当前位置:首页 » 语数英语 » 高考数学知识点

高考数学知识点

发布时间: 2020-11-18 17:26:05

A. 高中数学知识点详细总结

高中数学重点有什么?该怎样攻克?

高中数学重点内容还有很多.这些重点都是保持多年来的经验,他们分析过高考数学的题型,高中数学重点分为以下几个部分.

向量讲解

其实高中数学重点就是在必修的里面.必修是每个高中生都必须学习的,不管是分不分文理科,他们都是会学习的.很多重点都是在必修里面,然而在选秀当中就是讲一些统计之类的问题,这都是我们在生活当中就会学到的,所以这些都不是重点,重中之重就是在必修的课本当中.

B. 高中数学所有知识点归纳

怎样学好高中数学?首先要摘要答题技巧

现在数学这个科目也是必须学习的内容,但是现在还有很多孩子们都不喜欢这个科目,原因就是因为他们不会做这些题,导致这个科目拉他们的总分,该怎样学好高中数学?对于数学题,他们都分为哪些类型?

高中数学试卷

怎样学好高中数学这也是需要我们自己群摸索一些学习的技巧,找到自己适合的方法,这还是很关键的.

C. 数学高考知识点

2013年四川理科高考考纲:
考试范围如下:
数学1(必修):集合、函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数).
数学2(必修):立体几何初步、平面解析几何初步.
数学3(必修):算法初步、统计、概率.
数学4(必修):基本初等函数Ⅱ(三角函数)、平面上的向量、三角恒等变换.
数学5(必修):解三角形、数列、不等式.
选修2-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何.
选修2-2:导数及其应用(不含“导数及其应用”中“(4)生活中的优化问题举例”、“(5)定积分与微积分基本定理”及“(6)数学文化”)、数系的扩充与复数的引入.
选修2-3:计数原理、统计与概率(不含“统计与概率”(1)“概率”中“④通过实例,理解取有限值的离散型随机变量方差的概念,能计算简单离散型随机变量的方差,并能解决一些实际问题”、“⑤通过实际问题,借助直观,认识正态分布曲线的特点及曲线所表示的意义”及(2)“统计案例”)
难度控制:
试题按其难度分为容易题、中等难度题和难题.难度在0.7以上的试题为容易题,难度为0.4—0.7的试题是中等难度题,难度在0.4以下的试题为难题.试卷由三种难度的试题组成,并以中等难度题为主.命题时根据有关要求和教学实际合理控制三种难度试题的分值比例(大致控制在3:5:2)及全卷总体难度.

考试范围与要求层次
考试内容
要求层次
A
B
C
集合与常用逻辑用语
集合
集合的含义


集合的表示



集合间的基本关系



集合的基本运算



常用逻辑用语
命题的概念



“若p,则q”形式的命题及其逆命题、否命题与逆否命题


四种命题的相互关系



充要条件



简单的逻辑联结词


全称量词与存在量词



函数概念与指数函数、对数函数、幂函数
函数
函数的概念与表示



映射


单调性与最大(小)值



奇偶性


指数函数
有理指数幂的含义



实数指数幂的意义


幂的运算



指数函数的概念、图象及其性质



对数函数
对数的概念及其运算性质



换底公式


对数函数的概念、图象及其性质



指数函数 与对数函数 互为反函数( 且 )


