当前位置:首页 » 语数英语 » 唯课数学

唯课数学

发布时间: 2024-12-27 15:34:18

① 三年级下册数学内容有哪些

三年级下册的教学内容主要包括:除数是一位数的除法,两位数乘两位数,小数的初步认识,位置与方向(一),面积,年、月、日,复式统计表,用数学解决问题,数学广角和综合与实践活动等。下面基本按单元顺序对本册教材的修订情况进行简要说明。
一、位置与方向(一)
本单元内容包括:在现实情境中认识东、南、西、北、东北、西北、东南和西南八个方向,并能用这些词语描述物体所在的方向;了解在平面图上如何表示方向,并能描述平面图上物体的相对位置;第让学生利用所学习的方向的知识解决生活中的实际问题。与实验教材相比,主要有以下几个方面的变化。
1.根据《义务教育数学课程标准(2011版)》的要求,降低了难度
《义务教育数学课程标准(2011版)》对第一学段“图形与位置”的课程内容做了修改:一是删去了“会看简单的路线图”的内容和要求;二是降低了对“东北、东南、西北、西南”这四个方向的教学要求,不再要求根据一个方向(东、南、西或北)辨认出这四个方向,只要知道这四个方向就可以了。因此,修订后的教材删去了实验教材中有关路线图的内容,同时,在需要辨认“东北、东南、西北、西南”这四个方向的时候,都采用标准的地图的画法,并给出指“北”的方向标,以便于学生先判断出四个基本方向,再进一步辨认这四个方向。
2.根据对实验教材的意见,将例3和例5整合为例4,让学生综合应用所学的方位知识解决问题,培养学生提出问题的意识,提高解决问题的能力
对三年级的学生来说,东、南、西、北等方位概念还是比较抽象的,学生需要大量的感性材料支撑和丰富的表象积累,才能较好地掌握这些概念。因此,教学时要以学生已有的知识和生活经验为基础,创设大量的体验方位的活动,让所有的学生都参与到活动中来。鼓励学生独立思考,敢于发表自己的意见,并能与同伴交流自己的想法。使学生在多样的活动中进行观察、操作、想象、描述、表示和交流,丰富对方位知识的体验,积累活动经验,进一步发展良好的空间观念。
二、除数是一位数的除法
本单元的主要内容有:口算除法、笔算除法和用估算解决问题。“除数是一位数的除法”口算和笔算是小学生应该掌握和形成的基础知识和基本技能,也是进一步学习多位数笔算除法的基础。与实验教材相比,修订后的教材仍然十分重视落实双基,同时注重在使学生获得基本数学思想和基本数学活动经验方面及培养学生解决问题的能力方面有所突破。
1.调整例题设计,使教学内容和教学顺序更为合理
本单元的教学内容安排体现了“由简到繁,由易到难”的认知规律,按照“口算—笔算—用估算解决问题”的顺序分为三个层次编排。第一个层次是口算除法。根据《义务教育数学课程标准(2011版)》的要求,在实验教材的基础上,增加了几十几除以一位数(每一位都能除尽)的例题口算方法。在让学生用已有的口算方法解决新问题的同时,为理解笔算算理作铺垫。第二个层次是笔算除法(例1~例7)。(1)按照“由一般到特殊”的原则,先安排“商中没有0”的除法,再安排“商中有0”的除法,便于学生在掌握一般方法的基础上,自主探究特殊的计算方法。(2)按照“由易到难”的原则,先安排“两位数除以一位数”再安排“三位数除以一位数”;先安排“首位能除尽”的除法,再安排“首位不能被除尽”的除法。根据实验教材的反馈意见,增加了例3,教学三位数除以一位数,首位上能除尽的题目,减小教学的坡度。第三个层次是解决问题(例8和例9,重点教学如何将估算作为的一个有效策略来解决问题),这是整套修订后教材关于估算教学的一大特色。
2.重视对算理的理解和计算方法的总结和概括
(1)加强对算理的理解,沟通算理和算法的联系。第一,无论在教学口算还是笔算时,教材都注重通过直观操作帮助学生理解算理。例如,在“口算除法”的小节中创设了平均分彩色手工纸的情境,将手工纸设计为10张一沓,给出直观图展示分的过程和结果,为学生理解算理提供直观支撑。第二,在笔算除法中,重视沟通算理与算法的联系。分步给出了竖式的演算过程,并配合给出小棒图展示平均分的过程,还标注了每一个结果的含义或每一个结果的计算方法,帮助学生理解除法竖式的每一步的算理,实现了从算理到算法的自然过渡。
