高等数学复习
『壹』 高等数学的复习重点
我能说清:
一、导数。包括极限与连续、一元和多元函数的导数的基专本运算和性质的运用,属驻点拐点问题,中值定理的应用。
二、微积分(大部分分值)包括基本的微积分的基本数学运算、积分中值定理是难点、包括一二三重积分、曲线曲面积分的实际应用。
三、级数,包括收敛和发散的性质和应用、分值较少。
四、微分方程,包括各种形式的微分方程的运算求解、还有关于微分方程的应用题,分值适中。但很容易得分。经济数学还要看差分方程。
五、空间立体解析几何,分值应该最少。需掌握线线、线面、面面之间的关系公式会列各种形式的线面方程即可。
『贰』 考研数学复习方法
考研数学由:高数、线代及概率统计三大科目组成。
高数、线代及概率是考研数学的三大难,数学科目要掌握其科目规律及命题规律才能更好的去规划安排强化阶段的学习,需要分析数学的突破口。
三大科目规律
一、高数
(1)知识多
高等数学从大的方面分为一元函数微积分和多元函数微积分。
一元微积分中包括极限、导数、不定积分、定积分;多元函数微积分包括多元函数微分学(主要是二元函数)和多元函数积分学。另外还有微分方程和级数,这两章内容可看成是微积分的应用。
除此之外还有向量代数与空间解析几何。其中数一单独考查的内容为向量代数与空间解析几何和多元函数积分学中的三重积分、曲线积分、曲面积分,另外是数一数二数三公共部分,公共部分中也有一些细微差别。
总的来说:高数复习需花费最多的时间,它的成败直接关系到考研的成败。
(2)模块感清晰
高数的题会了一道,一类的就会了。如幂级数求和展开,记住常见的几个泰勒级数公式,会通过基本变形或求导求积把已知函数(或级数)朝常见公式转化,这类问题就基本解决了。而线代不是这样,基本类型题目会了,考得深入些就心里没底了。
二、概率
概率的知识结构是个倒树形结构。第一章随机事件与概率是基础,在此基础上引入随机变量,而分布是随机变量的描述方式。第二章和第三章介绍随机变量及分布。分布描述了随机变量全部的信息,而数字特征仅描述了部分信息(如离散型随机变量的数学期望可以理解成该随机变量在概率意义下的平均值)。
之后讨论整个概率的理论基础——大数定律和中心极限定理。概率论部分就到此为止了。数理统计看成对概率论的应用。
三、线代
线代的知识结构是个网状结构:知识点之间的联系非常多,交错成一个网状。以矩阵A可逆为例,请大家考虑一下有哪些等价条件。从向量组的角度,为矩阵A的列向量组(或行向量组)线性无关;从行列式的角度,为矩阵A的行列式不为零;从线性方程组的角度,为Ax=0仅有零解(或Ax=b有唯一解);从二次型的角度,为A转置乘A正定从秩的角度,为矩阵的秩为矩阵的阶数;从特征值的角度,为矩阵的特征值不含零。不难发现,以矩阵可逆这个基本的概念可以把整个线代串起来。
三大科目复习方法及重难点
●高等数学
(1)复习要点:极限的求法;变限积分的应用;导数应用;重积分的计算。
(2)复习方法:
高等数学要加强解综合性试题和应用题能力的训练,力求在解题思路上有所突破。注意综合题的考察。一般说来,综合题的考查内容可以是同一学科的不同章节,也可以是不同学科的。近几年试卷中常见的综合题有:级数与积分的综合题;微积分与微分方程的综合题;求极限的综合题;空间解析几何与多元函数微分的综合题;线性代数与空间解析几何的综合题;以及微积分与微分方程在几何上、物理上、经济上的应用题等等。在解综合题时,迅速地找到解题的切入点是关键一步,为此需要熟悉规范的解题思路。
(3)高数重点题型汇总
●线性代数
(1)复习要点:行列式、矩阵公式;线性方程组的求解;相似对角化问题.