幂函数
幂函数的概念


幂函数
的图象


函数与方程
函数的零点


二分法


函数的模型及其应用
函数模型的应用


三角函数、三角恒等变化、解三角形
任意角的概念、弧度制
任意角的概念和弧度制


弧度与角度的互化



三角函数
任意角的正弦、余弦、正切的定义



单位圆中的三角函数线及其应用



诱导公式



同角三角函数的基本关系式



周期函数的定义、三角函数的周期


函数 的图象和性质



函数 的图象



用三角函数解决一些简单的实际问题



三角恒等变换
两角和与差的正弦、余弦、正切公式



二倍角的正弦、余弦、正切公式



简单的三角恒等变换



解三角形
正弦定理、余弦定理



解三角形


数列
数列的概念
数列的概念和表示法


等差数列、等比数列
等差数列的概念



等比数列的概念



等差数列的通项公式与前n项和公式



等比数列的通项公式与前n项和公式



用等差数列、等比数列的有关知识解决一些简单的实际问题



不等式
不等关系
不等式的基本性质



一元二次不等式
解一元二次不等式



简单的线性规划
用二元一次不等式组表示平面区域



简单的二元线性规划问题



基本不等式

基本不等式 的证明过程


用基本不等式解决简单的最大(小)值问题


平面向量
平面向量
平面向量的相关概念



向量的线性运算
向量加法、减法及其几何意义



向量的数乘及其几何意义



两个向量共线



平面向量的基本定理及坐标表示
平面向量的基本定理


平面向量的正交分解及其坐标表示



用坐标表示平面向量的加法、减法与数乘运算



用坐标表示的平面向量共线的条件



平面向量的数量积
数量积及其物理意义



数量积与向量投影的关系


数量积的坐标表示



用数量积表示两个向量的夹角



用数量积判断两个平面向量的垂直关系



向量的应用
用向量方法解决简单的问题



导数及其应用
导数概念及其几何意义
导数的概念


导数的几何意义



导数的运算
根据导数定义求函数
的导数


导数的四则运算



简单的复合函数(仅限于形如 的导数)



导数公式表



导数在研究函数中的应用
利用导数研究函数的单调性(其中多项式函数不超过三次)



函数的极值、最值(其中多项式函数不超过三次)


数系的扩充与复数的引入
复数的概念与运算
复数的基本概念,复数相等的条件



复数的代数表示法及几何意义


复数代数形式的四则运算



复数代数形式加减法的几何意义


立体几何初步
空间几何体
柱、锥、台、球及其简单组合体


简单空间图形的三视图



斜二测法画简单空间图形的直观图



球、棱柱、棱锥的表面积和体积


点、直线、平面间的位置关系
空间线、面的位置关系



公理1、公理2、公理3、公理4、定理[1]


线、面平行或垂直的判定



线、面平行或垂直的性质



用公理、定理和已获得的结论证明一些空间图形的简单命题


空间向量与立体几何
空间直角坐标系
空间直角坐标系



空间两点间的距离公式



空间向量及其运算
空间向量的概念


空间向量基本定理及其意义


空间向量的正交分解及其坐标表示



空间向量的线性运算及其坐标表示



空间向量的数量积及其坐标表示



运用向量的数量积判断向量的共线与垂直



空间向量的应用
直线的方向向量



平面的法向量



向量语言表述线、面位置关系



是否合为一条
向量方法证明有关线、面位置关系的一些定理



线线、线面、面面的夹角


平面解析几何初步
直线与方程
直线的倾斜角和斜率



过两点的直线斜率的计算公式



两条直线平行或垂直的判定



直线方程的点斜式、两点式及一般式



两条相交直线的交点坐标



两点间的距离公式、点到直线的距离公式



两条平行线间的距离



圆与方程
圆的标准方程与一般方程



直线与圆的位置关系



两圆的位置关系



用直线和圆的方程解决简单的问题


圆锥曲线与方程
圆锥曲线
椭圆的定义及标准方程



椭圆的几何图形及简单性质



抛物线的定义及标准方程



抛物线的几何图形及简单性质



双曲线的定义及标准方程


双曲线的几何图形及简单性质


直线与圆锥曲线的位置关系



曲线与方程
曲线与方程的对应关系


算法初步
算法及其程序框图
算法的含义


程序框图的三种基本逻辑结构



基本算法语句
输入语句、输出语句、赋值语句、条件语句、循环语句



计数原理
加法原理、乘法原理
分类加法计数原理、分步乘法计数原理



用分类加法计数原理或分步乘法计数原理解决一些简单的实际问题



排列与组合
排列、组合的概念



排列数公式、组合数公式



用排列与组合解决一些简单的实际问题



二项式定理
用计数原理证明二项式定理



用二项式定理解决与二项展开式有关的简单问题



统计
随机抽样
简单随机抽样



分层抽样和系统抽样


用样本估计总体
概率分布表、直方图、折线图、茎叶图



样本数据的基本的数字特征(如平均数、标准差)