(2)重视对计算方法的总结和概括,培养归纳推理的能力。在学生获得大量计算活动经验的基础上,教材重视让学生对计算法则进行归纳和总结。在进一步掌握算法,形成计算技能的同时,培养学生归纳推理的能力。例如,在探索了大量的除数是一位数的除法笔算后,教材在第18页安排了学生通过讨论交流,总结计算方法的场景,虽然教材没出给出完整的计算法则的文本,但是通过学生的对话了突出了计算的基本步骤和要点。
在教学中,应重视对算理和计算规律的探求,培养学生的数学交流能力。首先,应充分利用学生已掌握的除法口算的经验,引导学生探索笔算除法的算理和算法,结合一定的直观操作活动,使学生理解算理。并通过让学生说一说每一个结果的含义及计算方法,沟通算理和算法的联系。再让学生说一说计算的程序,养成一种有序地操作和思考的习惯,并能自主概括出笔算除法的计算要点。其次,应给学生创造一个宽松的表达环境,先让学生在思考每个例题时,轻声地说出自己的思考过程;再让学生在小组(或与同桌)内说自己的思考过程;之后请能够清晰地、有条理地表达自己的思路的学生在班上交流,提供表达的范例。通过有层次地说过程、说算理,使学生自主归纳出口算或笔算除法的基本方法,同时学会用简洁的语言表述自己的思考过程,培养学生的数学交流能力。
三、复式统计表
根据《义务教育数学课程标准(2011版)》的要求,统计知识的教学整体后移,将原来安排在二年级下册的复式统计表移至本册教学,引导学生进一步体验统计的方法和意义。尤其是借助复式统计表的学习,进一步体会数据收集与整理的必要性以及数据分析方法的多样性,体会数据中蕴含的丰富信息及其应用价值。本单元教学内容的编排,将数据分析观念的培养贯穿于教学过程的各个环节。例如,例1,首先提出活动任务“要知道本班同学最喜欢的活动情况”——需要进行调查,获取数据;接着让学生用以前学习过的知识(单式统计表)来呈现数据,讨论两个统计表的共同点,发现还有更简洁的形式——合成一个表,形成复式统计表;最后通过回答问题,让学生感受复式统计表的优越性——表中包含的信息内涵更丰富;可直接看出男、女生每一项活动喜欢的人数,更便于比较;并可从不同的角度去解读或分析问题。以上三个环节环环相扣,层层递进,让学生完整地经历统计分析的全过程,经历“复式统计表”产生的过程并体会其必要性,有效地发展学生的数据分析观念。
尽管一、二年级时,学生已有过数据收集、整理、分析的经历,但是,统计方法和意义的体验、数据分析观念的发展不是一蹴而就,需要在多次的经历中不断积淀,逐步内化。因此,本单元教学时,切不可单纯地将复式统计表的认识和填写作为唯一目标,而应以更宽广的视角来审视与设计教学的过程。在学生应用已有的知识解决问题的基础上,引导学生从解决问题的角度,发现单式统计表存在的局限性,自主“创造”出功能更强的复式统计表,体会复式统计表的优越性,体验数据整理方法的多样性。最后,教师还要引导学生通过对复式统计表的多角度解读,获得对数据分析方法的切身体验,体会数据中包含的丰富信息。通过以上教学活动,让学生亲身经历、主动探究的过程,有利于学生进一步体验统计方法和意义。
四、两位数乘两位数
本单元包括口算乘法、两位数乘两位数的笔算乘法及运用连乘、连除两步计算解决问题。与实验教材相比,主要有以下几个方面的变化。
1.借助几何直观,帮助学生理解算理,掌握算法
在教学两位数乘一位数口算、两位数乘两位数(不进位)的计算方法时,教材安排了通过摆方块学习口算两位数乘一位数,利用点子图探索两位数乘两位数的算法。借助直观手段(方块、点子图)与算式相对应,数形结合,引导学生亲历建构两位数乘一位数口算、两位数乘两位数数学模型的过程,不仅能够帮助学生理解算理,掌握算法;而且为学生提供了数学思考、倾听、交流的机会,培养学生的数感和推理能力。
