当前位置:首页 » 语数英语 » 小学六年级数学上册人教版

小学六年级数学上册人教版

发布时间: 2024-09-01 04:57:16

『壹』 求人教版小学六年级上册数学书 电子版下载地址

人教版 小学六年级数学上册 胡青清 视频 网络网盘

链接:

提取码: a31c 复制这段内容后打开网络网盘手机App,操作更方便哦

若资源有问题欢迎追问~

『贰』 小学六年级上册数学知识归纳(人教版)

http://wenku..com/view/a79dd3c7d5bbfd0a7956735a.html
http://wenku..com/view/9403c096daef5ef7ba0d3cf0.html
http://wenku..com/view/1eed476bb84ae45c3b358cfa.html
建议你去网上搜一下,这几个网址里都有
给你一个样本:

人教版六年级数学上册知识点整理归纳
六年级上册数学知识点
第一单元 位置
1、什么是数对?
——数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”。
作用:确定一个点的位置。经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。
(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)

( 列 , 行 )
↓ ↓
竖排叫列 横排叫行
(从左往右看)(从下往上看)
(从前往后看)
2、图形左右平移行数不变;图形上下平移列数不变。
3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。
第二单元 分数乘法
(一)分数乘法意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如: ×7表示: 求7个 的和是多少? 或表示: 的7倍是多少?
2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)
例如: × 表示: 求 的 是多少?
9 × 表示: 求9的 是多少?
A × 表示: 求a的 是多少?
(二)分数乘法计算法则:
1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)
(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)
注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b >1时,c>a.
一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b <1时,c<a (b≠0).
一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b =1时,c=a .
注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
附:形如 的分数可折成( )×
(四)分数乘法混合运算
1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)倒数的意义:乘积为1的两个数互为倒数。
1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)
2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。
例如:a×b=1则a、b互为倒数。
3、求倒数的方法:
①求分数的倒数:交换分子、分母的位置。
②求整数的倒数:整数分之1。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
4、1的倒数是它本身,因为1×1=1
0没有倒数,因为任何数乘0积都是0,且0不能作分母。
5、任意数a(a≠0),它的倒数为 ;非零整数a的倒数为 ;分数 的倒数是 。
6、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
假分数的倒数小于或等于1。
带分数的倒数小于1。
(六)分数乘法应用题 ——用分数乘法解决问题
1、求一个数的几分之几是多少?(用乘法)
“1”× =
例如:求25的 是多少? 列式:25× =15
甲数的 等于乙数,已知甲数是25,求乙数是多少? 列式:25× =15
注:已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。
2、( 什么)是(什么 )的 。
( )= ( “1” ) ×
例1: 已知甲数是乙数的 ,乙数是25,求甲数是多少?
甲数=乙数× 即25× =15
注:(1)“是”“的”字中间的量“乙数”是 的单位“1”的量,即 是把乙数看作单位“1”,把乙数平均分成5份,甲数是其中的3份。
(2)“是”“占”“比”这三个字都相当于“=”号,“的”字相当于“×”。
(3)单位“1”的量×分率=分率对应的量
例2:甲数比乙数多(少) ,乙数是25,求甲数是多少?
甲数=乙数±乙数× 即25±25× =25×(1± )=40(或10)
3、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
4、什么是速度?
——速度是单位时间内行驶的路程。速度=路程÷时间 时间=路程÷速度 路程=速度×时间
——单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。
5、求甲比乙多(少)几分之几?
多:(甲-乙)÷乙
少:(乙-甲)÷乙
第三单元 分数除法
一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。
1、被除数÷除数=被除数×除数的倒数。例 ÷3= × = 3÷ =3× =5
2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律:
①除以大于1的数,商小于被除数:a÷b=c 当b>1时,c<a (a≠0)
②除以小于1的数,商大于被除数:a÷b=c 当b<1时,c>a (a≠0 b≠0)
③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a
三、分数除法混合运算
1、混合运算用梯等式计算,等号写在第一个数字的左下角。
2、运算顺序:
①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
注:(a±b)÷c=a÷c±b÷c
四、比:两个数相除也叫两个数的比
1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
注:连比如:3:4:5读作:3比4比5
2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20= =12÷20= =0.6 12∶20读作:12比20

