七年级数学上册第一单元测试题
『壹』 初一数学一元一次方程单元的测试卷或测试题
第3章 一元一次方程全章综合测试 (时间90分钟,满分100分) 一、填空题.(每小题3分,共分) 1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______. 2.若x=-1是方程2x-3a=7的解,则a=_______. 3.当x=______时,代数式 x-1和 的值互为相反数. 4.已知x的 与x的3倍的和比x的2倍少6,列出方程为________. 5.在方程4x+3y=1中,用x的代数式表示y,则y=________. 6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元. 7.已知三个连续的偶数的和为60,则这三个数是________. 8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,则需________天完成. 二、选择题.(每小题3分,共30分) 9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为( ). A.0 B.1 C.-2 D.- 10.方程│3x│=18的解的情况是( ). A.有一个解是6 B.有两个解,是±6 C.无解 D.有无数个解 11.若方程2ax-3=5x+b无解,则a,b应满足( ). A.a≠ ,b≠3 B.a= ,b=-3 C.a≠ ,b=-3 D.a= ,b≠-3 12.把方程 的分母化为整数后的方程是( ). 13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同地、同时、同向起跑,t分钟后第一次相遇,t等于( ). A.10分 B.15分 C.20分 D.30分 14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额( ). A.增加10% B.减少10% C.不增也不减 D.减少1% 15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( )厘米. A.1 B.5 C.3 D.4 16.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是( ). A.从甲组调12人去乙组 B.从乙组调4人去甲组 C.从乙组调12人去甲组 D.从甲组调12人去乙组,或从乙组调4人去甲组 17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,一个队打了14场比赛,负了5场,共得19分,那么这个队胜了( )场. A.3 B.4 C.5 D.6 18.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?( ) A.3个 B.4个 C.5个 D.6个 三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分) 19.解方程(x-1)- (3x+2)= - (x-1). 21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片. 22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数. 23.据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数: 车站名 A B C D E F G H 各站至H站 里程数(米) 1500 1130 910 622 402 219 72 0 例如:要确定从B站至E站火车票价,其票价为 =87.36≈87(元). (1)求A站至F站的火车票价(结果精确到1元). (2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程). 24.某公园的门票价格规定如下表: 购票人数 1~50人 51~100人 100人以上 票 价 5元 4.5元 4元 某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元. (1)如果两班联合起来,作为一个团体购票,则可以节约多少钱? (2)两班各有多少名学生?(提示:本题应分情况讨论) 答案:
一、1.3
2.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)
3. (点拨:解方程 x-1=- ,得x= )
4. x+3x=2x-6 5.y= - x
6.525 (点拨:设标价为x元,则 =5%,解得x=525元)
7.18,20,22
8.4 [点拨:设需x天完成,则x( + )=1,解得x=4]
二、9.D
10.B (点拨:用分类讨论法:
当x≥0时,3x=18,∴x=6
当x<0时,-3=18,∴x=-6
故本题应选B)
11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)
12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)
13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800米,列方程得260t+800=300t,解得t=20)
14.D
15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)
16.D 17.C
18.A (点拨:根据等式的性质2)
三、19.解:原方程变形为
200(2-3y)-4.5= -9.5
∴400-600y-4.5=1-100y-9.5
500y=404
∴y=
20.解:去分母,得
15(x-1)-8(3x+2)=2-30(x-1)
∴21x=63
∴x=3
21.解:设卡片的长度为x厘米,根据图意和题意,得
5x=3(x+10),解得x=15
所以需配正方形图片的边长为15-10=5(厘米)
答:需要配边长为5厘米的正方形图片.
22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故
100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171
解得x=3
答:原三位数是437.
23.解:(1)由已知可得 =0.12
A站至H站的实际里程数为1500-219=1281(千米)
所以A站至F站的火车票价为0.12×1281=153.72≈154(元)
(2)设王大妈实际乘车里程数为x千米,根据题意,得 =66
解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G站下的车.
24.解:(1)∵103>100
∴每张门票按4元收费的总票额为103×4=412(元)
可节省486-412=74(元)
(2)∵甲、乙两班共103人,甲班人数>乙班人数
∴甲班多于50人,乙班有两种情形:
①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得
5x+4.5(103-x)=486
解得x=45,∴103-45=58(人)
即甲班有58人,乙班有45人.
