什么叫做数学
Ⅰ 数学起源
1,什么是数学?
数学本身是一个历史的概念,数学的内涵随着时代的变化而变化,给数学下一个一劳永逸的定义是不可能的。我们在这里就从历史的角度来谈谈“什么是数学”这个问题。
公元前6世纪前,数学主要是关于“数”的研究。这一时期在古埃及、巴比伦、印度与中国等地区发展起来的数学,主要是计数、初等算术与算法,几何学则可以看作是应用算术。从公元前6世纪开始,希腊数学的兴起,突出了对“形”的研究。数学于是成为了关于数与形的研究。
公元前4世纪的希腊哲学家亚里士多德将数学定义为“数学是量的科学。”(其中“量”的涵义是模糊的,不能单纯理解为“数量”。)
直到16世纪,英国哲学家培根将数学分为“纯粹数学”与“混合数学”。在17世纪,笛卡儿认为:“凡是以研究顺序和度量为目的科学都与数学有关。”在19世纪,根据恩格斯的论述, 数学可以定义为:“数学是研究现实世界的空间形式与数量关系的科学。”
从20世纪80年代开始,学者们将数学简单的定义为关于“模式”的科学:“数学这个领域已被称为模式的科学, 其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性。”
二.数与形的概念的产生
人类在蒙昧时代就已具有识别事物多寡的能力。原始人在采集、狩猎等生产活动中首先注意到一只羊与许多羊、一头狼与整群狼在数量上的差异。通过一只羊与许多羊、一头狼与整群狼的比较,就逐渐看到了一只羊、一头狼、一条鱼、一棵树等等之间存在着某种共通的东西(即它们的单位性)。当对数的认识变得越来越明确时,人们感到有必要以某种方式来表达事物的这一属性,于是导致了记数。
古代的记数方法:
1. 手指计数:利用两只手的十个手指。亚里士多德指出:十进制的广泛采用,
只不过是我们绝大多数人生来具有10个手指这一事实的结果。
2. 石子记数:在地上摆小石子,但记数的石子堆很难长久保存。
3. 结绳记数:在一根绳子上打结来表示事物的多少。比如今天猎到五头羊,就
以在绳子上打五个结来表示;约定三天后再见面,就在绳子上打三个结,过一天解一个结;等等。
秘鲁的印加族人(印第安人中的一部分)古时(公元前1500年前)每收进一捆庄稼,就在绳上打个结,用来记录收获的多少。
中国古代文献《周易 系辞下》有“上古结绳而治”之说。“结绳而治”即结绳记数或结绳记事。
结绳记数这种方法,不但在远古时候使用,而且一直在某些民族中沿用下来。宋朝人在一本书中说:“鞑靼无文字,每调发军马,即结草为约,使人传达,急于星火。”这是用结草来调发军马,传达要调的人数。
其他如藏族、彝族等,虽都有文字,但在一般不识字的人中间都还长期使用这种方法。中央民族大学就收藏着一副高山族的结绳,由两条绳子组成:每条上有两个结,再把两条绳结在一起。
4. 刻痕记数:1937年在维斯托尼斯(摩拉维亚)发现一根40万年前的幼狼前
肢骨,7英寸长,上面有55道很深的刻痕。这是已发现的用刻痕方法计数的最早资料。直到今天,在欧、亚、非大陆的某些地方,仍然有一些牧人用在棒上刻痕的方法来计算他们的牲畜。
直到距今大约五千年前,终于出现了书写记数以及相应的记数系统。我们介绍几种古老文明的早期记数系统。(按时代顺序)
1. 古埃及的象形数字(公元前3400年左右)
2. 巴比伦楔形文字(公元前2400年左右)
3. 中国甲骨文数字(公元前1600年左右)
4. 希腊阿提卡数字(公元前500年左右)
5. 中国筹算数码(公元前500年左右)
6. 印度婆罗门数字(公元前300年左右)
7. 玛雅数字(?)
