上册数学期末知识点 篇3
数轴的三要素:原点、正方向、单位长度(三者缺一不可)。
任何一个有理数,都可以用数轴上的一个点来表示。(反过来,不能说数轴上所有的点都表示有理数)
如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。(0的相反数是0)
在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。
数轴上两点表示的数,右边的总比左边的大。正数在原点的右边,负数在原点的左边。
绝对值的定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离。数a的绝对值记作|a|。
正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。
或
绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;
互为相反数的两数(除0外)的绝对值相等;
任何数的绝对值总是非负数,即|a|0
比较两个负数的大小,绝对值大的反而小。比较两个负数的大小的步骤如下:
①先求出两个数负数的绝对值;
②比较两个绝对值的大小;
③根据两个负数,绝对值大的反而小做出正确的判断。
绝对值的性质:
①对任何有理数a,都有|a|0
②若|a|=0,则|a|=0,反之亦然
③若|a|=b,则a=b
④对任何有理数a,都有|a|=|-a|
有理数加法法则:
①同号两数相加,取相同符号,并把绝对值相加。
②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值。
③一个数同0相加,仍得这个数。
加法的交换律、结合律在有理数运算中同样适用。
灵活运用运算律,使用运算简化,通常有下列规律:
①互为相反的两个数,可以先相加;
②符号相同的数,可以先相加;
③分母相同的数,可以先相加;
④几个数相加能得到整数,可以先相加。
有理数减法法则:
减去一个数,等于加上这个数的相反数。
有理数减法运算时注意两变:
①改变运算符号;
②改变减数的性质符号(变为相反数)
有理数减法运算时注意一个不变:被减数与减数的位置不能变换,也就是说,减法没有交换律。
有理数的加减法混合运算的步骤:
①写成省略加号的代数和。在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;
②利用加法则,加法交换律、结合律简化计算。
(注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变成它本身的相反数。)
有理数乘法法则:
①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘,积仍为0。
如果两个数互为倒数,则它们的乘积为1。(如:-2与 、 等)
乘法的交换律、结合律、分配律在有理数运算中同样适用。
有理数乘法运算步骤:
①先确定积的符号;
②求出各因数的绝对值的积。
乘积为1的两个有理数互为倒数。注意:
①零没有倒数
②求分数的倒数,就是把分数的分子分母颠倒位置。一个带分数要先化成假分数。
③正数的倒数是正数,负数的倒数是负数。
有理数除法法则:
①两个有理数相除,同号得正,异号得负,并把绝对值相除。
②0除以任何非0的数都得0。0不可作为除数,否则无意义。
有理数的乘方
注意:
①一个数可以看作是本身的一次方,如5=51;
②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。
乘方的运算性质:
①正数的任何次幂都是正数;
②负数的奇次幂是负数,负数的偶次幂是正数;
③任何数的偶数次幂都是非负数;
④1的任何次幂都得1,0的任何次幂都得0;
⑤-1的偶次幂得1;-1的奇次幂得-1;
⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。
有理数混合运算法则:
①先算乘方,再算乘除,最后算加减。
②如果有括号,先算括号里面的。
初一上册数学期末知识点 篇4
①大于0的数叫正数。
②在正数前面加上“-”号的数,叫做负数。
③0既不是正数也不是负数。0是正数和负数的分界,是唯一的中性数。
④搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。
⑤正整数、0、负整数统称整数(结合数轴和一元一次方程出题),正分数和负分数统称分数。整数和分数统称有理数。
⑥非负数就是正数和零;非负整数就是正整数和0。
⑦“基准”题:有固定的基准数,和的求法:基准数×个数+与基准数相比较的数的代数和;平均数的求法:基准数+与基准数相比较的`数的代数和÷个数(写出原数,也可用小学知识解答);“非基准”题:无固定的基准数,如明天和今天比,后天和明天比。
初一上册数学期末知识点 篇5
整式的乘法:
①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
初一上册数学期末知识点 篇6
实数:—有理数与无理数统称为实数。
有理数:整数和分数统称为有理数。
无理数:无理数是指无限不循环小数。
自然数:表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。