教学时,要留有充裕的时间,放手让学生尝试、探讨两位数乘两位数的笔算方法。在自主探索的基础上,适时组织讨论交流,以完善学生对计算过程与算理的理解。应为学生提供充分的从事数学活动的机会,让学生主动探索计算方法。例如,在探索两位数乘两位数(不进位)笔算乘法的算理时,首先要让学生尝试用已有的知识解决新的问题,并要求学生用点子图把自己的方法表示出来,让学生经历用图示表征解释算法的过程;然后,再交流展示多种解决问题的方法,并通过学生的汇报使学生明确如何划分点子图、算式表征了哪种计算方法,沟通图形表征、算式表征与计算方法之间的联系;最后,在理解竖式计算的算理时,可以让学生再次利用点子图,表示出竖式计算中每一步的结果,进而更好地理解其含义,掌握好算法。借助点子图,在加深学生对计算方法理解的同时,使学生逐步学会借助几何直观去解决问题,去表达和交流,有效地促进学生的全面发展。
2.注重运算规律的探索,培养数学思维能力
第一,有些计算的算法是一致或相似的,教材通过例题和练习的设计启发学生体会这些题目在算法上的一致性,促进计算方法的有效迁移。例如,口算乘法例1中,在学生学习了15×3
的口算方法后,接着呈现150×3,让学生体会这两道口算之间的联系和区别,利用旧知探究几百几十乘一位数的口算方法。
第二,练习中也设计了一类计算题(如练习十的第9题、练习十一的第10题),让学生通过一组题的计算,发现其中蕴含的计算规律,再直接写出其他各题的得数。让学生经历“猜想——计算——验证”的探究过程,为积累探索数学规律的活动经验提供机会。这样的练习既可提高学生的学习兴趣,又能渗透数学思想方法,培养学生的数学思维能力。
五、面积
本单元的主要学习内容包括四部分:面积和面积单位,长方形、正方形的面积计算,面积单位之间的进率,用所学的知识解决简单的实际问题。与实验教材相比,主要有以下几个方面的变化。
1.关注学生对面积概念的真正理解
教材在修订过程中删去了面积的定义,其目的是避免学生死记硬背,也避免教师将功夫用在指导学生叙述面积的定义上,而忽视了学生对面积含义的真正理解。从让学生观察身边熟悉的一些物体(黑板和国旗)的表面入手,明确“面”的概念;然后让学生通过观察比较两个面的大小,进而形成对“面”的大小的直观感受。在此基础上,教材采用描述的方式,借助具体事例说明“面积”的概念,并让学生依此说出其他一些物体表面的面积。
2.注重对面积概念认识的全面性
由于学生常常误认为只有向上摆放的“面”才有面积,因此教材在例1下面增加了“做一做”中,要求学生摸摸字典的封面和侧面,并比较这两个面的面积大小,使学生认识到侧面的大小就是侧面的面积。为避免学生一提到面积就想到长方形、正方形的面积,教材在练习十四中增加了不规则图形面积的比较,包括线段围成的图形和曲线围成的图形,其目的是突出面积概念的本质,让学生更全面地理解面积概念。
教师应结合具体教学内容,让学生不断感悟度量的本质,发展度量的意识。在教学中,可以从以下几方面加以落实。一是,制造认知冲突,使学生感受学习“面积单位”的必要性;二是,借助学生身边熟悉的事物,使学生建立面积单位的表象;三是,让学生经历用面积单位度量面积的过程,体验单位的价值;四是,梳理面积单位,形成结构化认识;五是,让学生结合实际选择和运用合适的面积单位解决问题。另外,在学生经历用面积单位度量长方形面积的基础上,应沟通长方形的长、宽与每行面积单位个数和行数之间的对应关系,适时进行长方形面积公式的抽象概括,帮助学生深入理解面积公式。
六、年、月、日