而我们现代广泛使用的是阿拉伯数字。其实,这些阿拉伯数字并不是阿拉伯人发明创造的,而是发源于古印度,后来被阿拉伯人掌握、改进,并传到了西方,西方人便将这些数字称为阿拉伯数字。以后,以讹传讹,世界各地都认同了这个说法。
与数的概念形成一样,人类最初的几何知识也是他们从对形的直觉中萌发出来的,例如,不同种族的人都注意到了圆月和挺拔的松树在形象上的区别。几何学便是建立在对这类从自然界提取出来的“形”的总结的基础之上。例如,一个平面只不过是一片平地的表面,而一条直线则是拉紧了的一段绳子,来自希腊文的英文Hypotenuse(斜边、弦)原先的意思就是“拉紧”。同样,三角形、圆、正方形、长方形等一系列几何形式的概念也来自于人们的观察和实践。
在不同的地区,几何学的这种实践来源方向不尽相同。
1. 古埃及几何学:正如古罗马历史学家希罗多德所指出的,埃及的几何学是“尼
罗河的馈赠”。一年一度的尼罗河洪水冲毁了某个人的土地,那么他就必须向
法老报告所受的损失。法老会派专人来测量所失去的土地,再按相应的比例减税。这样一来,几何学就产生并发展起来了。这类专门负责测量事物的人有专门的名称,叫做“司绳”。
2. 巴比伦人的几何学:也是源于实际的测量,它的重要特征是其算术性质,至
少在公元前1600年,他们就已熟悉长方形、直角三角形和等腰三角形和某些梯形的面积计算。
3. 古印度几何学:起源与宗教实践密切相关,公元前8世纪至5世纪形成的所
谓“绳法经”,便是关于祭坛与寺庙建造中的几何问题及其求解法则的记载。
4. 古代中国几何学:起源更多地与天文观测相联系。中国最早的数学经典《周
髀算经》(至晚在公元前2世纪成书)事实上是一部讨论西周初年天文测量中所用数学方法的著作
Ⅱ 数学的性质、定义、定理区别
数学的性质、定义、定理区别:
1、数学性质:是数学表观和内在所具有的特征,一种事物区别于其他事物的属性。
如:线面垂直的判定定理:直线垂直于平面内的两条相交直线,则直线垂直于这个平面。
Ⅲ 什么叫做数学概念
数学概念(mathematical concepts)是人脑对现实对象的数量关系和空间形式的本质特征的一种反映形式,即一种数学的思维形式。
在数学中,作为一般的思维形式的判断与推理,以定理、法则、公式的方式表现出来,而数学概念则是构成它们的基础。正确理解并灵活运用数学概念,是掌握数学基础知识和运算技能、发展逻辑论证和空间想象能力的前提。
Ⅳ 数学定义是什么意思
数学定义:是人类为了展示和运用通过已经理解和掌握的在实践中通过观察、记录和总结找出的用指定符号代表自然界各种元素,再经过运算得到结果后来代表自然规律的一种方法.2、作用:理解和掌握这些自然规律最大的作用是预测未来.3、特点:必须通过已经知道的情况才能计算出未知的情况.4、特性:对已经知道的情况必须用指定的符号来表示.5、局限性:只能通过特殊的已知情况计算出特殊的未知情况.6、必然性:通过现有的已知情况永远无法计算出全部的未知情况.7、原因:宇宙是无限大也是无限小的.无限就意味着什么都不存在,神马都是浮云,数学也是,它只是人类自以为是的东西,只对于人类有用.8、举例:圆是360度,怎么来的?居然是根据.嗨,这么多年了才意识到这居然就是数学.9、结论:数学知识和历史一样都只是生物的活动在自然界留下的印记!
Ⅳ 什么叫做数学概念
数学是一门以抽象为特征的学科,这一点在其概念上尤为突出。在简单的计算中,我们便能看到抽象性的影子。我们用抽象的数字进行运算,而不是将它们与具体的物体联系起来。例如,我们在学校学习的抽象的乘法表,就是数字的乘法表,而不是苹果的数量或价钱的乘积。同样,几何学中的直线,也不是实际的绳子,而是舍弃了所有其他性质,只留下在一定方向上无限延伸的性质。这些都是数学概念的抽象特征。
数学中的概念,如整数和几何图形,是最基础的概念。它们是从大量的实际经验中分析和概括出来的。比如,整数的概念,起初是与具体的物体集合相联系,然后逐渐抽象为单一的数字,最后才发展成为任意整数的概念。几何图形也是一样,人们从自然界中提取出几何形状,如圆、直线、平面等,然后逐渐抽象为长度、面积、体积等概念。
数学概念的形成,并不是纯粹思维的产物,而是社会实践和经验的总结。数学概念是在先前的概念基础上,通过一系列的抽象与概括过程而产生的。比如,虚数就是作为方程x²=-1的根,在数学内部产生的。罗巴切夫斯基的几何学,也是基于几何的基本概念,而对空间形式和关系的一种新的理解。
数学概念的形成还有一个特点,那就是它们的定义并不是绝对严格和终结的。比如,变量和函数的概念,经过多个数学家的探讨和发展,直到19世纪才形成了现代的定义。这些概念的定义,随着数学理论的发展,不断地精确化和概括化。
总的来说,数学概念的形成和发展,是社会实践和经验的总结,它们在不断发展变化中。我们不能认为数学概念是绝对精确和终结的,它们随着科学的发展而发展和精确化。
Ⅵ 为什么叫数学叫做学
数学”一词是来自希腊语,字面意思有学习、科学之意。它起源于人类早期的生产活动,其基本概念的精炼早在古埃及、美索不达米亚及古印度就已经出现。
在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”)。
向左转|向右转
(6)什么叫做数学扩展阅读:
发展
一、商周数学
大约4000年前夏朝的建立,标志着中国进入了奴隶社会。随着社会的发展,商代出现了比较成熟的文字---甲骨文,西周则演变为金文,即刻在青铜器上的铭文。
二、秋战国时代的数学
春秋战国时代,中国正经历着由奴隶社会到封建社会的巨大变革,学术思想十分活跃.这一时期形成的诸子百家,对科学文化影响极大。数学园地更是生机盎然,朝气勃勃。
四、周髀算经
《周髀》是西汉初期的一部天文、数学著作。髀是量日影的标杆(亦称表),因书中记载了不少周代的天文知识,故名《周髀》。唐初凤选定数学课本时,取名《周髀算经》。