注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
3、化简比:化简之后结果还是一个比,不是一个数。
(1)、 用比的前项和后项同时除以它们的最大公约数。
(2)、 两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。
(3)、 两个小数的比,向右移动小数点的位置,也是先化成整数比。
4、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
5、比和除法、分数的区别:
除法 被除数 除号(÷) 除数(不能为0) 商不变性质 除法是一种运算
分数 分子 分数线(——) 分母(不能为0) 分数的基本性质 分数是一个数
比 前项 比号(∶) 后项(不能为0) 比的基本性质 比表示两个数的关系
附:商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
五、分数除法和比的应用
1、已知单位“1”的量用乘法。例:甲是乙的 ,乙是25,求甲是多少?即:甲=乙× (15× =9)
2、未知单位“1”的量用除法。例: 甲是乙的 ,甲是15,求乙是多少?即:甲=乙× (15÷ =25)(建议列方程答)
3、分数应用题基本数量关系(把分数看成比)
(1)甲是乙的几分之几?
甲=乙×几分之几 (例:甲是15的 ,求甲是多少?15× =9)
乙=甲÷几分之几 (例:9是乙的 ,求乙是多少?9÷ =15)
几分之几=甲÷乙 (例:9是15的几分之几?9÷15= )(“是”字相当“÷”号,乙是单位“1”)
(2)甲比乙多(少)几分之几?
A 差÷乙= (“比”字后面的量是单位“1”的量)(例:9比15少几分之几?(15-9)÷15= = = )
B 多几分之几是: –1 (例: 15比9少几分之几?15÷9= -1= –1= )
C 少几分之几是:1– (例:9比15少几分之几?1-9÷15=1– =1– = )
D 甲=乙±差=乙±乙× =乙±乙× =乙(1± ) (例:甲比15少 ,求甲是多少?15–15× =15×(1– )=9(多是“+”少是“–”)
E 乙=甲÷(1± )(例:9比乙少 ,求乙是多少?9÷(1- )=9 ÷ =15)(多是“+”少是“–”)
(例:15比乙多 ,求乙是多少?15÷(1+ )=15 ÷ =9)(多是“+”少是“–”)
4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。
例如:已知甲乙的和是56,甲、乙的比3∶5,求甲、乙分别是多少?
方法一:56÷(3+5)=7 甲:3×7=21 乙:5×7=35
方法二:甲:56× =21 乙:56× =35
例如:已知甲是21,甲、乙的比3∶5,求乙是多少?
方法一:21÷3=7 乙:5×7=35
方法二:甲乙的和21÷ =56 乙:56× =35
方法二:甲÷乙= 乙=甲÷ =21÷ =35
5、画线段图:
(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。
(2)分析数量关系。
(3)找等量关系。
(4)列方程。
注:两个量的关系画两条线段图,部分和整体的关系画一条线段图。
第四单元 圆
一、.圆的特征
1、圆是平面内封闭曲线围成的平面图形,.
2、圆的特征:外形美观,易滚动。
3、圆心o:圆中心的点叫做圆心.圆心一般用字母O表示.圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。
半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。
直径d: 通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。
同圆或等圆内直径是半径的2倍:d=2r 或 r=d÷2= d=
4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。
同心圆:圆心重合、半径不等的两个圆叫做同心圆。
5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。
有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角
有二条对称轴的图形:长方形
有三条对称轴的图形:等边三角形
有四条对称轴的图形:正方形
有无条对称轴的图形:圆,圆环
6、画圆
(1)圆规两脚间的距离是圆的半径。
(2)画圆步骤:定半径、定圆心、旋转一周。
二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示。
1、圆的周长总是直径的三倍多一些。
2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
即:圆周率π= =周长÷直径≈3.14
所以,圆的周长(c)=直径(d)×圆周率(π) ——周长公式: c=πd, c=2πr
注:圆周率π是一个无限不循环小数,3.14是近似值。
3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
如果r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3
4、半圆周长=圆周长一半+直径= ×2πr=πr+d
三、圆的面积s
1、圆面积公式的推导
如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。

圆的半径 = 长方形的宽
圆的周长的一半 = 长方形的长
长方形面积 = 长 ×宽
所以:圆的面积 = 长方形的面积 = 长 ×宽 = 圆的周长的一半(πr)×圆的半径(r)
S圆 = πr × r
S圆 = πr×r = πr2
2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。
周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。
3、圆面积的变化的规律:半径扩大多少倍直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。
如果: r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3=2∶3∶4
则:S1∶S2∶S3=4∶9∶16
4、环形面积 = 大圆 – 小圆=πr大2 - πr小2=π(r大2 - r小2)
扇形面积 = πr2× (n表示扇形圆心角的度数)
5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。
注:一个圆的半径增加a厘米,周长就增加2πa厘米
一个圆的直径增加b厘米,周长就增加πb 厘米
6、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π
7、常用数据
π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7
第五单元、百分数
一、百分数的意义:表示一个数是另一个数的百分之几。
注:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比,所以,百分数又叫百分比或百分率,百分数不能带单位。
1、百分数和分数的区别和联系:
(1)联系:都可以用来表示两个量的倍比关系。
(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。
百分数的分子可以是小数,分数的分子只以是整数。
注:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70、80%,出油率在30、40%。
2、小数、分数、百分数之间的互化
(1)百分数化小数:小数点向左移动两位,去掉“%”。
(2)小数化百分数:小数点向右移动两位,添上“%”。
(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。
(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。
(5)小数 化 分数:把小数成分母是10、100、1000等的分数再化简。
(6)分数 化 小数:分子除以分母。
二、百分数应用题
1、 求常见的百分率 如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几
2、 求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
求甲比乙多百分之几 (甲-乙)÷乙
求乙比甲少百分之几 (甲-乙)÷甲
3、 求一个数的百分之几是多少 一个数(单位“1”) ×百分率
4、 已知一个数的百分之几是多少,求这个数 部分量÷百分率=一个数(单位“1”)
5、 折扣 折扣、打折的意义:几折就是十分之几也就是百分之几十

折扣 成数 几分之几 百分之几 小数 通用
八折 八成 十分之八 百分之八十 0.8
八五折 八成五 十分之八点五 百分之八十五 0.85
五折 五成 十分之五 百分之五十 0.5 半价
6、 纳税 缴纳的税款叫做应纳税额。
(应纳税额)÷(总收入)=(税率)
(应纳税额)=(总收入)×(税率)
7、 利率
(1)存入银行的钱叫做本金。
(2)取款时银行多支付的钱叫做利息。
(3)利息与本金的比值叫做利率。
利息=本金×利率×时间
税后利息=利息-利息的应纳税额=利息-利息×5%
注:国债和教育储蓄的利息不纳税
8、百分数应用题型分类
(1)求甲是乙的百分之几——(甲÷乙)×100% = ×100% = 百分之几
(2)求甲比乙多(少)百分之几—— ×100% = ×100%