本单元主要包括:1.认识年、月、日,了解它们之间的关系;知道平年、闰年,了解24时计时法,会用24时计时法表示时刻;初步理解时间和时刻的意义,会计算简单的经过时间。在编排时,仍然注意精心选取和学生生活联系密切的素材,让学生直观地感受到了时间与人们的生活密不可分,对学生本单元的学习起到有效的支撑和促进作用。并注意为学生搭建自主学习、主动建构知识的平台,为学生提供较为充分的探究和思考的空间。与实验教材相比,加强几何直观,帮助学生理解抽象的概念。24时计时法比较抽象,教材借助多种直观方法帮助学生理解。在实验教材在钟面上标出内、外圈数呈现24时计时法的基础上,增加了“时间轴”,将一日经过的时间展开,在时间轴上对比给出一日内12时计时法和24时计时法所表示的整点的时间。将抽象的、不断流逝的时间与直观的数轴建立起联系,将“时刻”与数轴上的点建立联系,借助几何直观进一步帮助学生理解抽象的24时计时法。
在教学中,应关注学生的生活经验,让学生在生动具体的情境中感受时间,并采用多种途径引导学生探究、理解知识,发展应用能力。应当通过创设一些现实性情境,布置一些实践性任务或具有挑战性的问题,多途径地引导学生经历观察、记录、猜想、交流、推理等学习过程,使学生在自主建构知识、积累活动经验的同时,提升思维水平,发展应用能力。还可以设计一些观察、记录、归纳等学习活动,也可以尝试解决以实际问题为任务驱动,以便更好地挖掘教材资源,帮助学生积累解决问题的经验。
由于学生平时很少使用24时计时法,因此在用24时计时法表示下午几时或晚上几时时,学生往往感到不太习惯。教学时,应使用钟表模型等教具或学具,加强对钟面的观察和操作,引导学生观察一日时针正好走两圈,体会钟面数字、时间及圈数之间的关系,让学生积累丰富的表象;并适时出示时间轴,教学时可给出12时计时法表示的时刻,让学生在标出相应的24时计时法表示的时刻,借助几何直观帮助学生理解24时计时法。在教学计算简单的经过时间时,可以让学生通过观察钟面和直观演示,从出发时刻开始,让指针转动到到达时刻,把直观观察和线路图对应起来,并口算得出经过的时间;还可以出示时间轴,让学生在上面标出出发时刻和到达时刻,将抽象的时刻与直线上的点对应起来,将“经过时间”与两点间的距离建立联系,帮助学生思考。
七、小数的初步认识
本单元的学习内容主要包括认识小数和简单的小数加、减法两部分,与实验教材相比,降低了要求,小数的含义、大小比较和小数加、减法,仅限于一位小数。在实验教材以学生熟悉的日常事物和活动为场景,通过人民币、米制系统这些具体的量帮助学生认识小数的基础上,增加了面积、数尺或数轴这样的直观、半直观模型来帮助学生进一步认识小数。
本单元是小数的初步认识教学应把握以下两点:一是本单元是“小数的初步认识”,不要把小数作为一个抽象的“数”来研究,不要出现数位、计数单位等概念,应结合具体的“量”和面积、数轴等直观模型来认识;二是小数的大小比较和小数加、减法,仅限于一位小数。
八、数学广角——搭配(二)
学生在二年级上册“数学广角”的学习中已经接触了简单的排列和组合内容,在此基础上,本单元内容难度稍有提升,不仅数据加大了,而且问题情况也更加复杂,同时给出了更简洁、更抽象的表达方式,进一步培养学生有序、全面思考问题的能力。
例1,要求学生用4个数字(含0)组成没有重复数字的两位数,教学稍复杂的排列问题。与二年级上册的例1相比,不仅元素要(排列的数字)多了1个,而且增加的是0这个特殊元素。例2,通过搭配服装的问题,教学分步乘法计算原理。例3,要求找出4支球队的比赛(每两个队赛一场)次数,教学组合问题。与二年级上册的例2相比,素材不同,且多了一个元素。在二年级时,学生主要通过具体操作、观察、猜测等活动初步感受排列组合的思想和方法。本单元教学的重点应放在引导学生用更简洁、更抽象的方式把思考的过程和结果表达出来,培养学生有序、全面思考问题的能力。
排列和组合是很抽象的数学知识,教学中,需要通过多种活动把这些抽象的知识直观化、具体化,并鼓励学生用自己喜欢的方式表达思维过程和结果。既要指导学生根据实际问题采取枚举、连线等形式有序地、不重不漏地找出事物的排列数和组合数,还要注意不要拔高要求。只要求学生用图示的方式把所有的排列或组合情况列举出来(即有哪些排列或组合)即可,不要求抽象地计算出一共有多少种排列数或组合数,诸如排列、组合、分类计数原理、分步计数原理等名词,不必出现。

