当前位置:首页 » 语数英语 » 数学广角集合教学设计

数学广角集合教学设计

发布时间: 2024-08-23 04:45:23

1. 小学数学广角找次品教学设计

现实生活生产中的“次品”有许多种不同的情况,有的是外观与合格品不同,有的是所用材料不符合标准等。接下来我为你整理了小学数学广角找次品教学设计,一起来看看吧。

小学数学广角找次品教学设计(一)

教学内容:

新人教版小学五年级数学下册第八单元《数学广角———找次品》

教学目标:

1、通过比较、猜测、验证等活动,探索解决问题的策略,渗透优化思想,感受解决问题策略的多样性,培养观察、分析、推理的能力。

2、学习用图形、符号等直观方式清晰、简明地表示数学思维的过程,培养逻辑思维的能力。

3、通过解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

教学重、难点:

让学生经历“比较——猜想——验证”的过程,寻求找次品的最优策略。

学情分析:

“找次品”的教学内容在“奥数”活动中时有出现,用图形帮助思考,对培养学生动手能力和思维能力都是比较好的,学生虽然是初次接触,但只要通过动手实践、小组讨论、探究等方式来解决问题,掌握一题多解的方法还是不难的。关键是最优化的解决策略,学生总结方法时有些难度,教师要适时引导。

教学过程:

一、弄清问题题意,激发探究欲望

师:今天这节课,我们就从某公司招聘员工的一道题目开始,假定你就是应聘者,想不想接受一下智慧的挑战?(出示课件)

问题是:假如你有81个外观完全一样的玻璃球,其中有一个球比其它的球稍轻,属于次品,如果只能利用没有砝码的天平来断定哪一个球轻,请问你最少要称几次才能保证找到较轻的那个球?

(一分钟思考)学生汇报:1次丶2次⋯…

师:请只用1次的同学说一说,你是怎样想的?

生1:

生2:

师:看来,1次虽少,但只是有可能,不能保证找到那个次品球,所以我们在思考这个问题的时候,不光要最少,还要以保证能找到为前提。

师:如果以“保证能找到”为前提,在同学们这么多的答案中,哪个次数是最少的呢?这一节课我们就一起来研究这个问题一一找次品。

二、简化问题,经历问题解决基本过程。

对于从81个小球中找次品的问题,比较复杂,那么怎样开始我们今天的研究呢?

生:可以从最少的试一试。

师:如果从最简单的入手研究,2个小球至少称几次?

生:1次。

师:如果是3个呢?

生猜测:2次?3次?1次?

师:老师这里有3瓶口香糖,其中有一瓶少了3粒,你觉得应该怎样称?

生汇报:先把其中的2瓶放在天平的两侧,如果左边下沉,就说明右边的是次品;如果右边的下沉,就说明左边的是次品;如果天平平衡,则没称的是次品。(学生边说老师边配合进行称量演示。)

师边演示课件边带领学生进一步感受推理过程:虽然有3瓶,而天平只有两个托盘,但是只需要把其中的2瓶放在天平的两侧,可能平衡,也可能不平衡,如果平衡⋯⋯如果不平衡⋯⋯不论是否平衡,利用推理,只要称1次肯定能将那个次品找出来。

师小结:看来2个和3个虽然数量不同,但是都只称1次就可以将次品找到。(将探究结果记录在表格中)

三、再次探究“关键数目”,初步感知、归纳规律

1、探究4个小球的情况。

(1)师:如果再增加一个球,现在有4个球,其中有一个是次品,一次可以保证找到次品吗?

生猜测:4次?3次?⋯⋯

师:纸上得来终觉浅,绝知此事要躬行。咱们还是亲自动手探究一下吧。请同学们与自己的同桌共同讨论一下。可以借用小方块摆一摆,也可以在纸上画一画,不论用什么样的方式,都要将思考过程简要记下来。

(生分组研究)

师:4个小球时,你们称了几次?

(生边汇报师边板书枝状图)

师:4个球有两种不同的测量方法,但结果测量的次数都一样,至少要2次才能保证找出次品。(把结果记录在表格中)

师:如果球的个数再多一些,例如9个,至少需要几次才能保证找出次品呢?请同学们用学具摆一摆,用笔画一画。

(生汇报师出示课件)

师:为什么把9个球分成(3,3,3)只要2次就可以找到次品呢?

(引导学生发现规律,把结果填入表格中)

师:4个球只需要2次就可以保证找到次品,9个球也只需要2次就能保证找到次品,那么大胆猜测一下,在4与9之间的5、6、7、8个球,至少需要几次就能找出次品呢?⋯⋯现在我们分组来研究一下:第1大组的同学研究5个小球的情况,依次研究6、7、8个球。

(生汇报,重点是8个球)(把结果填入表格中)

师:我们来比较一下,我们将8个小球分成(3,3,2)三组称2次,可是把8个小球分成(4,4)两组却称了3次,多称了1次,多称的1次多在哪儿呢?