用样本的频率分布估计总体分布,用样本的基本数字特征估计总体的基本数字特征



变量的相关性
线性回归方程



概率
事件与概率
随机事件的概率


两个互斥事件的概率加法公式


古典概型
古典概型



几何概型
几何概型


概率
取有限值的离散型随机变量及其分布列



超几何分布



条件概率


事件的独立性


n次独立重复试验与二项分布



取有限值的离散型随机变量的均值



[1] 公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.
公理2:过不在一条直线上的三点,有且只有一个平面.
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
公理4:平行于同一条直线的两条直线平行.
定 理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补.

D. 高考数学重点部分都有什么

函数很重要,大部分题都与函数有关联,圆锥曲线,立体几何,数列,函数极其重要

E. 高中数学高考知识点

数学知识之间都有着千丝万缕的联系,仅仅想凭着对章节的理解就能得到高分的时代已经远去了。所以考生在解答数学试题时要有正确的思路,才能避免错失分数的机会。以下是高考数学解题五大思路,供大家学习参考。

高考数学解题思想一:函数与方程思想

函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系(或构造函数)运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。利用转化思想我们还可进行函数与方程间的相互转化。

高考数学解题思想二:数形结合思想

中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此我们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。

高考数学解题思想三:特殊与一般的思想

用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,我们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样精彩。

高考数学解题思想四:极限思想解题步骤

极限思想解决问题的一般步骤为:(1)对于所求的未知量,先设法构思一个与它有关的变量;(2)确认这变量通过无限过程的结果就是所求的未知量;(3)构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。

高考数学解题思想五:分类讨论思想

我们常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。在分类讨论解题时,要做到标准统一,不重不漏。

详细内容看文件,希望采纳谢谢

F. 高考数学知识点

高中数学知识点总结
1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

中元素各表示什么?

注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。

3. 注意下列性质:

(3)德摩根定律:

4. 你会用补集思想解决问题吗?(排除法、间接法)

的取值范围。

6. 命题的四种形式及其相互关系是什么?
(互为逆否关系的命题是等价命题。)
原命题与逆否命题同真、同假;逆命题与否命题同真同假。
7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?
(一对一,多对一,允许B中有元素无原象。)
8. 函数的三要素是什么?如何比较两个函数是否相同?
(定义域、对应法则、值域)
9. 求函数的定义域有哪些常见类型?

10. 如何求复合函数的定义域?

义域是_____________。

11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?

12. 反函数存在的条件是什么?
(一一对应函数)
求反函数的步骤掌握了吗?
(①反解x;②互换x、y;③注明定义域)

13. 反函数的性质有哪些?
①互为反函数的图象关于直线y=x对称;
②保存了原来函数的单调性、奇函数性;

14. 如何用定义证明函数的单调性?
(取值、作差、判正负)
如何判断复合函数的单调性?

∴……)
15. 如何利用导数判断函数的单调性?

值是( )
A. 0 B. 1 C. 2 D. 3

∴a的最大值为3)
16. 函数f(x)具有奇偶性的必要(非充分)条件是什么?
(f(x)定义域关于原点对称)

注意如下结论:
(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。

17. 你熟悉周期函数的定义吗?

函数,T是一个周期。)

如:

18. 你掌握常用的图象变换了吗?

注意如下“翻折”变换:

19. 你熟练掌握常用函数的图象和性质了吗?

的双曲线。

应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程

②求闭区间[m,n]上的最值。
③求区间定(动),对称轴动(定)的最值问题。
④一元二次方程根的分布问题。

由图象记性质! (注意底数的限定!)

利用它的单调性求最值与利用均值不等式求最值的区别是什么?