② 大学数学专业学哪些内容

1.课程名称:解析几何 Analytic Geometry 总学时: 64 周学时: 4 学分: 3 开课学期:一 修读对象:必修 预修课程:无 内容简介: 《解析几何》是学科基础课程,是所有数学专业及应用数学专业的主要的基础课。 它是用代数的方法来研究几何图形性质的一门学科。 《解析几何》包括向量与坐标,轨迹与 方程,平面与空间直线,柱面、锥面、旋转曲面与二次曲面,二次曲线的一般理论与二次曲 面的一般理论等。

2.课程名称:数学分析Ⅰ-Ⅳ Mathematical AnalysisⅠ-Ⅳ 总学时: 334 周学时: 4,4,6,5 学分: 18 开课学期:一,二,三,四 修读对象:必修 预修课程:无 内容简介: 《数学分析》是学科基础课程,是所有数学专业及应用数学专业的第一基础课。 它提供了利用函数分析和解决实际问题的方法, 培养学生严谨的抽象思维能力, 为学习其他 学科奠定基础。

3.课程名称:高等代数Ⅰ-Ⅱ Advanced AlgebraⅠ-Ⅱ 总学时: 198 周学时: 6,5 学分: 11 开课学期:二,三 修读对象:必修 预修课程:无 内容简介: 《高等代数》是学科基础课程,是所有数学专业及应用数学专业的主要的基础课。

4.课程名称:常微分方程 Ordinary Differential Equation 总学时: 72 周学时: 4 学分: 4 开课学期:五 修读对象:必修 预修课程:数学分析 高等代数 内容简介: 《常微分方程》作为一门专业基础课,是数学理论特别是微积分学联系实际的重要 渠道之一。

5.课程名称:复变函数 Complex Analysis 总学时: 72 周学时: 4 学分: 4 开课学期:五 修读对象:必修 预修课程:数学分析高等代数 内容简介: 《复变函数》是专业基础课,是函数论方面的基础课程,它是数学分析的后继课 程。 这门课程主要内容是复数与复变函数,解析函数,复变函数的积分,解析函数的幂级数表示 法,解析函数的洛朗展式志孤立奇点,留数理论及其应用,共形映射,解析延拓和调和函数。

6.课程名称:概率论与数理统计 Probability and Mathematical Statistics 总学时: 90 周学时: 5 学分: 5 开课学期:五 修读对象:必修 预修课程:数学分析高等代数 内容简介: 《概率论与数理统计》是专业基础课,本课程是唯一一门处理随机现象的数学类 必修课程, 本课程研究随机现象的统计规律性及统计推断, 设置这一门课的目的在于使学生 初步掌握处理随机现象的基本理论和方法, 并获得解决和分析某些实际问题的能力。

7.课程名称:初等数学研究 Elementary Mathematics Research 总学时: 72 周学时: 4 学分: 4 开课学期:六 修读对象:必修 预修课程:数学分析高等代数 内容简介: 《初等数学研究》是专业基础课,初等数学研究主要包括初等代数和初等几何两 部分内容,它是一门古老而又充满生命力的学科,是师范院校数学专业的必修课程。面向新 课程改革,本课程比较系统地阐述了初等数学的基础理论,其中包括集合与逻辑、数与式的 理论、函数、方程与不等式的理论、公理化方法与图形的演绎推理、几何变换、几何的向量 结构及坐标法、 排列组合与概率统计初步以及中学数学解题策略等内容。

8.课程名称:近世代数 Modern Algebra 总学时: 72 周学时:4 学分: 4 开课学期:六 修读对象:必修 预修课程:高等代数 内容简介: 《近世代数》是专业基础课,近世代数是近代数学的重要分支。近世代数比较全 面介绍了群、环、域的理论及一些具体的群、环和域。

9.课程名称:实变函数与泛函分析 Real Analysis and Function Analysis 总学时: 72 周学时: 4 学分: 4 开课学期:六 修读对象:必修 预修课程:高等代数 内容简介: 《实变函数与泛函分析》是专业基础课,是是数学各专业的一门重要分析基础课, 它是学生进一步学习其它分析数学分支和科学研究必不可少的基础知识, 通过实变函数部分 的学习, 应使学生较好的掌握测度与积分这个基本的数学工具, 特别是极限与积分顺序的交 换。 并且在一定程度上掌握集的分析方法。 泛函分析是学习和研究近代数学的纯粹数学与应 用数学,数理经济数值计算及现代工程技术理论。

10.课程名称:微分几何 Differential Geometry 总学时: 54 周学时: 3 学分: 3 开课学期:五 修读对象:选修 预修课程:数学分析 常微分方程 内容简介: 《微分几何》是素质拓展课程,是以数学分析为主要工具研究空间形式的一门学 科, 是几何学的一个分支, 由于微分几何这门学科在科学技术和其他自然科学的领域中日趋 广泛的渗透和应用,它的生命力至今还很旺盛,从内容和方法上不断有所更新。