②若乙班超过50人,设乙班x人,则甲班有(103-x)人,
根据题意,得
4.5x+4.5(103-x)=486
∵此等式不成立,∴这种情况不存在.
故甲班为58人,乙班为45人.
『贰』 七年级上册数学第一单元测试题及答案 新人教版的
七年级上学期数学第一章测试题
(满分100分,时间45分钟)
一、认真选一选(每题5分,共30分)
1.下列说法正确的是( )
A.有最小的正数 B.有最小的自然数
C.有最大的有理数 D.无最大的负整数
2.下列说法正确的是( )
A.倒数等于它本身的数只有1 B.平方等于它本身的数只有1
C.立方等于它本身的数只有1 D.正数的绝对值是它本身
3.如图 , 那么下列结论正确的是( )
A.a比b大 B.b比a大
C.a、b一样大 D.a、b的大小无法确定
4.两个有理数相除,其商是负数,则这两个有理数( )
A.都是负数 B.都是正数 C.一正数一负数 D.有一个是零
5.我国“杂交水稻之父”袁隆平主持研究的某种超级杂交水稻平均亩产820千克.某地今年计划栽插这种超级杂交水稻3 000亩,预计该地今年收获这种超级杂交水稻的总产量 (用科学记数法表示)是( )
A.2.5×106千克 B.2.5×105千克
C.2.46×106千克 D.2.46×105千克
6.若|2a|=-2a,则a一定是( )
A.正数 B.负数 C.正数或零 D.负数或零
二、认真填一填(每空2分,共30分)
7. -23 的相反数是 ;倒数是 ;绝对值是 .
8.计算:19972×0= ; 48÷(-6) = ;
-12 ×(-13 ) = ; -1.25÷(-14 ) = .
9.计算:(-2)3= ;(-1)10= ;--32= .
10.在近似数6.48中,精确到 位,有 个有效数字.
11.绝对值大于1而小于4的整数有 个;冬季的某日,上海最低气温是3oC,北京最低气温是-5 oC,这一天上海的最低气温比北京的最低气温高 oC.
12.如果x<0,y>0且x2=4,y2 =9,那么x+y=
三、计算下列各题(每小题6分,共24分)
13.(-5)×6+(-125) ÷(-5) 14.312 +(-12 )-(-13 )+223
15. (23 -14 -38 +524 )×48 16. -18÷(-3)2+5×(-12 )3-(-15) ÷5
四、应用题(每题8分,共16分)
17.某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+8,-3,+12,-7,-10,-3,-8,+1,0,+10.
(1)这10名同学中最高分是多少?最低分是多少?
(2)10名同学中,低于80分的所占的百分比是多少?
(3)10名同学的平均成绩是多少?
18.一个病人每天下午需要测量血压,下表为病人周一到周五收缩压的变化情况,该病人上周日的收缩压为160单位.
星期 一 二 三 四 五
收缩压的变化(与前一天相比较) +30 -20 +17 +18 -20
问:(1)本周哪一天血压最高?哪一天最低?
(2)与上周日相比,病人周五的血压是上升了还是下降了?
七年级上学期数学第一章测试题
一、 1. B 2. D 3. B 4. C 5. C 6. D
二、 7. 23 ;-32 ; 23 . 8. 0;-8 ; 16 ; 5.