数轴:规定了圆点、正方向和单位长度的直线叫做数轴。
相反数:符号不同的两个数互为相反数。
倒数:乘积是1的两个数互为倒数。
绝对值:数轴上表示数a的点与圆点的距离称为a的绝对值。一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。
初一上册数学期末知识点 篇7
一、概念梳理
⑴列一元一次方程解决实际问题的一般步骤是:审题,特别注意关键的字和词的意义,弄清相关数量关系,注意单位统一,注意设未知数;
①解:设出未知数(注意单位),
②根据相等关系列出方程,
③解这个方程,
④答(包括单位名称,最好检验)。
⑵一些固定模型中的等量关系:
①数字问题:表示一个三位数,则有=100a+10b+c(数位上的数字×位数)
②行程问题:基本公式:路程=时间×速度
甲乙同时相向行走相遇时:甲走的路程+乙走的路程=总路程
甲走的时间=乙走的时间;
甲乙同时同向行走追及时:甲走的路程-乙走的路程=甲乙之间距离
③工程问题(整体1):基本公式:工作量=工作时间×工作效率
各部分工作量之和=总工作量;
④储蓄问题:本息和=本金+利息;利息=本金×利率×时间
⑤商品销售问题:商品利润=售价-进价(成本价)
商品利润率=(售价-进价)/进价
⑥等积变形问题:面积或体积不变
⑦和、差、倍、分问题:多、少、几倍、几分之几
⑧按比例分配问题:一般设每份为x如:2:3:4为2x、3x、4x
⑨资源调配问题:资源、人员的调配(有时要间接设未知数)
二、思想方法(本单元常用到的数学思想方法小结)
⑴模型思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立一元一次方程的思想。
⑵方程思想:用方程解决实际问题的思想(如:按比例分配、线段的长、角的大小等)就是方程思想。
⑶转化(归纳)思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a的形式.体现了化“未知”为“已知”的化归思想。
⑷数形结合思想:如:数轴问题、在列方程解决行程问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越性。
⑸分类(整体)思想:如:绝对值、偶次方、点在线段上(延长线上、线段外)、角在角内(外)在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用。
初一上册数学期末知识点 篇8
①大于0的数叫正数。
②在正数前面加上“-”号的数,叫做负数。
③0既不是正数也不是负数。0是正数和负数的分界,是唯一的中性数。
④搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。
⑤正整数、0、负整数统称整数(结合数轴和一元一次方程出题),正分数和负分数统称分数。整数和分数统称有理数。
⑥非负数就是正数和零;非负整数就是正整数和0。
⑦“基准”题:有固定的基准数,和的求法:基准数×个数+与基准数相比较的数的代数和;平均数的求法:基准数+与基准数相比较的数的代数和÷个数(写出原数,也可用小学知识解答);“非基准”题:无固定的基准数,如明天和今天比,后天和明天比。
❻ 初一上册数学期末试卷「附答案」
人教版初一上册数学期末试卷「附答案」
数学是一科比较难学的学科,要打好基础,就要多做试题,下面由我为大家带来的人教版初一上册数学期末试卷附答案,仅供参考~
【人教版初一上册数学期末试卷】
一、选择题(共15个小题,每小题2分,共30分)
1.如果向东走 记为 ,那么向西走 记为 ( )
A. B. C. D.
2.某市2010年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高 ( )
A.-10℃ B.-6℃ C.6℃ D.10℃
3.-6的绝对值等于 ( )
A. B. C. D.
4.未来三年,国家将投入8500亿元用于缓解群众“看病难,看病贵”问题.将8500亿元用科学记数法表示为 ( )
A. 亿元 B. 亿元 C. 亿元 D. 亿元
5.当 时,代数式 的值是 ( )
A. B. C. D.
6.下列计算正确的是 ( )
A. B.
C. D.
7.将线段AB延长至C,再将线段AB反向延长至D,则图中共有线段 ( )
A.8条 B.7条 C.6条 D.5条
8.下列语句正确的是 ( )
A.在所有联结两点的线中,直线最短
B.线段A曰是点A与点B的距离
C.三条直线两两相交,必定有三个交点
D.在同一平面内,两条不重合的直线,不平行必相交
9.已知线段 和点 ,如果 ,那么 ( )
A.点 为 中点 B.点 在线段 上
C.点 在线段 外 D.点 在线段 的延长线上
10.一个多项式减去 等于 ,则这个多项式是
A. B.
C. D.
11.若 ,则下列式子错误的是
A. B.
C. D.
12.下列哪个不等式组的解集在数轴上的表示如图所示
A. B.
C. D.
13.如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=55
A.35 B.55
C.70 D.110
14.把方程 的分母化为整数的方程是( )
A.
B.
C.
D.