11.课程名称:拓扑学 Topology 总学时: 54 周学时:3 学分: 3 开课学期:六 修读对象:选修 预修课程:数学分析 内容简介:拓扑学是专业拓展课程,是基础性的数学分支,它研究几何图形在连续变形(即 拓扑变换)下保持不变的性质,即拓扑性质。目前,拓扑学的概念、方法和理论已经广泛地 渗透到现代数学以及邻近学科的许多领域, 并且有了日益重要的应用。

12.课程名称:数学物理方程 The Equation of Mathematics and Physics 总学时:36 周学时:2 学分: 2 开课学期:七 修读对象:必修 预修课程:数学分析、高等代数、微分方程 内容简介: 《数学物理方程》是专业拓展课程。它综合运用前期数学知识解决有关的实际问 题,是联系数学建模和方程问题求解的桥梁。主要内容有三类最重要的偏微分方程(Laplace 方程, 热传导方程, 波动方程)的数学模型和各种定解条件的提出; 求解偏微分方程的基本方 法:分离变量法、积分变换法(Fourier 变换和 Laplace 变换) 、行波法、基本解和 Green 函 数法和两类最常用的特殊—柱函数 (Bessel 方程、 Bessel 函数性质及应用) 和球函数 (Legendre 方程和 Legendre 函数性质和应用) 。

13.课程名称:数学建模 Mathematical Modeling 总学时:54(18+36) 周学时:1+2 学分: 3 开课学期:五 修读对象:选修 预修课程:数学分析,高等代数,概率论与数理统计,计算方法 内容简介: 《数学建模》是专业拓展课程。主要培养学生综合运用数学知识解决实际问题的 能力与意识。主要内容有数学建模的一般方法(初等模型) ,微分方程与差分方程模型理论 与方法及应用(种群生态学模型、动态经济学模型、动力系统稳定性问题) 、模式识别模型 方法、理论与应用(代数方法、概率统计方法、人工神经网络方法) ,综合决策模型与应用 (层次分析法模型) 。

14.课程名称:运筹学 Operational Research 总学时: 36 周学时: 2 学分: 2 开课学期:七 修读对象:选修 预修课程:高等数学、线性代数 内容简介: 《运筹学》是素质拓展课程,主要内容包括:运筹学简史、线性规划与目标规划、 整数规划、非线性规划、动态规划、图论与网络分析、排论队简介、存贮论、对策论与决策 论简介。

15.课程名称:离散数学 Discrete Mathematics 总学时: 54 周学时: 3 学分: 3 开课学期:五 修读对象:选修 预修课程:数学分析 高等代数 内容简介: 《离散数学》是专业拓展课程,本课程的目的是介绍离散数学的基本概念和原理, 提高学生抽象思维和逻辑推理的能力。

16.课程名称:计算方法 Computing Method 总学时:54 周学时:3 学分: 3 开课学期:六 修读对象:必修 预修课程:数学分析、高等代数、微分方程 内容简介: 《计算方法》又称《数值分析》 ,是专业拓展课程,是研究各种数学问题求解的数 值计算方法。 学习此课的目的是设计算法求出数学模型的近似解。

17.课程名称:数学软件与实验 Mathematica and Mathematical Experiments 总学时:36(18+18) 周学时:1+1 学分: 3 开课学期:七 修读对象:选修 预修课程:数学分析,高等代数,微分方程,计算方法 内容简介: 《数学软件与实验》是专业拓展课程。本课程围绕对 Mathematica 软件的学习介 绍 15 个左右的数学实验:微积分基础、圆周率 π 的计算、最佳分数近似值、数列与级数、 素数、几何变换、无体运动、方程的迭代求解、函数极值的线搜索、最速降线、分形的概念 与产生、混沌现象、计算机模拟、密码、初等几何定理的计算机证明等。

18.课程名称:计算机网络 Computer Networks 总学时:54(18+36) 周学时:1+2 学分: 3 开课学期:五 修读对象:选修 预修课程:大学计算机基础Ⅰ-Ⅱ, 内容简介: 《计算机网络》是素质拓展课程。主要让学生掌握各种计算机网络的相关知识, 网络的设计理论、设计思路和方法技巧,了解主流的计算机网络协议,网络的发展趋势以及 它的应用前景。