9. -8 ;1 ; -9 . 10.百分, 三. 11. 四; 8 12. 1
三、13.5 14.6 15.1 16.38
四、17.(1)最高分是:80+12=92(分)最低分是:80-10=70(分) (2)510 ×100%=50%
(3)[80×10+(8-3+12-7-10-3-8+1+0+10)]÷10=80(分)
18.(1)周一最高,周二和周五最低(2)周五的血压为:160-20=140是下降了
『叁』 初一上册数学第一单元练习题百度文库带答案(北师大版)
初一数学单元检测试卷
姓名 学号 得分
说明:1、本卷的内容是浙教版七年级第一章;
2、本卷考试时间45分钟;
3、卷面分基础题100分,提高题20分。
一、精心选一选(每题3分,共36分)
1. 如果高出海平面20米,记作+20米,那么-30米表示 ( B )
(A)不足30米;(B)低于海平面30米; (C)高出海平面30米;(D)低于海平面20米
2.仔细思考以下各对量:
①胜二局与负三局;②气温上升30 C与气温下降30 C;③盈利5万元与支出5万元;
④增加10%与减少20%。其中具有相反意义的量有 ( B )
(A)1 对 (B)2 对 (C)3 对 (D)4对
3.下列说法错误的是 ( C )
(A)整数和分数统称有理数; (B)正分数和负分数统称分数;
(C)正数和负数统称有理数; (D)正整数、负整数和零统称整数。
4. 零是 ( C )
A.最小的有理数。 B.最小的正整数。
C.最小的自然数。 D.最小的整数。
5.下列数轴的画法中,正确的是 ( C )
6.下列各对数中,互为相反数的是 ( C )
(A) 和0.2 (B) 和 (C)—1.75和 (D) 和2
7.大于—2.6而小于3的整数共有 ( C )
A. 7个 B. 5个 C. 6个 D. 4个
8.下列说法正确的是 ( C )
A.若两数的绝对值相等,则这两数必相等
B.若两数不相等,则这两数的绝对值一定不相等
C.若两数相等,则这两数的绝对值相等
D.两数比较大小,绝对值大的数大
9.冬季某天我国三个城市的最高气温分别是-10°C,1°C,-7°C,把它们从高到低排列正确的是 ( C )
A、-10°C, -7°C,1°C B、-7°C, -10°C,1°C
C、1°C, -7°C, -10°C D、1°C,-10°C,-7°C
10.一个数的相反数是最大的负整数,则这个数是 (B )
(A)—1 (B)1 (C)0 (D)±1
11.数轴上到数—2所表示的点的距离为4的点所表示的数是 ( D )
(A)—6 (B)6 (C)2 (D)—6或2
12.一个数的绝对值等于这个数本身,这个数是 ( C )
(A)0 (B)正数 (C)非正数 (D)非负数
二、细心填一填(每题3分,共30分)
13.若上升15米记作+15米,则-8米表示 下降15米______
14.写出一个负分数: - 12 。
15.一艘潜艇正在水下–50米处执行任务,距它正上方30米处有一条鲨鱼正好游过,这条鲨鱼所处位置的高度为______-20米__.
16.规定了__原点________、____单位长度________、_____正方向________的直线叫数轴.
17.用“<”号或“>”号填空: -9 > -11。
18.抽查四个零件的长度,超过为正,不足为负:(1)-0.3;(2)-0.2;(3)0.4;
(4)0.05.则其中误差最大的是 (3) 。(填序号)
19.一个点从数轴上的原点出发,先向右移动3个单位长度,再向左移动8个单位长度到达P点,那么P点所表示的数是____-5_____.
20. 比—2.99小的最大整数是__-3________
21.绝对值大于3而不大于6的整数分别是 -6,-5,4 ,4,5,6 ________________________ 。
22.在数轴上,绝对值小于3并且离—2两个单位长度的点所表示的数是_____0________.
三、认真做一做(本题共有4小题,共34分)
23.(本题4分)
=0.25+3*12
=0.25+36=36.25
24.(本题4分)
=17
25. (本题12分)把下列各数的序号填在相应的数集内:
①1 ②- ③+3.2 ④0 ⑤ ⑥-5 ⑦+108 ⑧-6.5 ⑨-6 .
(1)正整数集{ ① ⑦ …}
(2)正分数集{ ③ ⑤ …}
(3)负分数集{ ② ⑧⑨ …}
(4)有理数集{ 1,2,3,4,5,6,7,8,9 …}
26.(本题6分) 将下列各数在数轴上表示出来.
-4.5, 5, 0, -3, , -1。
27.(本题8分)出租车司机小李某天下午营运全是在东西向的人民大道上进行的.如果规定向东为正,他这天下午行车里程(单位:千米)如下:
+15, -2, +5, -1, +10, -3, -2, +12, +4, -5, +6.