① 甲是50,乙是40,甲是乙的百分之几?(50是40的百分之几?)50÷40=125%
② 甲是50,乙是40,乙是甲的百分之几?(40是50的百分之几?)40÷50=80%
③ 乙是40,甲是乙的125%,甲数是多少?(40的125%是多少?)40×125%=50
④ 甲是50,乙是甲的80%,乙数是多少?(50的80%是多少?)50×80%=40
⑤ 乙是40,乙是甲的80%,甲数是多少?(一个数的80%是40,这个数是多少?)40÷80%=50
⑥ 甲是50,甲是乙的125%,乙数是多少?(一个数的125%是50,这个数是多少?)50÷125%=40
⑦ 甲是50,乙是40,甲比乙多百分之几?(50比40多百分之几?)(50-40)÷40×100%=25%
⑧ 甲是50,乙是40,乙比甲少百分之几?(40比50少百分之几?)(50-40)÷50×100%=20%
⑨ 甲比乙多25%,多10,乙是多少?10÷25%=40
⑩ 甲比乙多25%,多10,甲是多少?10÷25%+10=50
⑪ 乙比甲少20%,少10,甲是多少?10÷20%=50
⑫ 乙比甲少20%,少10,乙是多少?10÷20%-10=40
⑬ 乙是40,甲比乙多25%,甲数是多少?(什么数比40多25%?)40×(1+25%)=50
⑭ 甲是50,乙比甲少20%,乙数是多少?(什么数比50多25%?)50×(1-20%)=40
⑮ 乙是40,比甲少20%,甲数是多少?(40比什么数少20%?)40÷(1-20%)=50
⑯ 甲是50,比乙多25%,乙数是多少?(50比什么数多25%?)40÷(1+25%)=40
第六单元、统计
1、 扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。
2、 常用统计图的优点:
(1)、条形统计图直观显示每个数量的多少。
(2)、折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。
(3)、扇形统计图直观显示部分和总量的关系。
第七单元、数学广角
一、研究中国古代的鸡兔同笼问题。
1、 用表格方式解决有局限性,数目必须小,例:
头数 鸡(只)兔(只) 腿数
35 1 34
35 2 33
35 3 32
……
(逐一列表法、腿数少,小幅度跳跃;腿数多,大幅度跳跃。跳跃逐一相结合、取中列表)
2、 用假设法解决
(1) 假如都是兔
(2) 假如都是鸡
(3) 假如它们各抬起一条腿
(4) 假如兔子抬起两条前腿
3、 用代数方法解(一般规律)
注释:这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?
二、和尚分馒头
100个和尚吃100个馒头,大和尚一人吃3个,小和尚三人吃一个。大小和尚各多少人?
国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:
一百馒头一百僧,
大僧三个更无争,
小僧三人分一个,
大小和尚各几丁?"
如果译成白话文,其意思是:有100个和尚分100只馒头,正好分完。如果大和尚一人分3只,小和尚3人分一只,试问大、小和尚各有几人?
方法一,用方程解:
解:设大和尚有x人,则小和尚有(100-x)人,根据题意列得方程:
3x + (100-x)=100
x=25
100-25=75人
方法二,鸡兔同笼法:
(1)假设100人全是大和尚,应吃馒头多少个?
3×100=300(个).
(2)这样多吃了几个呢?
300-100=200(个).
(3)为什么多吃了200个呢?这是因为把小和尚当成大和尚。那么把小和尚当成大和尚时,每个小和尚多算了几个馒头?
3- = (个)
(4)每个小和尚多算了8/3个馒头,一共多算了200个,所以小和尚有:
小和尚:200÷ =75(人)
大和尚:100-75=25(人)
方法三,分组法:
由于大和尚一人分3只馒头,小和尚3人分一只馒头。我们可以把3个小和尚与1个大和尚编为一组,这样每组4个和尚刚好分4个馒头,那么100个和尚总共分为100÷(3+1)=25组,因为每组有1个大和尚,所以有25个大和尚;又因为每组有3个小和尚,所以有25×3=75个小和尚。
这是《直指算法统宗》里的解法,原话是:"置僧一百为实,以三一并得四为法除之,得大僧二十五个。"所谓"实"便是"被除数","法"便是"除数"。列式就是:
100÷(3+1)=25(组)
大和尚:25×1=25(人)
小和尚:100-25=75(人)或25×3=75(人)
我国古代劳动人民的智慧由此可见一斑。
三、整数、分数、百分数应用题结构类型
(一)求甲是乙的几倍(或几分之几或百分之几)的应用题。
解法:甲数除以乙数
例:校园里有杨树40棵,柳树有50棵,杨树的棵树占柳树的百分之几?(或几分之几?)
(二)求甲数的几倍(或几分之几或百分之几)是多少的应用题。
解答分数应用题,首先要确定单位“1”,在单位“1”确定以后,一个具体数量总与一个具体分数(分率)相对应,这种关系叫“量率对应”,这是解答分数应用题的关键。
求一个数的几倍(几分之几或百分之几)是多少用乘法,单位“1”×分率=对应数量
例:六年级有学生180人,五年级的学生人数是六年级人数的56 。五年级有学生多少人?
180×56 =150
(三)已知甲数的几倍(或几分之几或百分之几)是多少,求甲数(即求标准量或单位“1”)的应用题。
解法:对应数量÷对应分率=单位“1”
例:育红小学六年级男生有120人,占参加兴趣活动小组人数的35 . 六年级参加兴趣活动小组人数共有学生多少人?
120÷35 =200(人)

『叁』 六年级上册数学人教版知识点

只有知识才是力量,只有知识能使我们诚实地爱人,尊重人的劳动,由衷地赞赏无间断的伟大劳动的美好成果;只有知识才能使我们成为具有坚强精神的、诚实的、有理性的人。下面我给大家分享一些六年级上册数学人教版知识,希望能够帮助大家,欢迎阅读!

六年级上册数学人教版知识1

一、分数乘法

(一)、分数乘法的计算法则:

1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)

2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

3、为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(二)、规律:(乘法中比较大小时)

一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

(三)、分数混合运算的运算顺序和整数的运算顺序相同。

(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律: a × b = b × a

乘法结合律: ( a × b )×c = a × ( b × c )

乘法分配律: ( a + b )×c = a c + b c a c + b c = ( a + b )×c

二、分数乘法的解决问题

(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)

1、找单位“1”: 在分率句中分率的前面; 或 “占”、“是”、“比”的后面

2、求一个数的几倍: 一个数×几倍; 求一个数的几分之几是多少: 一个数× 。

3、写数量关系式技巧:

(1)“的” 相当于 “×” “占”、“是”、“比”相当于“ = ”

(2)分率前是“的”: 单位“1”的量×分率=分率对应量

(3)分率前是“多或少”的意思: 单位“1”的量×(1 分率)=分率对应量

三、倒数

1、倒数的意义: 乘积是1的两个数互为倒数。

强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

(要说清谁是谁的倒数)。

2、求倒数的 方法 :

(1)、求分数的倒数:交换分子分母的位置。(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。(3)、求带分数的倒数:把带分数化为假分数,再求倒数。

(4)、求小数的倒数: 把小数化为分数,再求倒数。

3、1的倒数是1; 0没有倒数。 因为1×1=1;0乘任何数都得0, (分母不能为0)

