七年级上册数学代数式
Ⅰ 求七年级数学代数式所有公式 我的单项式和多项式 次数 系数学不太好
整式分为单项式和多项式,单项式就是数字*字母,多项式就是单项式的和回
2a的m次方:a是‘底数答’,m是‘指数’,结果是‘幂’,2是系数
公式:a的m次方*a的n次方=a的(m+n)次方,同底数幂相乘,底数不变,指数相加
(a的m次方)的n次方=a的m*n次方,幂的乘方,底数不变,指数相乘
a的m次方/a的n次方=a的(m-n)次方,同底数幂相乘,底数不变,指数相减
整式的乘法:将每个单项式都拆开,系数相乘,其余按以上公式进行
例:2a(b的三次方)*7(a的二次方)b
=2*a*(b的三次方)*7*(a的二次方)*b
=(2*7)*(a*a的二次方)*(b的三次方*b)
=14*a的三次方*b的四次方
最后,把乘号去掉
Ⅱ 七年级上册数学知识点归纳整理
数学的知识点是很重要的,下面我就大家整理一下七年级上册数学 知识点 归纳整理,仅供参考。
整式的加减
一、代数式
1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。
2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。
二、整式
1、单项式:
(1)由数和字母的乘积组成的代数式叫做单项式。
(2)单项式中的数字因数叫做这个单项式的系数。
(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2、多项式
(1)几个单项式的和,叫做多项式。
(2)每个单项式叫做多项式的项。
(3)不含字母的项叫做常数项。
3、升幂排列与降幂排列
(1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。
(2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。
“圆和扇形”知识点圆的周长和弧长
1.圆的周长
2.弧长
圆和扇形面积
1.圆的面积
2.扇形的面积
重要程度--四颗星。弧长与扇形面积的计算公式需要熟记,这一部分的知识点会链接到初三下学期“正多边形与圆”,会有一些组合图形的阴影面积需要计算,这里也会是孩子学习的一个难点。
平行线1、在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。
2、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
3、如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
4、 判定两条直线平行的方法:
(1) 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。
(2) 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。
(3) 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。
以上就是我为大家整理的七年级上册数学知识点归纳整理。
Ⅲ 初一数学代数式知识点有哪些
初一数学代数式知识点如下:
1、0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数。
2、绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
初一数学的方法:
课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。
数学一环扣一环,知识间的联系非常紧密,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,做到了然于心,融会贯通。
Ⅳ 初一数学上册知识点总结
初一数学上册知识点总结1
代数初步知识
1. 代数式:用运算符号+ - 连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.
2.列代数式的几个注意事项:
(1)数与字母相乘,或字母与字母相乘通常使用 乘,或省略不写;
(2)数与数相乘,仍应使用乘,不用 乘,也不能省略乘号;
(3)数与字母相乘时,一般在结果中把数写在字母前面,如a5应写成5a;
(4)带分数与字母相乘时,要把带分数改成假分数形式,如a 应写成 a;
(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3a写成 的形式;
(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .
3.几个重要的代数式:(m、n表示整数)
(1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ;
(2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c;
(3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ;
(4)若b0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2 .
初一数学上册知识点总结2
一、方程的有关概念
1.方程:含有未知数的等式就叫做方程.
2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.
3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.
注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.
二、等式的性质
等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.
等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c
等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb
三、移项法则: 把等式一边的某项变号后移到另一边,叫做移项.
四、去括号法则
1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.
2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.
五、解方程的一般步骤
1. 去分母(方程两边同乘各分母的最小公倍数)
2. 去括号(按去括号法则和分配律)
3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)
4. 合并(把方程化成ax = b (a≠0)形式)
5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=a(b).
六、用方程思想解决实际问题的一般步骤
1. 审:审题,分析题中已知什么,求什么,明确各数量之间的关系.
2. 设:设未知数(可分直接设法,间接设法)
3. 列:根据题意列方程.
4. 解:解出所列方程.
5. 检:检验所求的解是否符合题意.
6. 答:写出答案(有单位要注明答案)
初一数学上册知识点总结3
(1)凡能写成 形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;
(2)有理数的分类: ① 整数 ②分数
(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
(4)自然数 0和正整数;a0 a是正数;a0 a是负数;
a≥0 a是正数或0 a是非负数;a≤ 0 ? a是负数或0 a是非正数.
有理数比大小:
(1)正数的绝对值越大,这个数越大;
(2)正数永远比0大,负数永远比0小;
(3)正数大于一切负数;
(4)两个负数比大小,绝对值大的反而小;
(5)数轴上的两个数,右边的数总比左边的数大;
(6)大数-小数 0,小数-大数 0.