生:小球数是2和3个时只用一次,把8分成(3,3,2)每组是3个或2个,3个或2个都只需要称1次就能找到次品。

师:你们明白他的意思吗?你们看,称(3,3)或(4,4),都只称1次就能确定次品在哪边,可是接下来,第一种是在3个或2个里找,只需一次,第二种要在4个里找,要用2次,所以会多一次。

师:大家最后称的次数不同,原因是什么呢?

生:分的组数不同,每组数量也不同。

师:那到底怎么分,才能既保证找到次品,又能使称的次数尽可能少呢?

(生分组讨论后汇报)

生1:应该分3组,因为天平有2个托盘⋯⋯

生2:每组的数目还要少。

生3:尽可能让每组数目比较接近,每次称完,次品就被确定在更小的范围内。

师:你们太了不起了,通过我们刚才的试验、讨论、交流,不仅解决了问题,而且发现了其中分组的秘密规律。

(师板书:分3组,尽量平均分。)

四、进一步发现规律

师:现在我们就应用分组的规律,再来一次实验,如果小球个数是10个(课件),该怎么分?称几次?

(生汇报,师板书:10(3,3,4)3次)(课件)

师:如果是27个呢?(课件)

(生汇报,师板书:27(9,9,9)3次(课件)

师:这位同学说的太好了,他先是分成了3组,然后用转化的思想把问题变成我们前面解决的9个小球的找次品问题了。

看来大家都掌握了分组规律。最开始的招聘问题,81个小球,大家能解决了吗?谁有了答案?把结果直接写在黑板上。

(生讨论并汇报结果)(课件)

师:你能发现它和前面我们解决的27个,9个,3个,有什么关系吗?

(小组研究)

生汇报:被测小球数目是几个3相乘就称几次,比如4个3相乘是81,81个小球就只需称4次。

师:你们很了不起,既解决了公司“招聘”问题,又发现了“被测物品数目与称的最少次数之间”神秘的规律。

五、课堂小结

随着招聘问题的解决,今天的课也即将结束,回顾我们整节课的经历,从最初的招聘问题,回归到解决2、3的问题,再到研究8、9发现分组规律,直至研究了更大的数目,像27、81这样的数目,发现了被测物品数目与称的最少次数之间的一些关系。

在这一路的探究过程中,我们不断思考,不断实践,不断发现,我想大家在收获知识的同时,一定收获了更多的智慧。最后有两句话与大家共勉:(课件出示)

探究问题,学会化繁为简

解决问题,要有优化意识

2. 什么是数学广角

“数学广角”是义务教育课程标准实验教科书从二年级上册开始新增设的一个单元,是新教材在向学生渗透数学思想方法方面做出的新的尝试。

教材以学生熟悉而又感兴趣的生活场景为依托,重在向学生渗透这些数学思想方法,将学习活动置于模拟情景中,给学生提供操作和活动的机会,初步培养学生有顺序地、全面地思考问题的意识,为学生今后学习组合数学和学习概率统计奠定基础。

(2)数学广角集合教学设计扩展阅读

丁丽主编了《数学广角学什么与教什么》这本书中明确分析过数学广角,首先对“数学广角”的每一个专题都进行了“教材解读”,分析了每个课时的“教学目标”、“教学重点、难点”,琢磨了“编者意图”。

1.等量代换

一个量用与它相等的量去代替,它是数学中一种基本的思想方法,也是代数思想方法的基础。

如果a=b,b=c,那么a=c。真正使用到的等量代换为:∀f(a=b∧f(a)→f(b)),其中f是合式公式广义的等量代换举例来说就是:“如果李四是张三的同义词,张三是人,那么李四是人”。

2.植树问题

为使其更直观,用图示法来说明。树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题。

3.数字编码

大多数数字编码采用位置表示法,即任何一个数字量都可以通过一些数字的和来表示。根据这些数字码在表示式中所处的不同位置,有不同的值。也就是说,每个不同的位置,都具有自己的“权"。

热点内容
苏州大学招聘教师 发布:2025-01-22 01:58:22 浏览:760
学英语分析 发布:2025-01-22 01:16:50 浏览:372
华康源生物 发布:2025-01-22 01:13:59 浏览:373
数学教学心理学 发布:2025-01-22 01:09:41 浏览:42
教师办公室公约 发布:2025-01-22 01:00:06 浏览:674
三年级语文期中考试试卷 发布:2025-01-22 00:52:34 浏览:333
新晃一中校园网首页 发布:2025-01-22 00:52:16 浏览:350
感恩老师的英文诗歌 发布:2025-01-22 00:48:25 浏览:568
向老师认错 发布:2025-01-22 00:36:51 浏览:847
吃用英语怎么说 发布:2025-01-22 00:28:56 浏览:638