4、 对于任意数 ,它的倒数为 ;非零整数 的倒数为 ;分数 的倒数是 ;

5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

六年级上册数学人教版知识2

分数除法

一、 分数除法

1、分数除法的意义:

分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。

2、分数除法的计算法则: 除以一个不为0的数,等于乘这个数的倒数。

3、 规律(分数除法比较大小时):(1)、当除数大于1,商小于被除数;

(2)、当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。

4、 “ ”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。

二、分数除法解决问题

(未知单位“1”的量(用除法): 已知单位“1”的几分之几是多少,求单位“1”的量。 )

1、数量关系式和分数乘法解决问题中的关系式相同:

(1)分率前是“的”: 单位“1”的量×分率=分率对应量

(2)分率前是“多或少”的意思: 单位“1”的量×(1 分率)=分率对应量

2、解法:(建议:最好用方程解答)

(1)方程: 根据数量关系式设未知量为X,用方程解答。

(2)算术(用除法): 分率对应量÷对应分率 = 单位“1”的量

3、求一个数是另一个数的几分之几:就 一个数÷另一个数

4、求一个数比另一个数多(少)几分之几:

① 求多几分之几:大数÷小数 – 1 ② 求少几分之几: 1 - 小数÷大数

或① 求多几分之几(大数-小数)÷小数② 求少几分之几:(大数-小数)÷大数

六年级上册数学人教版知识3

比和比的应用

(一)、比的意义

1、比的意义:两个数相除又叫做两个数的比。

2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

例如 15 :10 = 15÷10= (比值通常用分数表示,也可以用小数或整数表示)

∶ ∶ ∶ ∶

前项 比号 后项 比值

3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例: 路程÷速度=时间。

4、区分比和比值

比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

5、根据分数与除法的关系,两个数的比也可以写成分数形式。

6、比和除法、分数的联系:

比 前 项 比号“:” 后 项 比值

除 法 被除数 除号“÷” 除 数 商

分 数 分 子 分数线 “—” 分 母 分数值

7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

8、根据比与除法、分数的关系,可以理解比的后项不能为0。

体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

(二)、比的基本性质

1、根据比、除法、分数的关系:

商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

3、根据比的基本性质,可以把比化成最简单的整数比。

4.化简比:

①用比的前项和后项同时除以它们的最大公因数。

(1) ②两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。

③两个小数的比:向右移动小数点的位置,先化成整数比再化简。

(2)用求比值的方法。注意: 最后结果要写成比的形式。

如: 15∶10 = 15÷10 = = 3∶2

5.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。

如: 已知两个量之比为 ,则设这两个量分别为 。

6、 路程一定,速度比和时间比成反比。(如:路程相同,速度比是4:5,时间比则为5:4)

工作总量一定,工作效率和工作时间成反比。

(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)

六年级上册数学人教版知识4

圆的面积

1、圆的面积:圆所占平面的大小叫做圆的面积。 用字母S表示。

2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。

3、圆面积公式的推导:

(1)、用逐渐逼近的转化思想: 体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体。

(2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。

(3)、拼出的图形与圆的周长和半径的关系。

圆的半径 = 长方形的宽

圆的周长的一半 = 长方形的长

因为: 长方形面积 = 长 × 宽

所以: 圆的面积 = 圆周长的一半 × 圆的半径

S圆 = πr × r

圆的面积公式: S圆 = πr2

4、环形的面积:

一个环形,外圆的半径是R,内圆的半径是r。(R=r+环的宽度.)

S环 = πR?-πr? 或

环形的面积公式: S环 = π(R?-r?)。

5、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。

而面积扩大或缩小的倍数是这倍数的平方倍。 例如:

在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。

6、两个圆: 半径比 = 直径比 = 周长比;而面积比等于这比的平方。 例如:

两个圆的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面积比是4∶9

7、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4∶π

8、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短。

9、确定起跑线:

(1)、每条跑道的长度 = 两个半圆形跑道合成的圆的周长 + 两个直道的长度。

(2)、每条跑道直道的长度都相等,而各圆周长决定每条跑道的总长度。(因此起跑线不同)

(3)、每相邻两个跑道相隔的距离是: 2×π×跑道的宽度

(4)、当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;当一个圆的直径增加a厘米时,它的周长就增加πa厘米。

11、常用各π值结果:

π = 3.14

2π = 6.28

3π = 9.42

5π = 15.7

6π = 18.84

7π = 21.98

9π = 28.26

10π = 31.4

16π = 50.24

36π = 113.04

64π = 200.96

96π = 301.44

4π = 12.56 8π = 25.12 25π = 78.5

六年级上册数学人教版知识5

一、 认识圆

1、圆的定义:圆是由曲线围成的一种平面图形。

2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

一般用字母O表示。它到圆上任意一点的距离都相等.

3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。

把圆规两脚分开,两脚之间的距离就是圆的半径。

4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。

直径是一个圆内最长的线段。

5、圆心确定圆的位置,半径确定圆的大小。

6、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。

7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的 。

用字母表示为:d=2r或r =

8、轴对称图形:

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。

折痕所在的这条直线叫做对称轴。(经过圆心的任意一条直线或直径所在的直线)

9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。

10、只有1一条对称轴的图形有: 角、等腰三角形、等腰梯形、扇形、半圆。

只有2条对称轴的图形是: 长方形

只有3条对称轴的图形是: 等边三角形

只有4条对称轴的图形是: 正方形;

有无数条对称轴的图形是: 圆、圆环。

二、圆的周长

1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。

2、圆周率实验:

在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。

发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。

3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。

用字母π(pai) 表示。

(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。

圆周率π是一个无限不循环小数。在计算时,一般取π ≈ 3.14。

(2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。

(3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

4、圆的周长公式: C= πd d = C ÷π

或C=2π r r = C ÷ 2π

5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

6、区分周长的一半和半圆的周长:

(1) 周长的一半:等于圆的周长÷2 计算方法:2π r ÷ 2 即 π r

(2)半圆的周长:等于圆的周长的一半加直径。 计算方法:πr+2r


六年级上册数学人教版知识点相关 文章 :