初一数学上册知识点总结4
第一章:丰富的图形世界
1、几何图形
从实物中抽象出来的各种图形,包括立体图形和平面图形。
2、点、线、面、体
①几何图形的组成
点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
②点动成线,线动成面,面动成体。
3、生活中的立体图形
生活中的立体图形(按名称分)
柱:
①圆柱
②棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……
锥:
①圆锥
②棱锥
球
4、棱柱及其有关概念:
棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:
11种(经常考:考试形式:展开的图形能否围成正方体;正方体对面图案)
6、截一个正方体:
用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图:
物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
第二章:有理数及其运算
1、有理数的分类
①正有理数
有理数{ ②零
③负有理数
有理数{ ①整数
②分数
2、相反数:
只有符号不同的两个数叫做互为相反数,零的`相反数是零
3、数轴:
规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。
4、倒数:
如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和—1。零没有倒数。
5、绝对值:
在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。
若|a|=a,则a≥0;
若|a|=-a,则a≤0。
正数的绝对值是它本身;
负数的绝对值是它的相反数;
0的绝对值是0。
互为相反数的两个数的绝对值相等。
6、有理数比较大小:
正数大于0,负数小于0,正数大于负数;
数轴上的两个点所表示的数,右边的总比左边的大;
两个负数,绝对值大的反而小。
7、有理数的运算:
①五种运算:加、减、乘、除、乘方
多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。
有理数加法法则:
同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,绝对值值相等时和为0;
绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
一个数同0相加,仍得这个数。
互为相反数的两个数相加和为0。
有理数减法法则:
减去一个数,等于加上这个数的相反数!
有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与0相乘,积仍为0。
有理数除法法则:
两个有理数相除,同号得正,异号得负,并把绝对值相除。
0除以任何非0的数都得0。
注意:0不能作除数。
有理数的乘方:求n个相同因数a的积的运算叫做乘方。
正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。
②有理数的运算顺序
先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。
③运算律(5种)
加法交换律
加法结合律
乘法交换律
乘法结合律
乘法对加法的分配律
8、科学记数法
一般地,一个大于10的数可以表示成a×
10n的形式,其中1≦n<10,n是正整数,这种记数方法叫做科学记数法。(n=整数位数—1)
第三章:整式及其加减
1、代数式
用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。
注意:
①代数式中除了含有数、字母和运算符号外,还可以有括号;
②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;
③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
代数式的书写格式:
①代数式中出现乘号,通常省略不写,如vt;
②数字与字母相乘时,数字应写在字母前面,如4a;
③带分数与字母相乘时,应先把带分数化成假分数。
④数字与数字相乘,一般仍用“×”号,即“×”号不省略;
⑤在代数式中出现除法运算时,一般写成分数的形式;注意:分数线具有“÷”号和括号的双重作用。
⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面。
2、整式:单项式和多项式统称为整式。
①单项式:
都是数字和字母乘积的形式的代数式叫做单项式。单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做这个单项式的系数。
注意:
单独的一个数或一个字母也是单项式;
单独一个非零数的次数是0;
当单项式的系数为1或—1时,这个“1”应省略不写,如—ab的系数是—1,a3b的系数是1。
②多项式:
几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数。
③同类项:
所含字母相同,并且相同字母的指数也相同的项叫做同类项。
注意:
①同类项有两个条件:a。所含字母相同;b。相同字母的指数也相同。
②同类项与系数无关,与字母的排列顺序无关;
③几个常数项也是同类项。
4、合并同类项法则:
把同类项的系数相加,字母和字母的指数不变。
5、去括号法则
①根据去括号法则去括号:
括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项都改变符号。
②根据分配律去括号:
括号前面是“+”号看成+1,括号前面是“—”号看成—1,根据乘法的分配律用+1或—1去乘括号里的每一项以达到去括号的目的。
6、添括号法则
添“+”号和括号,添到括号里的各项符号都不改变;添“—”号和括号,添到括号里的各项符号都要改变。
7、整式的运算:
整式的加减法:(1)去括号;(2)合并同类项。
第四章基本平面图形
1、线段、射线、直线
名称
表示方法
端点
长度
直线
直线AB(或BA)
直线l
无端点
无法度量
射线
射线OM
1个
无法度量
线段
线段AB(或BA)
线段l
2个
可度量长度
2、直线的性质
①直线公理:经过两个点有且只有一条直线。(两点确定一条直线。)
②过一点的直线有无数条。
③直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
3、线段的性质
①线段公理:两点之间的所有连线中,线段最短。(两点之间线段最短。)
②两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。
③线段的大小关系和它们的长度的大小关系是一致的。
4、线段的中点:
点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。AM = BM =1/2AB (或AB=2AM=2BM)。
5、角:
有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。
6、角的表示
角的表示方法有以下四种:
①用数字表示单独的角,如∠1,∠2,∠3等。
②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。
③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。