(1)将最后一名乘客送到目的地时,小李一共行了多少千米?
65km
(2)若汽车耗油量为0.2升/千米,这天下午小李共耗油多少升?
65*0.2=13L
努力试一试(附加每题5分,共20分)
1.式子5- 能取得的最大值是 5 ,这时 = 1 。
2.观察下面一列数,探求其规律:
(1)请问第7个,第8个,第9个数分别是什么数?
- 17 ,18 , - 19
(2)第2004个数是什么?如果这列数无限排列下去,与哪个数越来越接近?
12004 0
3. 如图,图中数轴的单位长度为1。请回答下列问题:
①如果点A、B表示的数是互为相反数,那么点C表示的数是__-1__________.
②如果点E、B表示的数是互为相反数,那么点D表示的数是_0__________,图中表示的5个点中,点___C_____表示的数的绝对值最小,是_____0______.
4. 某牛奶厂在一条南北走向的大街上设有O,A,B,C四家特约经销店. A店位于O店的南面3千米处;B店位于O店的北面1千米处,C店在O店的北面2千米处.
(1)请以O为原点,向北的方向为正方向,1个单位长度表示1千米,画一条数轴. 你能在数轴上分别表示出O,A,B,C的位置吗?
O:0km
A:-3km
B:+1km
C: +2km
(2)牛奶厂的送货车从O店出发,要把一车牛奶分别送到A,B,C三家经销店后再回到O店,那么走的最短路程是多少千米?
2+3+2=7km
『肆』 初一上册数学第一单元测试题
初一上册数学第一单元测试题
一、选择题
1. 的相反数是( )(A)(B)-(C)(D)
2.-5的绝对值是( )(A)5(B)-5(C)(D)
3. 化简后是( )(A)-3(B)3(C)(D)以上都不对
4.若,则的值为( )(A)5(B)-5(C)(D)10
5.若,则x的值是( )(A)5(B)-5(C)5或-1(D)-1
6.下列说法正确的是( )(A)最小的有理数是0 (B)数轴上的点都表示有理数
(C)绝对值等于它的相反数的数是负数 (D)任何有理数都可以用数轴上的点表示
7.数轴上到原点的距离是3.5的数是( )(A)3.5(B)-3.5(C)3.5或-3.5(D)7
8.数轴上点A表示的的数是-3,把点A向右移动5个单位,然再向左移动7个单位到A′,则A′表示的数是( )(A)-5(B)-6(C)-7(D)-4
9.数轴上A点表示5,B点表示-3,则A与B的距离是( )(A)-8(B)8(C)2(D)-2
10.若,且,则的值为( )(A)-5(B)5(C)-1(D)1
11.若,则与的关系式是( )(A)(B)(C)(D)无法确定
12.向东为正,那么向西走-30米表示( )(A)向东走30米(B)向西走30米(C)向南走30米(D)向北走30米
13.若且是整数,则满足条件的所有整数共有( )个(A)2(B)3(C)4(D)5
二、填空题
1.在0、-3、、、、5.3、4、0.1010010001···中,整数有 ;分数有 ;有理数有 。
2.整数包括 、 和 ;分数包括 、 ;整数和分数统称 。
3.数轴的三要素是 、 、 ;数轴的原点及原点左边的点表示的数是 。
4.最小的自然数是 ,最小的正整数是 ,最大的负整数是 ,有没有最大的有理数?答: ,有没有最小的有理数?答: 。有没有绝对值最小的有理数?答 ,若果有,是 。
5.A地海拔高-5米,B地海拔高5米,B地比A地高 米。
6.-3的相反数是 ;的相反数是 ;相反数的自身的数是 。
7. ; ; ; 。
8.若,则= ;若,则 。
9.若,则= ,= ;若,则 , , 。
10.若与互为相反数,则 ;若,则与的关系是 。
11.如图 则a、b、c的轴小到大的顺序是 。
12.若,则a 0,若,则a 0.
13. 数的绝对值等于它本身; 数的绝对值等于它的相反数 。
14. 0不是 数,也不是 数。 15.数轴上的点是不是都是有理数?答: 。