★ 六年级数学上册知识点人教版

★ 六年级上册数学知识点整理归纳

★ 六年级数学上册知识点复习

★ 六年级数学上册知识人教版

★ 六年级数学上册知识点总结

★ 六年级数学上册知识点复习资料

★ 人教版小学六年级数学下册知识点

★ 六年级上册数学第二单元知识点

★ 人教版六年级数学(下册)期末知识要点

★ 六年级数学上册《百分数》知识点总结

『肆』 人教版六年级上册数学教案

人教版六年级上册数学教案5篇

教学中注重数学思想和方法的渗透,使学生会“做数学”。那么小学六年级数学上学期教学设计该怎么设计呢?下面我给大家带来关于人教版六年级上册数学教案,方便大家学习

人教版六年级上册数学教案1

教学目标

使学生在具体情境中初步理解东偏北(南)、西偏南(北)等方向的含义,会用方向和距离描述物体的位置,初步感受用方向和距离确定物体位置的科学性和合理性。进一步培养学生观察能力、识图能力和有条理地进行表达的能力,发展空间观念。

教学重难点

重点:通过解决实际问题,使学生体会确定位置在生活中的应用,了解确定位置的方法;在情境中学生能根据方向和距离确定物体的位置,并描述简单的路线图。

难点:通过解决实际问题,使学生能根据方向和距离确定物体的位置,并能描述简单的帆肢路线图。

教学过程

一、设置情景,导入新课

同学们,你们看过《龟兔赛跑》的故事吗?生说看过。谁知道比赛的结果是谁赢了?一起说乌龟。为什么是乌龟赢了?生说:因为兔子睡了一觉。兔子知道自己错了。今天又要跟乌龟再比赛赛跑:

请看《龟兔赛跑续集》

观看龟兔赛跑图片,导入课题。

小兔为什么又会输?生笑着说这是因为小兔跑错方向了。怎样才能走到终点呢?由哪几个要素决定?今天我们就来研究有关于:终点在起点什么方向上?终点和起点相距多远?

带着这两个问题,

我们来学习今天的新课:位置

同学们,我们已经学习了哪些方位?生:东,南,西,北四个方位。还有呢?生:东南,西南,东北,西北。我们已经学习了8个方位。课件出示。

二、自主探究,合作交流

每年我国的沿海地区都会受到台风的侵扰。瞧,这是某年的一个强台衡蚂风位置图,请测算一下。

(一)教学例1

1. 现在台风中心的位置。(课件出示)

目前台风中心位于A市东偏南30°方向、距A市600km的洋面上,正以20千米/时的速度沿直线向A市移动。

台风大约多少个小时后到达A市?

2.东偏南30°是什么意思?如果只有这个条件,能否确定台风中心的具体位置吗?

3.如果这样预告会发生什么情况?这样确定方向准确吗?怎样预告会更加的准确?

4.还要预告什么?(距离)

(距离600千米)如果没有距离又会怎样?

5.小结:预告台风时既要说方向又要说距离。 强调:东偏南30°还可以怎样表示?也可以说成南偏东60°,但在生活中一般我们先说与物体所在方向离得较近(夹角较小)的方位。 6.口答:台风大约多少个小时后到达A市?

7.练习:完成教科书第20页的做一做。

先让学生独立完成,让学生操作中经历知识的形成过程,然后集体订正。

(二)教学例2

1.课件出示:台风到达A市后,改变方向向B市移动。受台风影响,C市也将有大到暴雨。 B市位于A市北偏西30°方向、距离A 市200km。C市在A市正北方,距离A市300km 。请你在例1的图标中标出B市、C市的位置。

2.怎样表示距离呢?

先确定平面图上的方向,再确定各建筑物的距离。如果学生没有说到,老师可以进行引导:你们打算怎样在图上表示出200km?从而帮助学生确定比例尺,和图上距离。用1cm表示100km比较合适。

3.学生独立完成,集体订正。

4.订正后交流:你们组认为在确定这点在图上的态拦世位置时,应注意什么?怎样确定?

通过刚才的学习,你觉得怎样确定物体的位置?

教师小结:绘制平面图时,一般先确定角度,再确定图上的距离。

根据方向和距离可以确定物体所在的位置。

5.口答:台风到达A市后,移动速度变为40km/时,几小时后到达B市?

6.练习:完成教科书第21页的做一做,打开课本第21页的做一做:

(1)有关信息:

教学楼在校门的正北方向150米处。

图书馆在校门的北偏东35度方向150米处。 体育馆在校门西偏北40度方向200米处。

(2)师:要在平面图上准确地标出一个地方的位置,你认为需要考虑哪几个方面? (3)师生共同梳理: A.先确定好平面图的中心。 B.确定方向和距离。

(4)自主操作,独立绘制平面图。

(5)指名展示交流,完善绘图过程。

学生展示绘制的图,并演示过程,其他学生评议补充。

看来画图的过程有点复杂,让我们一起再来回顾一下整个过程。画图的过程和方法清楚了吗?刚才你们是不是这样画的?

三、知识反馈,巩固应用

看来同学们对本届的知识掌握的还不错。现在你们有勇气来挑战自我吗?

课件出示:

1、警察局收到卧底送来的示意图

(1)犯罪分子1在警察局的( )方向,距离是( )米。

(2)犯罪分子2在警察局的( )向,距离是

( )米。

(3)犯罪分子3在警察局的( )方向,距离是

( )米。

2、做一做,课件出示,独立完成后订正。

四、课堂小结

这节课你的最大收获是什么?你还有什么不懂的地方?

位置与方向, 生活常遇到,

要想定位置, 两点要记牢:

方向是首要, 距离少不了。

五、拓展延伸 同学们的收获可真不少,你们能用今天所学的知识创作一幅学校建筑平面图吗?自己开始试一试吧!

人教版六年级上册数学教案2

教学目标

1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

3、 引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

教学重难点

教学重点: 使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

教学难点: 引导学生总结分数乘整数的计算法则。

教学过程

一、 复习

出示复习题。

1.根据题意列出算式:

5个12是多少?

3个14是多少?

2.下列句子中那些可以看做单位1

猎豹的速度是狮子的七分之三。

参加合唱队的同学占全班人数的五分之一。

红花比黄花多二分之一。

十月比九月节约四分之三。

3.计算: 3/10 +3/ 10 + 3/10 =

3/10 + 3/10+ 3/10 这题我们还可以怎么计算?