20. 你在基本运算上常出现错误吗?

21. 如何解抽象函数问题?
(赋值法、结构变换法)

22. 掌握求函数值域的常用方法了吗?
(二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。)
如求下列函数的最值:

23. 你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗?

24. 熟记三角函数的定义,单位圆中三角函数线的定义

25. 你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗?

(x,y)作图象。

27. 在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。

28. 在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗?

29. 熟练掌握三角函数图象变换了吗?
(平移变换、伸缩变换)
平移公式:

图象?

30. 熟练掌握同角三角函数关系和诱导公式了吗?

“奇”、“偶”指k取奇、偶数。

A. 正值或负值 B. 负值 C. 非负值 D. 正值

31. 熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗?
理解公式之间的联系:

应用以上公式对三角函数式化简。(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。)
具体方法:

(2)名的变换:化弦或化切
(3)次数的变换:升、降幂公式
(4)形的变换:统一函数形式,注意运用代数运算。

32. 正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形?

(应用:已知两边一夹角求第三边;已知三边求角。)

33. 用反三角函数表示角时要注意角的范围。

34. 不等式的性质有哪些?

答案:C
35. 利用均值不等式:

值?(一正、二定、三相等)
注意如下结论:

36. 不等式证明的基本方法都掌握了吗?
(比较法、分析法、综合法、数学归纳法等)
并注意简单放缩法的应用。

(移项通分,分子分母因式分解,x的系数变为1,穿轴法解得结果。)
38. 用“穿轴法”解高次不等式——“奇穿,偶切”,从最大根的右上方开始

39. 解含有参数的不等式要注意对字母参数的讨论

40. 对含有两个绝对值的不等式如何去解?
(找零点,分段讨论,去掉绝对值符号,最后取各段的并集。)

证明:

(按不等号方向放缩)
42. 不等式恒成立问题,常用的处理方式是什么?(可转化为最值问题,或“△”问题)

43. 等差数列的定义与性质

0的二次函数)

项,即:

44. 等比数列的定义与性质

46. 你熟悉求数列通项公式的常用方法吗?
例如:(1)求差(商)法

解:

[练习]

(2)叠乘法

解:

(3)等差型递推公式

[练习]

(4)等比型递推公式

[练习]

(5)倒数法

47. 你熟悉求数列前n项和的常用方法吗?
例如:(1)裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

解:

[练习]

(2)错位相减法:

(3)倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。

[练习]

48. 你知道储蓄、贷款问题吗?
△零存整取储蓄(单利)本利和计算模型:
若每期存入本金p元,每期利率为r,n期后,本利和为:

△若按复利,如贷款问题——按揭贷款的每期还款计算模型(按揭贷款——分期等额归还本息的借款种类)
若贷款(向银行借款)p元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,第n次还清。如果每期利率为r(按复利),那么每期应还x元,满足

p——贷款数,r——利率,n——还款期数
49. 解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。

(2)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一

(3)组合:从n个不同元素中任取m(m≤n)个元素并组成一组,叫做从n个不

50. 解排列与组合问题的规律是:
相邻问题捆绑法;相间隔问题插空法;定位问题优先法;多元问题分类法;至多至少问题间接法;相同元素分组可采用隔板法,数量不大时可以逐一排出结果。
如:学号为1,2,3,4的四名学生的考试成绩

则这四位同学考试成绩的所有可能情况是( )
A. 24 B. 15 C. 12 D. 10
解析:可分成两类:

(2)中间两个分数相等

相同两数分别取90,91,92,对应的排列可以数出来,分别有3,4,3种,∴有10种。
∴共有5+10=15(种)情况
51. 二项式定理

性质:

(3)最值:n为偶数时,n+1为奇数,中间一项的二项式系数最大且为第

表示)

52. 你对随机事件之间的关系熟悉吗?

