数学基本函数
高中八大基本函数如下:
高中数学八大函数是:幂函数,指数函数,对数函数,反函数,一次函数,二次函数,反比例函数,对勾函数。
函数(function),数学术语。其定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。函数的近代定义是给定一个数集A。
假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
函数的由来:
中国古代“函”字与“含”字通用,都有着“包含”的意思。李善兰给出的定义是:“凡式中含天,为天之函数。”中国古代用天、地、人、物4个字来表示4个不同的未知数或变量。凡是公式中含有变量x,则该式子叫做x的函数。
“函数”是指公式里含有变量的意思。我们所说的方程的确切定义是指含有未知数的等式。但是方程一词在我国早期的数学专著《九章算术》中,意思指的是包含多个未知量的联立一次方程,即所说的线性方程组。
❷ 数学六个基本函数模型
正比例函数y=kx (k≠0) 反比例函数 y=k/X (k≠0) 一次函数 y=kx+b (kb≠0)二次函数 y=ax�0�5+bx+c (a≠0) 指数函数 y=a的x次方 (a.>O ,a≠1) 对数函数y=logaX (a.>O ,a≠1) 幂函数 y=x的n次方
❸ 高中数学八大函数是什么
高中数学八大函数是:幂函数,指数函数,对数函数,反函数,一次函数,二次函数,反比例函数,对勾函数。
函数的性质:
折叠函数有界性:设函数f(x)的定义域为D,数集X包含于D。如果存在数K1,使得f(x)≤K1对任一x∈X都成立,则称函数f(x)在X上有上界,而K1称为函数f(x)在X上的一个上界。
如果存在数K2,使得f(x)≥K2对任一x∈X都成立,则称函数f(x)在X上有下界,而K2称为函数f(x)在X上的一个下界。如果存在正数M,使得|f(x)|≤M对任一x∈X都成立,则称函数f(x)在X上有界,如果这样的M不存在,就称函数f(x)在X上无界。
函数f(x)在X上有界的充分必要条件是它在X上既有上界又有下界。
折叠函数的单调性:设函数f(x)的定义域为D,区间I包含于D。如果对于区间I上任意两点x1及x2,当x1<x2时,恒有f(x1)<f(x2),则称函数f(x)在区间I上是单调增加的。
如果对于区间I上任意两点x1及x2,当x1<x2时,恒有f(x1)>f(x2),则称函数f(x)在区间I上是单调减少的。单调增加和单调减少的函数统称为单调函数。
❹ 高中数学中的六大类函数
高中数学中的六大类函数及其定义:
1.一次函数:在某一个变化过程中,设有两个变量x和y,如果可以写成y=kx+b(k为一次项系数≠0,k≠0,b为常数,),那么我们就说y是x的一次函数,其中x是自变量,y是因变量.
拓展资料:
函数(function),最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。
函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
资料来源:函数_网络