今天我们就来学习分数乘法。

二、 新授

1、利用 3/10 + 3/10 + 3/10 教学分数乘法。

(1) 这道加法算式中,加数各是多少?(都是3/10)

(2) 表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法, 3/10 ×3)

(3) 3/10 +3/10+ 3/10=9,那么 3/10 + 3/10 + 3/10= 3/10 ×3,

所以3/ 10 ×3=____________=9。 同学们想想看,3/10 ×3=9计算过程是怎样的?

谁能把它补充完整

2、出示例1,

(1)理解题意:

引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的 2/11 ”,就是把袋鼠跳 一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2 份就表示人跑一步的距离。

(2) 引导学生根据线段图理解,

“人跑一步的距离相当于袋鼠跳一下的2/11 ”是 什么意思?如何理解“相当于”?再通过线段图帮助理解。画一条线段,表示袋鼠跳一下的距离。“人跑一步的距离相当于袋鼠

跳一下的2/11 ”,就要把袋鼠跳一下的距离即这一条线段看作单位 “1”,把这条线段平均分成11份,其中的2份就表示人跑一步的距离。求“人跑3步的距离相当于袋鼠跳一下的几分之几?” 就是求3个2/11 是多少?

(列式:2/11×3 = 6/11 )

有没有更简便的计算方法呢?独立完成。指生板演。出示课件演示。

3、结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数 相乘的积作分子,分母不变。

4、练习:练习完成“做一做”第2题。

5、教学例2

(1)出示3/8×6,学生独立计算。

(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?

(3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。 (4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。

6.练一练,课件出示,学生独立计算。然后订正。

三、巩固练习

比赛:

第一回合

1、完成“做一做”的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约 分,养成先约分在计算的习惯)

第二回合

2、“做一做”第3题。(提醒学生,计算前先观察分数的分母与整数是否可以约 分,养成先约分在计算的习惯)

四、课堂总结:

今天你有什么收获?

五 、布置作业 : 练习二第1、2、4题。

人教版六年级上册数学教案3

教学目标

1.使学生认识圆,掌握圆的各部分名称。

2.通过动手操作、实验观察探索出圆的特征及同一个圆里半径和直径的关系。

3.初步学会用圆规画圆,培养学生的作图能力。

4.培养学生观察、分析、抽象、概括等思维能力。

教学重难点

教学重点

在动手操作中掌握圆的特征,学会用圆规画圆的方法。

教学难点

理解圆上的概念,归纳圆的特征。

教学工具

课件

教学过程

一、活动一:演示操作,揭示课题

课件出示“大家都来当裁判喽!”

演示两人骑自行车的动画,一人的自行车轮子是圆形的,一人的自行车轮子是其它形状的。

让学生初步感知圆在生活中的应用。

二、活动二:动手操作,探究新知

(一)教师让学生举例说明周围哪些物体上有圆。

(二)认识圆的各部分名称和圆的特征。

1.学生拿出圆的学具。

2.教师:你们摸一摸圆的边缘,是直的还是弯的?

教师说明:圆是平面上的一种曲线图形。

3.通过具体操作,认识一下圆的各部分名称和圆的特征。

(1)先把圆对折、打开,换个方向,再对折,再打开……这样反复折几次。

教师提问:折过若干次后,你发现了什么?

仔细观察一下,这些折痕总在圆的什么地方相交?

教师指出:我们把圆中心的这一点叫做圆心。圆心一般用字母o表示。

教师板书:圆心

(2)用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么?

教师指出:我们把连接圆心和圆上任意一点的线段叫做半径,半径一般用字母r表示。板书:半径

教师提问:根据半径的概念同学们想一想,半径应具备哪些条件?

在同一个圆里可以画多少条半径?

所有半径的长度都相等吗?

教师板书:在同一个圆里有无数条半径,所有半径的长度都相等。

(3)同学继续观察:刚才把圆对折时,每条折痕都从圆的什么地方通过?两端都在圆的什么地方?

教师指出:我们把通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母 d来表示。板书:直径

教师提问:根据直径的概念同学们想一想,直径应具备什么条件?

在同一个圆里可以画出多少条直径?

自己用尺子量一量同一个圆里的几条直径,看一看,所有直径的长度都相等吗?

教师板书:在同一个圆里有无数条直径,所有直径的长度都相等。

(4)教师小结:通过刚才的学习我们知道,在同一个圆里有无数条半径,所有半径的长度都相等;有无数条直径,所有直径的长度也都相等。

(5)讨论:在同一个圆里,直径的长度与半径的长度又有什么关系呢?

如何用字母表示这种关系?

反过来,在同一个圆里,半径的长度是直径的几分之几?

教师板书:在同一个圆里,直径的长度是半径的2倍。

(三)反馈练习。

1、P58的“做一做”第1、3、4题

2、练习十四的第2、3题

(四)圆的画法。

1、学生自学,看书57页。

2、学生试画。

3、学生通过试画小结用圆规画圆的方法,注意的问题。

4、教师归纳板书:1.定半径;2.定圆心;3.旋转一周。

教师强调:画圆时,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在有针尖的一脚。

5、学生练习

P58的“做一做”第2题

(五)教师提问

为什么同学们画的圆不一样呢?什么决定圆的大小?什么决定圆的位置?

教师板书:半径决定圆的大小,圆心决定圆的位置。

(六)思考:体育课上,老师想在操场画一个大圆圈做游戏,没有这么大的圆规怎么办?

三、全课小结

这节课我们学习了什么?通过这节课的学习你有什么收获?