(2)复习方法:
线性代数的概念很多,重要的有:代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准型与规范形,正定,合同变换与合同矩阵。
线性代数中运算法则多,应整理清楚不要混淆,重要的有:行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准型)。
线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,复习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。
例如:设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有r(B)≤n-r(A)即r(A)+r(B)≤n,进而可求矩阵A或B中的一些参数。
正是因为线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,大家复习时要注重串联、衔接与转换。
(3)线性代数重点题型汇总
●概率论与数理统计
(1)复习要点:常见分布;数字特征;点估计问题;
(2)复习方法:
最近几年理工类数学考试重点内容的顺序是:①二维随机变量及其概率分布;②随机变量的数字特征;③随机事件和概率;④数理统计。最近4年数学三考试重点内容的顺序是:①随机变量的数字特征;②二维随机变量及其概率分布;③随机事件和概率;④数理统计。最近几年年经管类数学考试重点内容的顺序是:①随机变量的数字特征;②二维随机变量及其概率分布;③随机事件和概率;④大数定律和中心极限定理。
与"微积分"和"线性代数"不同的是,在概率论与数理统计中对基本概念的深入理解所占的比例相当大,而其中解题的方法并不多,涉及到的技巧是很少的(甚至可以说没有技巧)。要结合概率论与数理统计自身的特点,进行有针对性的复习。
强化阶段的主要目标是熟悉考研题型,加强知识点的前后联系,分清重难点,让复习周期尽量缩短,把握整体的知识体系,熟练掌握定理公式和解题技巧。
(3)概率论与数理统计重点题型汇总(上)、(下)
2021考研大纲已经出来了,同学们可以按照新的考试大纲来进行复习,对于有变化的部分,有针对性的进行复习。
『叁』 考研数学大纲解析:高等数学有什么最新学习方法
考研数学分为高等数学,概率论与数理统计和线性代数三个科目,一般而言线性代数都会认为比较简单,概率论的比例次于高等数学,重头戏就是高等数学。高等数学是一门比较难的课程,想要得高分并容易。极限的运算、无穷小量、一元微积分学、多元微积分学、无穷级数等章节都有比较大的难度。
找到适合自己的学习方法是最重要的,这样才能最大限度的提高复习效率。很多人对“怎样才能学好这门课程?”感到困惑。万学海文根据教研室老师们多年教学经验和学员的学习经验总结,为大家讲解一下高数的学习方法,希望能对2014年考研的同学有所帮助。
高等数学基础复习方法:
第一、理解概念 掌握定理
数学中有很多概念。概念反映的是事物的本质,弄清楚了它是如何定义的、有什么性质,才能真正地理解一个概念。所有的问题考研辅导都在理解的基础上才能做好。
定理是一个正确的命题,分为条件和结论两部分。对于定理除了要掌握它的条件和结论以外,还要搞清它的适用范围,做到有的放矢。
第二、教材习题要做熟
要特别提醒学习者的是,课本上的例题都是很典型的,有助于理解概念和掌握定理,要注意不同例题的特点和解法在理解例题的基础上作适量的习题。作题时要善于总结---- 不仅总结方法,也要总结错误。这样,作完之后才会有所收获,才能举一反三。
第三、从宏观上理清脉络
要对所学的知识有个整体的把握,及时总结知识体系,这样不仅可以加深对知识的理解,还会对进一步的学习有所帮助。
高等数学中包括微积分和立体解析几何,级数和常微分方程。其中尤以微积分的内容最为系统且在其他课程中有广泛的应用。微积分的理论,是由牛顿和莱布尼茨完成的。(当然在他们之前就已有微积分的应用,考研培训但不够系统)
数学备考一定要有一个复习时间表,也就是要有一个周密可行的计划。按照计划,循序渐进,切忌搞突击,临时抱佛脚。
高等数学复习时间合理安排:
其实数学是基础性学科,解题能力的提高,是一个长期积累的过程,因而复习时间就应适当提前,循序渐进。大致在三、四月分开始着手进行复习,如果数学基础差可以将复习的时间适当提前。复习一定要有一个可行的计划,通过计划保证复习的进度和效果。一般可以将复习分成四个阶段,每个阶段的起止时间和所要完成的任务考生应给予明确规定,以保证计划的可行性。
第一个阶段是按照考试大纲划考研政治分复习范围,在熟悉大纲的基础上对考试必备的基础知识进行系统的复习,了解考研数学的基本内容、重点、难点和特点。这个时间段一般划定为六月前。
第二个阶段是在第一阶段的基础上,做一定数量的题,重点解决解题思路的问题。一般从七月到十月。这个阶段要注意归纳总结,即拿到题后要知道从什么角度,可以分几步去求解,每道题并不要求都要写出完整步骤,只要思路有了,运算过程会做了,可以视情况而灵活掌握,这样省出时间来看更多的题。所选试题可以是历年真题,也可以是书上的练习题,但真题一定要做,而且要严格按照实考的要求去做,把握真题的特点和解题思路及运算步骤。