二、填空题(共10个小题,每小题2分,共20分)
16.比较大小: _________ (填“<”、“=”或“>”)
17.计算: _________
18.如果a与5互为相反数,那么a=_________
19.甲数 的 与乙数 的 差可以表示为_________
20.定义 ※ = ,则(1※2)※3=_________
21.如图,要使输出值Y大于100,则输入的最小正整数x是___________
22.如图,将一副三角板叠放在一起,使直角顶点重合于0点,则∠AOC+∠DOB=___________
度.
23.如图,∠AOB中,OD是∠BOC的'平分线,OE是∠AOC的平分线,若∠AOB=140 ,则∠EOD=___________度.
24.已知 ,则 ___________.
25.观察下面的一列单项式: ,…根据你发现的规律,第7个单项式为___________;第 个单项式为___________.
三、计算或化简(共4个小题,每小题4分,共16分)
26.计算:
27.计算:
28.计算:
29.化简:
四、解方程或不等式(共2个小题,每小题5分。共10分)
30.解方程:
五、列方程解应用题(共2个小题,每小题8分,共16分)
32.张欣和李明相约到图书城去买书.请你根据他们的对话内容,求出李明上次所买书籍的原价.
33.粗蜡烛和细蜡烛的长短一样,粗蜡烛可以点5小时,细蜡烛可以点4小时,如果同时点燃这两支蜡烛,过了一段时间后,剩余的粗蜡烛长度是细蜡烛长度的2倍,问这两支蜡烛已点燃了多少时间?
七、选做题(本大题共2个小题,第35题2分,第36题3分,共5分,得分记入总分,但总分不得超过100分)
35.已知:关于 的方程 的解是 ,其中 且 ,求代数式 的值.
【人教版初一上册数学期末试卷答案参考】
一、选择题(共15个小题,每小题2分,共30分)
1.A2.D3.A4.B5.A6.D7.C8.D9.B10.C11.B12.D13.C14.B15.A
二、填空题(共10个小题,每小题2分,共20分)
16.>17.118.-519. 20.-221.2122.18023.7024.10
25.128x7;(-1)n+1•2n•xn
三、计算或化简(共4个小题,每小题4分,共16分)
26.计算: .
解:原式=
=-1+
= . …………………………………………………………………………4分
27.计算:(-6.5)+(-2)÷ ÷(-5).
解:原式=-6.5+(-2)× ×
=-6.5+(-1)
=-7.5.…………………………………………………………………………4分
28.计算:18°20′32″+30°15′22″.
解:原式=48°35′54″.………………………………………………………4分
29.化简:(5a2+2a-1)-4(3-8a+2a2).
解:原式=5a2+2a-1-12+32a-8a2
=-3a2+34a-13.……………………………………………………………4分
四、解方程或不等式(共2个小题,每小题5分,共10分)
30.解方程:16x-3.5x-6.5x=7.
解: 6x=7,
x= …………………………………………………5分
31.解不等式: >5-x,并把解集表示在数轴上.
解:x-1>15-3x,
4x>16,
x>4. …………………………………………………………………………3分
在数轴上表示其解集:
…………………………………5分
五、列方程解应用题(共2个小题,每小题8分,共16分)
32.解:设李明上次所买书籍的原价为x元,根据题意列方程得:
x-(0.8x+20)=12.………………………………………………………………5分
解方程得:x=160.
答:李明上次所买书籍的原价为160元.…………………………………………8分
33.解:设这两支蜡烛已点燃了x小时,根据题意列方程得:
.……………………………………………………………………5分
解方程得:x=
答:这两支蜡烛已点燃了 小时.…………………………………………………8分
六、解答题(共1个小题,共8分)
34.解:由有理数的除法法则“两数相除,异号得负”,有
(1) 或(2) ……………………………………………………2分
解不等式组(1),得: ,
解不等式组(2),无解.………………………………………………………………6分
故分式不等式 <0的解集为 …………………………………8分
七、选做题(本大题共2个小题,第35题2分,第36题3分,共5分,得分记入总分,但总分不得超过100分)
35.解:∵关于x的方程与 的解是x=2,
∴ ,
∴3a=4b.
∵a≠0且b≠0,
∴ .……………………………………………2分
36.解:
∵BC=AC-AB,AC=7,AB=5,
∴BC=2.
∴BD=4BC=8,AD=BD-AB=3.
∵CD=BD+BC.
∴CD=10(cm).
∴E为CD的中点,
∴DE= CD=5.
∴AE=DE-AD=2(cm).
∴AE是CD的 .…………………………………………………………………3分
;