的和(并)。

(5)互斥事件(互不相容事件):“A与B不能同时发生”叫做A、B互斥。

(6)对立事件(互逆事件):

(7)独立事件:A发生与否对B发生的概率没有影响,这样的两个事件叫做相互独立事件。

53. 对某一事件概率的求法:
分清所求的是:(1)等可能事件的概率(常采用排列组合的方法,即

(5)如果在一次试验中A发生的概率是p,那么在n次独立重复试验中A恰好发生

如:设10件产品中有4件次品,6件正品,求下列事件的概率。
(1)从中任取2件都是次品;

(2)从中任取5件恰有2件次品;

(3)从中有放回地任取3件至少有2件次品;
解析:有放回地抽取3次(每次抽1件),∴n=103
而至少有2件次品为“恰有2次品”和“三件都是次品”

(4)从中依次取5件恰有2件次品。
解析:∵一件一件抽取(有顺序)

分清(1)、(2)是组合问题,(3)是可重复排列问题,(4)是无重复排列问题。
54. 抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。
55. 对总体分布的估计——用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差。
要熟悉样本频率直方图的作法:

(2)决定组距和组数;
(3)决定分点;
(4)列频率分布表;
(5)画频率直方图。

如:从10名女生与5名男生中选6名学生参加比赛,如果按性别分层随机抽样,则组成此参赛队的概率为____________。

56. 你对向量的有关概念清楚吗?
(1)向量——既有大小又有方向的量。

在此规定下向量可以在平面(或空间)平行移动而不改变。
(6)并线向量(平行向量)——方向相同或相反的向量。
规定零向量与任意向量平行。

(7)向量的加、减法如图:

(8)平面向量基本定理(向量的分解定理)

的一组基底。
(9)向量的坐标表示

表示。

57. 平面向量的数量积

数量积的几何意义:

(2)数量积的运算法则

[练习]

答案:

答案:2

答案:
58. 线段的定比分点

※. 你能分清三角形的重心、垂心、外心、内心及其性质吗?
59. 立体几何中平行、垂直关系证明的思路清楚吗?
平行垂直的证明主要利用线面关系的转化:

线面平行的判定:

线面平行的性质:

三垂线定理(及逆定理):

线面垂直:

面面垂直:

60. 三类角的定义及求法
(1)异面直线所成的角θ,0°<θ≤90°

(2)直线与平面所成的角θ,0°≤θ≤90°

(三垂线定理法:A∈α作或证AB⊥β于B,作BO⊥棱于O,连AO,则AO⊥棱l,∴∠AOB为所求。)
三类角的求法:
①找出或作出有关的角。
②证明其符合定义,并指出所求作的角。
③计算大小(解直角三角形,或用余弦定理)。
[练习]
(1)如图,OA为α的斜线OB为其在α内射影,OC为α内过O点任一直线。

(2)如图,正四棱柱ABCD—A1B1C1D1中对角线BD1=8,BD1与侧面B1BCC1所成的为30°。
①求BD1和底面ABCD所成的角;
②求异面直线BD1和AD所成的角;
③求二面角C1—BD1—B1的大小。

(3)如图ABCD为菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB与面PCD所成的锐二面角的大小。

(∵AB∥DC,P为面PAB与面PCD的公共点,作PF∥AB,则PF为面PCD与面PAB的交线……)
61. 空间有几种距离?如何求距离?
点与点,点与线,点与面,线与线,线与面,面与面间距离。
将空间距离转化为两点的距离,构造三角形,解三角形求线段的长(如:三垂线定理法,或者用等积转化法)。
如:正方形ABCD—A1B1C1D1中,棱长为a,则:
(1)点C到面AB1C1的距离为___________;
(2)点B到面ACB1的距离为____________;
(3)直线A1D1到面AB1C1的距离为____________;
(4)面AB1C与面A1DC1的距离为____________;
(5)点B到直线A1C1的距离为_____________。

62. 你是否准确理解正棱柱、正棱锥的定义并掌握它们的性质?
正棱柱——底面为正多边形的直棱柱
正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。

正棱锥的计算集中在四个直角三角形中:

它们各包含哪些元素?