四、作业

练习十四的第1题

人教版六年级上册数学教案4

教学目标

1.使学生学会圆环面积的计算方法,以及圆形与矩形混合图形的相关计算方法。

2.学会利用已有的知识,运用数学思想方法,推导出圆环面积计算公式,有关于圆形与正方形应用的解答方法。

3.培养学生观察、分析、推理和概括的能力,发展学生的空间概念。

教学重难点

1 教学重点

会利用圆和其他已学的相关知识解决实际问题。

2 教学难点

圆与其他图形计算公式的混合使用。

教学工具

PPT 卡片

教学过程

1 复习巩固上节知识,导入新课

2 新知探究

2.1 圆环面积

一、问题引入

同学们知道光盘可以用来做什么吗?谁能来描述一下光盘的外观。

回答(略)。

今天我们就来做一做与光盘相关的数学问题。

二、圆环面积求解

例2.光盘的银色部分是一个圆环,内圆半径是50px,外圆半径是150px。圆环的面积是多少?

步骤:

师:求圆环面积需要先求什么?

生:内圆和外圆的面积

师:同学们可以自己做一做,分组交流一下自己的解法。

师:给出计算过程与结果:

三、知识应用

做一做第2题:

一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花坛,其他地方是草坪。草坪的占地面积是多少?

师:这是一道典型的圆环面积应用题。通过直径得到半径,代入圆环面积公式,很简单。

2.2 圆与正方形

一、问题引入

师:同学们知道苏州的园林吧。大家有没有观察过园林建筑的窗户?它有很多很漂亮的设计,也有很多很常见的图形,比如五边形、六边形、八边形等等。其中外圆内方或者外方内圆是一种很常见的设计。

师:不仅是在园林中,事实上在中国的建筑和其他的设计中都经常能见到“外圆内方”和“外方内圆”,比如这座沈阳的方圆大厦、商标等等。下面我们来认识一下这种圆形与正方形结合起来构成的图形。

二、知识点

例3:图中的两个圆半径是1m,你能求出正方形和圆之间部分的面积吗?

步骤:

师:题目中都告诉了我们什么?

生:左图圆的半径=正方形的边长的一半=1m;右图圆的面积=正方形对角线的一半=1m

师:分别要求的是什么?

生:一个求正方形比圆多的面积,一个求圆比正方形多的面积。

师:应该怎么计算呢?

归纳总结

如果两个圆的半径都是r,结果又是怎样的呢?

当r=1时,与前面的结果完全一致。

四、知识应用

70页做一做:

下图是一面我国唐代外圆内方的铜镜。铜镜的直径是600px。外面的圆与内部的正方形之间的面积是多少?

师:同学们用我们刚刚学过的知识来解答一下这道题目吧。

解:铜镜的半径是300px

5.3 随堂练习

若还有足够时间,课堂练习练习十五第5/6/7题。

(可以邀请同学板书解题过程)

6 小结

1. 今天我们共同研究了什么?

今天我们在已知圆和正方形的面积公式的前提下,探索了圆环和“外圆内方”“外方内圆”图形的面积计算方法。这不是要求同学们记住这些推导出来的公式,而是希望同学们能过明白推导的方法,以后遇到类似的问题可以自己运用学过的知识来解决问题。

2. 在日常生活中经常需要去求圆的面积,譬如说:蒙古包做成圆形的是因为可以最大化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以最大化的吸收水分。我们还可以再举出其他的一些例子,如装菜的盘子、车轮为什么要做成圆形的?大家需要多看多想!

7 板书

例2解答步骤

人教版六年级上册数学教案5

教学目标

(1)能够利用身边的工具测量出圆的周长

(2)能够掌握多种测量计算圆的周长的方法

(3)能够说出圆周率小数点7位

(4)能够了解祖冲之

(5)能够灵活运用圆的周长计算公式进行计算

(6)培养学生逻辑推理能力

(7)对学生进行爱国主义教育

(8)培养学生的观察、比较、概括和动手操作的能力

教学重难点

重点:圆的周长和圆周率的意义

难点:圆周长公式的推导过程

教学工具

Ppt课件、视频、篮球、硬币、瓶盖

教学过程

一、讨论探索活动导入

1、展示实物篮球、瓶盖、硬币

揭示主题:圆的周长

2、提问:正方形、长方形的边长是4条边相加就是周长,那圆的周长也和它们一样吗?

3、引导学生利用身边的工具测量出篮球的周长(分小组讨论探索)

4、提问:圆是没有边长的,它只是一条曲线,你们能利用手中的工具将圆的周长测量出来吗?你们能想几种方法出来?

5、分享测量的方法

方法:化曲线为直线、滚动、软皮尺测、绳绕圆一周

二、了解圆周率

1、提问:观察一下篮球和硬币的直径和周长,你们得出什么结论?

结论:

圆的周长与它的直径有关,直径越大,周长越大

一个圆的周长总是它的直径的3倍多一点

2、提问:有谁知道圆周率是多少吗?

圆周率3.1415926535

3、大家猜一猜圆周率有多少小小数点?

(展示祖冲之图片以及圆周率的发展史)

中国古代数学家祖冲之比外国早1000年第一个把圆周率的值精确到7位小数

圆周率是任意一个圆的周长与它的直径的比值,这个直径是一个固定的数,用字母π表示,它是一个无限不循环小数,π=3.1415926535......取近似值π=3.14

3、播放视频:歌曲名3.1415

三、利用公式计算圆的周长

1、根据圆的周长和直径的关系可以推导出一个圆的周长计算公式,在书上,告诉我是什么?

公式:C=πd或C=2πr

2、提问:求圆的周长需要知道哪些条件?

条件:直径或者半径、π=3.14

3、例题讲解

书上第64页例题

4、做练习题

(展示ppt)

课后小结

圆的周长与它的直径有关,直径越大,周长越大

圆周率π是一个无限不循环小数,π=3.1415926535......取近似值π=3.14

圆的周长公式:C=πd或C=2πr

课后习题

同样的小组成员,测量一个学校圆形的周长,小组的形式合作完成


『伍』 人教版小学六年级数学上册概念都是有哪些

人教版小学六年级数学上册概念如下:

第一单元位置:

1、找位置:先列后行。格式为:(列,行)。例如:(a,b)。

2、位置的表示方法:两边小括号,中间是逗号,先写列,再写行。

3、平移方法:左右平移,列变行不变;上下平移,行变列不变。

第二单元分数乘法:

1、分数乘整数的意义和整数乘法的意义相同:就是求几个相同加数的和的简便运算。

2、分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

3、整数乘分数:分数乘以整数,可以看作是求几个分数相加的和是多少。整数乘以分数,可以看作是求整数的几分之几是多少。

4、分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

5、乘积是1的两个数叫互为倒数。

6、求一个数(0除外)的倒数的方法:把这个分数的分子、分母调换位置。1的倒数是1。0没有倒数。真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

7、一个数(0除外)乘以一个真分数,所得的积小于它本身。

8、一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

9、一个数(0除外)乘以一个带分数,所得的积大于它本身。

第三单元分数除法:

1、分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

2、分数除以整数(0除外),等于分数乘这个整数的倒数。

3、整数除以分数等于整数乘以这个分数的倒数。

4、分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

5、两个数相除又叫做两个数的比。

6、“:”是比号,读做“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

7、比同除法比较:比的前项相当于被除数,后项相当于除数,比值相当于商。

8、根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。

9、比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。

10、在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。

11、一个数(0除外)除以一个真分数,所得的商大于它本身。

12、一个数(0除外)除以一个假分数,所得的商小于或等于它本身。

13、一个数(0除外)除以一个带分数,所得的商小于它本身。

第四单元圆

1、圆的定义:平面上的一种曲线图形。

2、将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。圆心一般用字母O表示。它到圆上任意一点的距离都相等。

3、半径:连接圆心到圆上任意一点的线段叫做半径。半径一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。

4、圆心确定圆的位置,半径确定圆的大小。

5、直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。

6、在同一个圆内,所有的半径都相等,所有的直径都相等。

7、在同一个圆内,有无数条半径,有无数条直径。

8、在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。

9、圆的周长:围成圆的曲线的长度叫做圆的周长,用“C”表示。

10、圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母“π”表示。圆周率是一个无限不循环小数。在计算时,取π≈3.14。

11、圆的周长公式:C=πd或C=2πr

12、圆的面积:圆所占面积的大小叫圆的面积。

13、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

14、在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

15、一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²或S=π(R²-r²)。

16、环形的周长=外圆周长+内圆周长。

17、半圆的周长等于圆的周长的一半加直径。半圆的周长公式:C=πd÷2+d或C=πr+2r

18、在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。

19、两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。

20、当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;

21、当一个圆的直径增加a厘米时,它的周长就增加πa厘米。

22、在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几。

23、当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小。

24、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。

25、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。

26、只有2条对称轴的图形是:长方形。

27、只有3条对称轴的图形是:等边三角形。

28、只有4条对称轴的图形是:正方形。

29、有无数条对称轴的图形是:圆、圆环。

30、直径所在的直线是圆的对称轴。

第五单元百分数

1、百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

2、百分数的意义:表示一个数是另一个数的百分之几。百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称。

3、百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。

4、小数与百分数互化的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把数点向左移动两位。

5、百分数与分数互化的方法:把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数。

6、百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

7、百分率公式:

合格率=合格人数÷总人数100%发芽率=发芽数量÷总数量100%

出勤率=出勤人数÷总人数100%

8、应纳税额:缴纳的税款叫应纳税额。

9、应纳税额的计算:应纳税额=各种收入×税率。

10、本金:存入银行的钱叫做本金。

11、利息:取款时银行多支付的钱叫做利息。

12、利率:利息与本金的比值叫做利率。

13、国债利息的计算公式:利息=本金×利率×时间。

13、本息:本金与利息的总和叫做本息。

单位换算:

1、长度单位换算

1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米

2、面积单位换算

1平方千米=100公顷1公顷10000平方米1平方米=100平方分米

1平方分米=100平方厘米

3、体(容)积单位换算

1立方米=1000立方分米1立方分米=1升1立方分米=1000立方厘米

1立方厘米=1毫升

4、重量单位换算:1吨=1000千克1千克=1000克

运算定律:

1、加法交换律:两数相加交换加数的位置,和不变。a+b=b+a

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。如:a+b+c=a+c+b=a+(b+c)

3、乘法交换律:两数相乘,交换因数的位置,积不变。ab=ba

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。如:a×b×c=a×c×b=a×(b×c)

5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(ab)×c=acbc

6、加、减法性质:一个数连续减去几个数,可以改写成减去这几个数的和。如:a-b-c=a-(b+c)

7、乘、除法性质:一个数连续除以几个数,可以改写成乘以这几个数的积。a÷b÷c=a÷(b×c)


(5)小学六年级数学上册人教版扩展阅读:

小学六年级数学学习方法

1、抓住课堂

平日学习最重要的是课堂学习,听课要认真,思维要跟着老师,总结老师所讲的数学思想、数学方法。

2、高质量完成作业

不仅要高速度,还要高正确率。写作业时,如果同一类型的题重复练习,就要多注意速度和准确率,并且在每做完一次要对此类题目进行思考总结,进一步提升自己,解题的规律、技巧等。

3、勤思考,多提问

对于老师给出的规律、定理,不仅要知其然还要知其所以然,对于老师的讲解,课本的内容,有疑问应尽管提出,清除学习隐患。

4、总结比较,理清思绪

要进行知识点总结比较。每学完一个章节都应要本章内容在脑中过一遍,对于相似易混淆的知识点应分项归纳比较,将其区分开来。

要对题目进行比较。平时作业或者考试的错题,选择性地记下来,并用在一旁记下注意事项,经常翻看,这对数学学习有极大的帮助。

5、有选择地做课外练习

课余时间并不充足,因此在做课外练习时要少而精,多反思

热点内容
烟火舞蹈教学 发布:2024-11-23 10:52:19 浏览:588
北极光英语 发布:2024-11-23 09:23:48 浏览:128
校园书吧创业计划书 发布:2024-11-23 07:44:49 浏览:183
教师资格认证申请表 发布:2024-11-23 05:31:33 浏览:99
北师大语文二年级下册 发布:2024-11-23 04:55:43 浏览:37
班主任要借钱 发布:2024-11-23 03:53:53 浏览:102
录取通知书班主任一起拆封 发布:2024-11-23 03:16:01 浏览:545
凉凉古筝教学 发布:2024-11-23 02:54:44 浏览:133
暑期进书屋 发布:2024-11-22 23:31:26 浏览:327
考证考哪个 发布:2024-11-22 23:31:25 浏览:469