19.课程名称:C 语言程序设计 Programming in C Language 总学时:54(36+18) 周学时:2+1 学分: 3 开课学期:五 修读对象:必修 预修课程:大学计算机基础Ⅰ-Ⅱ 内容简介: 《C 语言程序设计》是素质拓展课程。它是一种常用的程序设计语言,是编程人 员最广泛使用的工具。

20.课程名称:模糊数学 Fuzzy Mathematics 总学时: 54 周学时: 3 学分: 2 开课学期:六 修读对象:选修 预修课程:数学分析、高等代数、概率论、数理统计、离散数学 内容简介: 《模糊数学》是素质拓展课程,模糊数学是以模糊集合论为基础而发展起来的一 门新兴学科,是用数学处理各种各样的模糊现象。主要内容包括:模糊集的基本概念,模糊 模式识别,模糊聚类分析,模糊综合评判,集值统计与程度分析,综合分析,综合评判的逆 问题等。模糊数学扩大了数学的应用领域。

21.课程名称:数学专业英语 Specialty English in Mathematics 总学时: 54 周学时: 3 学分: 2 开课学期:七 修读对象:选修 预修课程:数学分析、高等代数、大学英语 内容简介: 《数学专业英语》是素质拓展课程,数学专业英语是为学生进一步深造数学,进行 数学方献检索工作或掌握计算机软件和科学计算中经常碰到的数学英语词汇而设立的一门 课程。 熟悉数学专业英语, 就等于掌握了研究数学的一种语言工具, 并为科技翻译培养素质。

22.课程名称:偏微分方程 Partial Differential Equa第8/10页
tions 总学时: 54 周学时: 3 学分: 2 开课学期:七 修读对象:选修 预修课程:数学分析 高等代数 常微分方程 内容简介: 《偏微分方程》是素质拓展课程,它是一门应用基础学科,一方面与现代数学中 分析、几何等基本理论密切相关,同时又在物理、力学、生物化学等自然科学及经济、金 融等社会科学中有重要的应用背景。

23.课程名称:竞赛数学 Competition Mathematics 总学时: 54 周学时: 3 学分: 2 开课学期:七 修读对象:选修 预修课程:中等数学解题研究 内容简介: 《竞赛数学》是素质拓展课程,作为一门数学教育学科,奥林匹克数学本身并不 是一个数学分支,它是一个类似于中学数学、大学数学、趣味数学等这样的特定数学范畴。

24.课程名称:数学基础教育案例研究 Case of Mathematics Teaching in Middle Schools 总学时: 54 周学时: 3 学分: 2 开课学期:七 修读对象:选修 预修课程:教育心理学,中学数学教材教法 内容简介: 《数学基础教育案例研究》是素质拓展课程,主要内容包括案例的数学教育主题 与背景分析、数学教育情景描述(或演示) 、数学教育注释和案例诠释与研究。

物理专业的数学课程有:
1.数学物理方法
Mathematical
课程编号:22189906 课程编号: 课程性质:专业必修课 课程性质: 课程内容: 数学是物理学的表述语言。 复变函数论和数学物理方程是学习理论物理课程的重 课程内容: 要的数学基础。 该课程包括复变函数论和数学物理方程两部分。 复变函数论部分 介绍复变函数的微积分,级数展开,留数及其应用以及积分变换等内容。数学物 理方程部分包括物理学中常用的几种数学物理方程的导入、 解数学物理方程的分 离变量法、 作为勒让德方程的解的勒让德多项式和作为贝塞尔方程的解的贝塞尔 函数及其性质以及格林函数的基本知识。该课程有着逻辑推理抽象严谨的特点, 同时与物理以及工程又有着紧密的联系, 是理工科学生必备的数学基础知识。