63. 球有哪些性质?

(2)球面上两点的距离是经过这两点的大圆的劣弧长。为此,要找球心角!
(3)如图,θ为纬度角,它是线面成角;α为经度角,它是面面成角。

(5)球内接长方体的对角线是球的直径。正四面体的外接球半径R与内切球半径r之比为R:r=3:1。

积为( )

答案:A
64. 熟记下列公式了吗?

(2)直线方程:

65. 如何判断两直线平行、垂直?

66. 怎样判断直线l与圆C的位置关系?
圆心到直线的距离与圆的半径比较。
直线与圆相交时,注意利用圆的“垂径定理”。
67. 怎样判断直线与圆锥曲线的位置?

68. 分清圆锥曲线的定义

70. 在圆锥曲线与直线联立求解时,消元后得到的方程,要注意其二次项系数是否为零?△≥0的限制。(求交点,弦长,中点,斜率,对称存在性问题都在△≥0下进行。)

71. 会用定义求圆锥曲线的焦半径吗?
如:

通径是抛物线的所有焦点弦中最短者;以焦点弦为直径的圆与准线相切。
72. 有关中点弦问题可考虑用“代点法”。

答案:
73. 如何求解“对称”问题?
(1)证明曲线C:F(x,y)=0关于点M(a,b)成中心对称,设A(x,y)为曲线C上任意一点,设A'(x',y')为A关于点M的对称点。

75. 求轨迹方程的常用方法有哪些?注意讨论范围。
(直接法、定义法、转移法、参数法)
76. 对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。

G. 高考数学重点

集合的思想及应用
充要条件的判定
运用向量法解题
三个“二次”及其关系
求解函数解析式
函数的值域及求法
函数的单调性与奇偶性
指数函数、对数函数问题
函数的图象及其变换
函数中的综合问题
等差数列与等比数列的性质应用数列的通项与求和
数列的综合应用问题
三角函数的图象与性质
三角函数式的化简与求值
解三角形及其应用
不等式的证明策略
解不等式
不等式的综合应用
直线方程及其应用
轨迹方程的求法求圆锥曲线方程
直线与圆锥曲线
圆锥曲线综合题
高考数学中的垂直与平行问题求空间的角
求空间距离 排列、组合的应用问题
概率
数学归纳法解题
极限及其运算
函数的连续性及其应用
导数的运算法则及基本公式应用
导数的应用问题
函数与方程思想
数形结合思想
分类讨论思想
化归思想
探索性问题
应用性问题

H. 高考数学知识点有哪些

高考数学知识点,

这个题目太大了。

可上你省教育考试院官网,

查看高考各学科大纲。

最直接的是问你的数学老师

I. 高中数学知识点总结

怎样学好高中数学?首先要摘要答题技巧

现在数学这个科目也是必须学习的内容,但是现在还有很多孩子们都不喜欢这个科目,原因就是因为他们不会做这些题,导致这个科目拉他们的总分,该怎样学好高中数学?对于数学题,他们都分为哪些类型?

高中数学试卷

怎样学好高中数学这也是需要我们自己群摸索一些学习的技巧,找到自己适合的方法,这还是很关键的.

热点内容
胡姓班主任 发布:2025-01-22 23:37:52 浏览:182
熬夜班主任 发布:2025-01-22 23:18:50 浏览:154
九年级上册化学题 发布:2025-01-22 23:08:25 浏览:156
美国签证历史 发布:2025-01-22 19:52:18 浏览:68
班主任初次自我介绍 发布:2025-01-22 18:52:34 浏览:160
微信图标怎么点亮 发布:2025-01-22 17:24:14 浏览:861
岳西县店前中学 发布:2025-01-22 15:54:05 浏览:507
海安教育信息网 发布:2025-01-22 15:18:43 浏览:491
校园网属于局域网吗 发布:2025-01-22 15:13:34 浏览:915
贷款买房怎么 发布:2025-01-22 15:08:32 浏览:955