当前位置:首页 » 语数英语 » 人教版七年级上册数学

人教版七年级上册数学

发布时间: 2020-11-18 19:21:23

A. 人教版七年级数学上册目录

第一章 有理数
1.1 正数和负数
1.2 有理数
1.3 有理数的加减法
1.4 有理数的乘除法
1.5 有理数的乘方
数学活动
小结
习题解答
第二章 整式的加减
2.1 整式
2.2 整式的加减
数学活动
小结
复习题2
第三章 一元一次方程
3.1 从算式到方程
3.2 解一元一次方程(一)——合并同类项与以移项
3.3 解一元一次方程(二)——去括号与去分母
3.4 实际问题与一元一次方程
数学活动
小结
复习题3
第四章 图形认识初步
4.1 多姿多彩的图形
4.2 直线、射线、线段
4.3 角
4.4 课题学习 设计制作长方体形状的包装纸盒
数学活动
小结
复习题4

B. 初一数学上册人教版的书有哪些内容

第一章 有理数
1正数、负数、有理数、相反数、科学记数法、近似数
2数轴:用数轴来表示数
3绝对值:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零
4正负数的大小比较:正数大于零,零大于负数,正数大于负数,绝对值大的负数值反而小 。
5有理数的加法法则:
同号两数相加,取相同的符号,并把绝对值相加;
绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去减小的绝对值;
互为相反数的两数相加为零;
一个数加上零,仍得这个数。
6有理数的减法(把减法转换为加法)
减去一个数,等于加上这个数的相反数。
7有理数乘法法则
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数同零相乘,都得零。
乘积是一的两个数互为倒数。
8有理数的除法(转换为乘法)
除以一个不为零的数,等于乘这个数的倒数。
9有理数的乘方
正数的任何次幂都是正数;
零的任何次幂都是负数;
负数的奇次幂是负数,负数的偶次幂是正数。
10混合运算顺序
(1) 先乘方,再乘除,最后加减;
(2) 同级运算,从左到右进行;
(3) 如果有括号,先做括号内的运算,按照小括号、中括号、大括号依次进行。

第二章 整式的加减
1 整式:单项式和多项式的统称;
2整式的加减
(1) 合并同类项
(2) 去括号

第三章 一元一次方程
1 一元一次方程的认识
2 等式的性质
等式两边加上或减去同一个数或者式子,结果仍然相等;
等式两边乘同一个数,或除以同一个不为零的数,结果仍相等。
3 解一元一次方程
一般步骤:去分母、去括号、移项、合并同类项、系数化为一
第四章 图形认识初步
1 几何图形:平面图和立体图
2 点、线、面、体
3 直线、射线、线段
两点确定一条直线;
两点之间,线段最短
4 角
角的度量度数
角的比较和运算
补角和余角:等角的补角和余角相等

初一下册
第五章 相交线和平行线
1 相交线:对顶角相等
2 垂线
经过一点有且只有一条直线和已知直线垂直;
连接直线外一点与直线上各点的所有线段中,垂线段最短(垂线段最短)
3 平行线
平行公理:经过直线外一点,有且只有一条直线与已知直线平行;
若两直线都与第三条直线平行,那么这两条直线也相互平行;
判定:同位角相等,两直线平行;
内错角相等,两直线平行;
同旁内角互补,两直线平行。
性质:两直线平行,同位角相等,内错角相等,同旁内角互补。
4 命题:判断一件事情的语句
5 平移

第六章 平面直角坐标系
1 有序数对:(a,b)
2 平面直角坐标系、原点、横轴、纵轴、象限
3简单应用:用坐标表示位置;用坐标表示平移。

第七章 三角形
1 与三角形有关的边:
三角形的边、高、中线、角平分线、稳定性
2 与三角形有关的角
内角:三角形的内角和是180度
外角:三角形的一个外角等于与它不相邻的两个内角的和;
三角形的一个外角大于与它不相邻的任何一个内角。
2 多边形
内角:多边形的内角和为(n-2)*180;
外角:多边形的外角和为360度。