③ PISA和TIMSS项目中的数学评价对你的教学有什么启示急急

国际数学评价研究无论在评价理念、评价框架的构建还是评价方法上对我国数学教育评价体系的建立都具有一定的启发。
(一)正确的评价目标是构建科学评价体系的前提
基础数学教育评价应该以有效地促进数学教育质量,提高全体学生作为社会公民的数学素质为目标。但我国目前的数学教育评价似乎成为基础数学教育改革发展中的一个“瓶颈”,亟须改进。目前的数学教育评价主要倾向于高难度和高区分度,其主要目的是为甄别和选拔服务,在很大程度上抹杀了评价的诊断、反馈以及促进学生发展的作用,这显然不符合以评价促发展的理念。科学的数学教育评价体系应立足于学生未来的发展,客观地反映学生数学学习的情况,并能为数学教学提供有效的反馈和指导,多渠道地激励学生学习数学的信心,促进全体学生数学素养的发展。
(二)明确的评价范畴是构建多维度、多层面评价体系的保证
确立一个客观、科学的评价体系,首先需要明确评价的范畴。综观已有研究,与数学课程密切相关的知识和能力是大多数数学教育评价体系中最重要的方面,这也是评价对数学教学具有诊断与促进作用的最直接的体现。但是,以数学课程为依托的数学教育评价并不是“唯课程论评价”,应在充分了解和掌握数学课程的基础上,形成更为条理化和逻辑化的评价体系。具体讲,《全日制义务教育数学课程标准(实验稿)》(以下简称《课标》)目前是我国数学课程设置、课程实施、课程主要资源开发的基本依据,它是确定与数学课程相关的评价内容的最直接的来源,《课标》涵盖了数与代数、空间与图形、统计与概率、实践与综合应用四个方面。 [11]其中,数与代数、空间与图形、统计与概率均是根据数学学科知识来划分的,而实践与综合应用则不是针对具体的数学学科知识设置的,它主要是为了帮助学生“综合运用已有知识和经验,解决与生活经验密切联系的、具有一定挑战性和综合性的问题”。显然,评价时不应笼统地将上述四个方面置于同一维度、同一层面去考查,而且《课标》的教学目标是分学段设置的,较为简略,在确立评价项目时仍需对相关内容加以细化和条理化,加强其可操作性。此外,学生不可能在学校学习中获得自己终身所需要的所有数学知识,因此当前国际数学教育评价也日益注重学生的数学学习过程和数学能力的发展,而不仅仅囿于与数学课程相关的内容。学生在不同的生活情境中创造性地解决数学问题的能力及其思维过程、策略和方法也是数学评价体系中不可或缺的维度。数学能力的内涵是非常丰富的,不仅可以根据水平的不同划分为不同的层级,还应包括如何将情境结构化或模式化,如何表征不同的数学问题和情境,如何解决真实生活情境中的数学问题并推断出结果在该情境中的合理性等多个方面。对学生数学学习过程和能力的评价,尤其是解决实际情境中数学问题的能力的评价,有助于对学生数学学习素养的全面了解,也应当成为我国数学教育评价的重要内容。
(三)科学规范的实施过程是成功进行数学教育评价研究的保证
已有国际数学评价研究显示,严谨的研究设计、规范的测查过程是成功进行评价研究的保证。结合研究的具体环节来讲,首先要确保取样的随机性和代表性,对我国中小学生数学教育进行评价时,不仅应包括东西部和南北地区各大、中、小城市和农村,而且每个地区均应涵盖各级各类学校的学生,避免由于抽样的随意性而导致样本代表性不足;测试项目的确定要科学合理,在初步确定测题后,可在小范围内进行预测,以便于对测查中可能出现的情况进行了解,还可根据预测的结果筛选出信度、效度较好的项目作为正式测查项目;测查方式可以多样,在定量分析的同时还可以辅以定性的分析,这方面TIMSS等研究已经给我们提供了很好的范例,在此不再赘述;最后,测查结果的分析要真实、可靠,测查结果的信息收集要细致,不但统计数据要真实地反映学生数学知识掌握、数学能力发展的情况,而且细化的指标应能为个体数学素养的发展提供有价值的反馈。
基础数学教育评价不等同于简简单单的一次测查,仅仅通过一两次测查很难对我国数学教育质量进行系统、科学的监控。因此,我国数学教育质量的评价是一项长期的工程,我们期望能够建立一套科学的、实用的数学评价体系,对我国数学教育进行周期性的长期追踪评价研究,切实提高我国数学教学的质量,促进学生数学学习潜能的发展。

热点内容
地理学中的解释 发布:2025-02-23 19:39:36 浏览:313
逸夫小学开展师德师风学习典型活动方案 发布:2025-02-23 17:44:18 浏览:831
师德师风年度考核表 发布:2025-02-23 17:35:42 浏览:776
大小姐舞蹈视频教学 发布:2025-02-23 17:17:00 浏览:397
plc编程教学 发布:2025-02-23 17:15:28 浏览:869
教科版小学科学目录 发布:2025-02-23 12:29:40 浏览:588
天翼校园安卓 发布:2025-02-23 12:17:52 浏览:745
部编版二年级语文 发布:2025-02-23 10:38:20 浏览:609
送给老师的书 发布:2025-02-23 10:15:27 浏览:683
家庭教育的功能 发布:2025-02-23 07:16:56 浏览:463