④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。
注意:用三个大写字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。
7、角的度量
角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。
把1°的角60等分,每一份叫做1分的角,1分记作“1’”。
把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。
1°=60’,1’=60”
8、角的平分线
从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
9、角的性质
①角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。
②角的大小可以度量,可以比较,角可以参与运算。
10、平角和周角:
一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。
终边继续旋转,当它又和始边重合时,所形成的角叫做周角。
11、多边形:
由若干条不在同一条直线上的线段首尾顺次相连组成的封闭平面图形叫做多边形。
连接不相邻两个顶点的线段叫做多边形的对角线。
从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画(n—3)条对角线,把这个n边形分割成(n—2)个三角形。
12、圆:
平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。
固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。
圆上任意两点A、B间的部分叫做圆弧,简称弧,读作“圆弧AB”或“弧AB”;
由一条弧AB和经过这条弧的端点的两条半径OA、OB所组成的图形叫做扇形。
顶点在圆心的角叫做圆心角。
第五章一元一次方程
1、方程
含有未知数的等式叫做方程。
2、方程的解
能使方程左右两边相等的未知数的值叫做方程的解。
3、等式的性质
①等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。
②等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式。
4、一元一次方程
只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程。
5、移项:
把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项。
6、解一元一次方程的一般步骤:
①去分母
②去括号
③移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。)
④合并同类项
⑤将未知数的系数化为1
第六章数据的收集与整理
1、普查与抽样调查
为了特定目的对全部考察对象进行的全面调查,叫做普查。
其中被考察对象的全体叫做总体,组成总体的每一个被考察对象称为个体。
从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做总体的一个样本。
2、扇形统计图
扇形统计图:利用圆与扇形来表示总体与部分的关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。(各个扇形所占的百分比之和为1)
圆心角度数=360°×该项所占的百分比。(各个部分的圆心角度数之和为360°)
3、频数直方图
频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组画在横轴上,纵轴表示各组数据的频数。
4、各种统计图的特点
条形统计图:能清楚地表示出每个项目的具体数目。
折线统计图:能清楚地反映事物的变化情况。
扇形统计图:能清楚地表示出各部分在总体中所占的百分比。
初一数学上册知识点总结5
1、 我们把实物中抽象的各种图形统称为几何图形(geometric figure).
2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形(solidfigure).
3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(planefigure).
4、将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图(net).
5、几何体简称为体(solid).
6、包围着体的是面(surface),面有平的面和曲的面两种.
7、面与面相交的地方形成线(line),线和线相交的地方是点(point).
8、点动成面,面动成线,线动成体.
9、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线.简述为:两点确定一条直线(公理).
10、当两条不同的直线有一个公共点时,我们就称这两条直线相交(intersection),这个公共点叫做它们的交点(pointof intersection).
11、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点(center).
12、经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短.简单说成:两点之间,线段最短.(公理)
13、连接两点间的线段的长度,叫做这两点的距离(distance).
14、角∠(angle)也是一种基本的几何图形.
15、把一个周角360等分,每一份就是1度(degree)的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″.
16、从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线(angular bisector).
17、如果两个角的和等于90°(直角),就是说这两个叫互为余角(complementaryangle),即其中的每一个角是另一个角的余角.
18、如果两个角的和等于180°(平角),就说这两个角互为补角(supplementaryangle),即其中一个角是另一个角的补角
19、等角的补角相等,等角的余角相等.
Ⅳ 初一数学题 代数式
(1)
x^2+2x+1=8
则 x^2+2x=7
4x^2+8x+9
=4(x^2+2x)+9
=4*7+9
=28+9
=37
(2)
把 x=2,y=-4 代入ax^3-1/2by+5=2005,得:
8a+2b+5=2005
8a+2b=2000
4a+b=1000
当x= -4,y= -1/2时
3ax-24by^3+5011
= -12a+3b+5011
= -3(4a-b)+5011
请检查一下题目,应该写错了
Ⅵ 初一数学代数式找规律的公式
初一数学代数式找规律的公式:nn=n(n-1)*2+2,也就是数列的后项=前项乘2再加上2,公差用字母d表示,比如说:等差数列的通项公式为an=a1+(n-1)d等。
其中代数式规律由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子,而且单独的一个数或者一个字母也是代数式。
列代数式规则须知:
1、抓住问题中的关键词,如“大”“小”“和”“差”“倍”“商”等,从而弄清题目中所涉及的量及各量之间的关系。
2、明确运算及运算顺序,如“和的积”是“先和后积”,也就是“先加法后乘法”。