数学中的阶乘
阶乘(factorial)是基斯顿·卡曼(Christian Kramp, 1760 – 1826)于1808年发明的运算符号。
阶乘,也是数学里版的一种术语。
阶乘指从1乘以权2乘以3乘以4一直乘到所要求的数。
例如所要求的数是4,则阶乘式是1×2×3×4,得到的积是24,24就是4的阶乘。 例如所要求的数是6,则阶乘式是1×2×3×……×6,得到的积是720,720就是6的阶乘。例如所要求的数是n,则阶乘式是1×2×3×……×n,设得到的积是x,x就是n的阶乘。
在表达阶乘时,就使用“!”来表示。如h阶乘,就表示为h!
阶乘一般很难计算,因为积都很大。
以下列出1至10的阶乘。
1!=1,
2!=2,
3!=6,
4!=24,
5!=120,
6!=720,
7!=5040,
8!=40320
9!=362880
10!=3628800
另外,数学家定义,0!=1,所以0!=1!
⑵ 数学中!怎么计算
数学中!是阶乘的意思。n!=1×2×3×...×n。
阶乘是基斯顿·卡曼(Christian Kramp,1760~1826)于 1808 年发明的运算符号,是数学术语。
一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。1808年,基斯顿·卡曼引进这个表示法。
亦即n!=1×2×3×...×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。
(2)数学中的阶乘扩展阅读:
双阶乘用“m!!”表示。
当 m 是自然数时,表示不超过 m 且与 m 有相同奇偶性的所有正整数的乘积。如:
拓展阶乘到纯复数:
正实数阶乘: n!=│n│!=n(n-1)(n-2)....(1+x).x!=(i^4m).│n│!
负实数阶乘: (-n)!=cos(mπ)│n│!=(i^2m)..n(n-1)(n-2)....(1+x).x!
(ni)!=(i^m)│n│!=(i^m)..n(n-1)(n-2)....(1+x).x!
(-ni)!=(i^3m)│n│!=(i^3m)..n(n-1)(n-2)....(1+x).x!