第三个阶段是实战训练阶段,从十一月到十二月的中旬,这也是临考前非常重要的阶段。考生要对大纲所要求的知识点做最后的梳理,熟记公式,系统地做几套模拟试卷,进行实战训练,自测复习成果。在做模拟题前先要系统记忆掌握基本公式,做题要讲究质量,既要有速度,又要有严格的步骤、格式和计算的准确性。最后阶段是考前冲刺,从十二月下旬到考试。针对在做模拟试题过程中出现的问题作最后的补习,查缺补漏,以便以最佳的状态参加考试。
学好数学是一个长期的过程,来不得半点的投机取巧,所以考前突击,临时抱佛脚的做法是不足取的,只有按照自己大学考研的计划,踏踏实实的进行准备,才能以不变应万变,只要自己的综合能力提高了,不管考试如何变化,都能取得好的成绩。
数学的学习一定要每天都有个进度,每天都要有题量,我们不应该搞题海战术,但是通过做题提高实战经验也是必须的,首先有个大的学习框架,然后计划到每天,怎么去学习,每天做那方面的题,定期的查漏补缺,这样的学习才真正的有效果。
『肆』 为啥高数很重要感觉考研数学主要就是在考高数,哎……考研数学里的高数应该怎么样复习呢
高数在数一和数三中占了56%,在数二中占了78%,分值之高可窥一斑。看来“得高数者,得数学”的说法并不是没有道理的。高数如此重要,那么该怎
么复习才能拿下这门课呢?且正处在基础阶段复习,数学基础打不好,日后要扭转局面也就难了,下面新东方在线就给大家指导指导,看一看基础阶段怎么复习高
数。
首先按照考试大纲划分复习范围。
在熟悉大纲的基础上对考试必备的基础知识进行系统的复习,了解考研数学的基本内容、重点、难点和特点。
其次按照大纲对数学的基本概念、基本方法和基本定理准确把握。
高等数学考查还是以考查考生的基本知识和基本技能为住,考卷中偏题和怪题不是很多,所以考生先要从基础学起,先把教材中的一些概念、定理、公式复习好,牢牢地记住,并在此基础上选择一些题目进行强化。如果基础不是非常好,我建议暑期或者秋季报个考研辅导班,在老师的带领下将所学的知识进一步强化巩固。
高数五大重难点
1、函数连续与极限
极限是高数的基本工具,是三大运算之一。求极限是考研试卷中常考的题型,是考试的重点。要求考生对于极限的概念以及求极限的基本方法掌握到位。在这一部分,还有两个重要的概念,即无穷小和间断点,是考试中常考的知识点,此处是我们复习的重点。常考的题型有:无穷小阶的比较,无穷小和极限的结合,间断点类型的判断。
2、一元函数微分学
求导是高数的第二大运算,要求对于各种类型函数的求导过关,也是为后面的多元函数求偏导打下基础。这一部分需要注意两个概念:导数和微分,要求理解导数
的定义以及可导的充分必要条件。此外,还有导数的应用,这是内容比较多的一部分,是考试的重点,但不是难点,如函数的单调性、凹凸性、渐近线、拐点和方程
根的判别等。这一部分还有一个难点,就是中值定理的相关证明题,不过这部分题目解题思路不太灵活,掌握常见的技巧和方法足可应对。
3、多元函数微分学
多元函数连续、可偏导及可微的定义,以及三者之间的关系要准确区分。多元函数复合函数和隐函数求偏导和求全微分一定要过关。这些都是考试的重点。
4、多元函数积分学
数二和数三同学仅仅考查二重积分的计算,这是考试的重点,是每年必考的,常见题型有二重积分的基本计算,选择合适的坐标系法和积分次序,有必要时进行交
换坐标系和积分次序等等,这些都是基本的运算。对于数一的同学,在以上基础上,还需要学习曲线、曲面积分的计算和三重积分的计算。尤其需要注意的是第二类
曲线积分和格林公式的结合,三维曲线积分和斯托克斯公式的结合,第二类曲面积分和高斯公式的结合,这些是出大题的地方。
5、微分方程
掌握考纲中要求掌握的几类方程的解法,如可分离变量方程、齐次方程、一阶线性微分方程、可降阶微分方程(数三不要求)、二阶常系数微分方程。需要注意一下常系数线性方程的解的结构。此外,微分方程和变上限函数、多元函数微分学或实际问题,经常会出一些综合题。
数一的个别考点伯努利方程和欧拉方程,数三的个别考点有差分方程,同学们只需要掌握一般解法即可,不需要研究太多,不是考试的重点。
最后基本功扎实后,就要大量做题。
数学只有通过做大量的题目才能有质的飞跃。基础阶段高数主要做教材上的习题及课后练习题,做一本书最好做详细的计划,当然做计划也是有技巧的:每天完成一
章。因为每一章的内容多少和难度不同,不能一概而论,否则就会出现某一章一会就做完了,另外一章却做了一天也没结束,这样还容易打乱你其他科目的复习计
划,毕竟考研不是只考数学。我的建议是:比如第一章,感觉一下这章对于自己而言的难度,一共有多少页,自己计划几天完成,然后定好每天完成多少页,计划要
定的稍微宽裕一天,以防出现突然有事,或者这章难度超出预料。不要觉得这费时间,一本书定个详细的计划一个小时足够了吧,而一个详细的计划会让自己效率提
高很多。
数学复习是要保证熟练度的,平时应该多训练,应该一抓到底,经常练习,一天至少保证三个小时。把一些基本概念、定理、公式复习好,牢牢地记住。