第八章 二元一次方程组
1 二元一次方程与二元一次方程组的介绍
2 二元一次方程组的解法
代入法 消元法(加减法)
3 二元一次方程组的实际应用
第九章 不等式和不等式组
1 不等式及其解集:含有不等关系号的式子;
2 不等式的性质
性质1 不等式的两边加减同一个数或式子,不等号的方向不变;
性质2 不等式两边乘或除以同一个正数,不等号的方向不变;
性质3 不等式的两边乘或除以同一个负数,不等号的方向改变。
3 一元一次不等式在实际问题中的应用
4 一元一次不等式组及其解法:大大取大;小小取小;大于大的,小于小的取两边,大于小的,小于大的去中间。

第十章 实数
1 平方根:正数有两个平方根,它们互为相反数;
零的平方根是零;
负数没有平方根;
正数算术平方根是正数;
零的算术平方根是零。
2 立方根:正数的立方根是正数;
负数的立方根是负数;
零的立方根是零。
3 实数:有理数和无理数的统称。无理数即是无限不循环小数。

C. 七年级上册数学答案(人教版)

上这个网站,一定是你想要的,人民教育出版社的教师用书,上面有答案和教案,估计你们老师也是用这本http://www.pep.com.cn/czsx/jszx/qnjsc/jsys/

D. 人教版初一上册数学试题

2007年七年级数学期中试卷
(本卷满分100分 ,完卷时间90分钟)
姓名: 成绩:
一、 填空(本大题共有15题,每题2分,满分30分)
1、如图:在数轴上与A点的距离等于5的数为 。

2、用四舍五入法把3.1415926精确到千分位是 ,用科学记数法表示302400,应记为 ,近似数3.0× 精确到 位。
3、已知圆的周长为50,用含π的代数式表示圆的半径,应是 。
4、铅笔每支m元,小明用10元钱买了n支铅笔后,还剩下 元。
5、当a=-2时,代数式 的值等于 。
6、代数式2x3y2+3x2y-1是 次 项式。
7、如果4amb2与 abn是同类项,那么m+n= 。
8、把多项式3x3y- xy3+x2y2+y4按字母x的升幂排列是 。
9、如果∣x-2∣=1,那么∣x-1∣= 。
10、计算:(a-1)-(3a2-2a+1) = 。
11、用计算器计算(保留3个有效数字): = 。
12、“24点游戏”:用下面这组数凑成24点(每个数只能用一次)。
2,6,7,8.算式 。
13、计算:(-2a)3 = 。
14、计算:(x2+ x-1)•(-2x)= 。
15、观察规律并计算:(2+1)(22+1)(24+1)(28+1)= 。(不能用计算器,结果中保留幂的形式)
二、选择(本大题共有4题,每题2分,满分8分)
16、下列说法正确的是…………………………( )
(A)2不是代数式 (B) 是单项式
(C) 的一次项系数是1 (D)1是单项式
17、下列合并同类项正确的是…………………( )
(A)2a+3a=5 (B)2a-3a=-a (C)2a+3b=5ab (D)3a-2b=ab
18、下面一组按规律排列的数:1,2,4,8,16,……,第2002个数应是( )
A、 B、 -1 C、 D、以上答案不对
19、如果知道a与b互为相反数,且x与y互为倒数,那么代数式
|a + b| - 2xy的值为( )
A. 0 B.-2 C.-1 D.无法确定
三、解答题:(本大题共有4题,每题6分,满分24分)
20、计算:x+ +5

21、求值:(x+2)(x-2)(x2+4)-(x2-2)2 ,其中x=-

22、已知a是最小的正整数,试求下列代数式的值:(每小题4分,共12分)
(1)
(2) ;
(3)由(1)、(2)你有什么发现或想法?

23、已知:A=2x2-x+1,A-2B = x-1,求B

四、应用题(本大题共有5题,24、25每题7分,26、27、28每题8分,满分38分)
24、已知(如图):正方形ABCD的边长为b,正方形DEFG的边长为a
求:(1)梯形ADGF的面积
(2)三角形AEF的面积
(3)三角形AFC的面积

25、已知(如图):用四块底为b、高为a、斜边为c的直角三角形
拼成一个正方形,求图形中央的小正方形的面积,你不难找到
解法(1)小正方形的面积=
解法(2)小正方形的面积=
由解法(1)、(2),可以得到a、b、c的关系为:

26、已知:我市出租车收费标准如下:乘车里程不超过五公里的一律收费5元;乘车里程超过5公里的,除了收费5元外超过部分按每公里1.2元计费.
(1)如果有人乘计程车行驶了x公里(x>5),那么他应付多少车费?(列代数式)(4分)
(2)某游客乘出租车从兴化到沙沟,付了车费41元,试估算从兴化到沙沟大约有多少公里?(4分)

27、第一小队与第二小队队员搞联欢活动,第一小队有m人,第二小队比第一小队多2人。如果两个小队中的每个队员分别向对方小队的每个人赠送一件礼物。
求:(1)所有队员赠送的礼物总数。(用m的代数式表示)
(2)当m=10时,赠送礼物的总数为多少件?

28、某商品1998年比1997年涨价5%,1999年又比1998年涨价10%,2000年比1999年降价12%。那么2000年与1997年相比是涨价还是降价?涨价或降价的百分比是多少?

2006年第一学期初一年级期中考试
数学试卷答案
一、1、 2、10-mn 3、-5 4、-1,2 5、五,三 6、3
7、3x3y+x2y2- xy3 +y4 8、0,2 9、-3a2+3a-2 10、-a6
11、-x8 12、-8a3 13、-2x3-x2+2x 14、4b2-a2 15、216-1
二、16、D 17、B 18、B 19、D
三、20、原式= x+ +5 (1’)
= x+ +5 (1’)
= x+ +5 (1’)
= x+4x-3y+5 (1’)
= 5x-3y+5 (2’)

21、原式=(x2-4)(x2+4)-(x4-4x2+4) (1’)
= x4-16-x4+4x2-4 (1’)
= 4x2-20 (1’)
当x = 时,原式的值= 4×( )2-20 (1’)
= 4× -20 (1’)
=-19 (1’)

22、解:原式=x2-2x+1+x2-9+x2-4x+3 (1’)
=3x2-6x-5 (1’)
=3(x2-2x)-5 (2’) (或者由x2-2x=2得3x2-6x=6代入也可)
=3×2-5 (1’)
=1 (1’)

23、解: A-2B = x-1
2B = A-(x-1) (1’)
2B = 2x2-x+1-(x-1) (1’)
2B = 2x2-x+1-x+1 (1’)
2B = 2x2-2x+2 (1’)
B = x2-x+1 (2’)

24、解:(1) (2’)
(2) (2’)
(3) + - - = (3’)

25、解:(1)C2 = C 2-2ab (3’)
(2)(b-a)2或者b 2-2ab+a 2 (3’)
(3)C 2= a 2+b 2 (1’)

26、解:(25)2 = a2 (1’)
a = 32 (1’)
210 = 22b (1’)
b = 5 (1’)
原式=( a)2- ( b) 2-( a2+ ab+ b2) (1’)
= a2- b2- a2- ab- b2 (1’)
=- ab- b2 (1’)
当a = 32,b = 5时,原式的值= - ×32×5- ×52 = -18 (1’)
若直接代入:(8+1)(8-1)-(8+1)2 = -18也可以。

27、解(1):第一小队送给第二小队共(m+2)•m件 (2’)
第二小队送给第一小队共m•(m+2)件 (2’)
两队共赠送2m•(m+2)件 (2’)
(2):当m = 2×102+4×10=240 件 (2’)

28、设:1997年商品价格为x元 (1’)
1998年商品价格为(1+5%)x元 (1’)
1999年商品价格为(1+5%)(1+10%)x元 (1’)
2000年商品价格为(1+5%)(1+10%)(1-12%)x元=1.0164x元 (2’)
=0.0164=1.64% (2’)
答:2000年比1997年涨价1.64%。 (1’)

热点内容
班主任女友第一次 发布:2024-11-24 20:30:41 浏览:66
女教师吧 发布:2024-11-24 19:45:42 浏览:858
屈由历史 发布:2024-11-24 19:40:09 浏览:580
高中地理app 发布:2024-11-24 19:17:09 浏览:881
上帝与新物理学 发布:2024-11-24 18:59:23 浏览:449
金源康生物 发布:2024-11-24 18:27:09 浏览:651
保定教育网 发布:2024-11-24 17:17:02 浏览:787
师德先进个人推荐材料 发布:2024-11-24 16:04:48 浏览:580
优酷校园大使 发布:2024-11-24 16:01:06 浏览:723
班主任感怀 发布:2024-11-24 15:55:55 浏览:920