当前位置:首页 » 语数英语 » 高中数学论文题目

高中数学论文题目

发布时间: 2020-11-18 23:47:30

A. 急!!一篇高中数学小论文(300字)

容易忽略的答案》

大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

关于“0”

0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”

“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。

B. 高一数学论文1000字

数学,一个多么熟悉的字眼,平凡而又美丽。你也许会说:“数学不就是几个阿拉伯数字嘛,那也谈得上美丽?”然而,正是它的简洁,才造就了它的美丽与神奇。
初识数学,是再简单不过的“1、2、3”,难道这就是我想象中的数学?可是,我错了,我看到的仅仅是一个表面,它有着更深层的含义。数学的难度渐渐的加深。从加、减、乘、除到小数、分数,数学的奥妙与美丽正逐渐向我展现。数学就像一个大集体,而那一个个数字则像一个个快活的小精灵,整天舞动着。“1”是它们的大哥,将身体挺得笔直,显得威风凛凛;而“2”则像个恬静的少女,扭曲着身体,显得羞答答的;“3”是个健壮的小伙子,天性乐观,怀抱远大的理想……其他几个兄妹更是俊俏、清秀,个个身怀绝技。这十个小精灵朝夕相处,团结一心,见姐妹太少,它们还会进行自我组合,产生新的数字呢!看,“1”见“0”一个人太寂寞,胆子又小,便主动与它组合,陪伴在它身边,便产生了“10”。其他兄妹受到启发,纷纷响应,庞大的数字从此遍布天下。
有数字还不够,小精灵们觉得不够热闹,便请来了更多的玩伴。于是,小数点来了、分数带着家人来了、字母们也应邀而来……凡是受到邀请的,都从四面八方赶来了。数学王国热闹极了!可是,尽管来了,调皮的本性依旧改不了。瞧,“顽皮鬼”小数点趁主人不注意,从“2”的身边一蹦蹦到了“3”的前面。见主人心急火燎地寻找,它却在一旁哈哈大笑,活像是在与主人捉迷藏。为此,我也没少被它愚弄。见它“胜利”后得意洋洋的模样,我暗下决心:一定要养成细心的好习惯,抓住这调皮的小数点!很快,在考试时,我俩又相遇了,一见是我,小数点轻蔑地说道:“嘿嘿,手下败将,怎么又回来了?”说着,又想使用“看家本领”来迷惑我。早有防备的我一举看穿它的诡计,迅速将它揪住,将它放回原位去了。调皮的小数点终于被制服了,望着它那垂头丧气的模样,一丝快慰不禁涌上心头。
如果仅仅是外表,数学还不足以称得上美丽,它那独特的内在美,更是使它留名千古。数学的范围很广,得到的传播空间也较多,几千年前,印度人创造了它,阿拉伯人将期修正,它有着很强的表达力,形象以及快捷铸就它不朽的历史。古今中外,它成就了多少事物的诞生,世界七大奇迹,有哪一样不是在数学的熏陶下完成的?从祖冲之精密的推算到陈景润的哥德巴赫猜想,从爱迪生数千种发明到高科技世界,数学都起了决定性的作用!如果没有数学,哪有许许多多的发明?哪来猜想与定理?会有哪一个工程能顺利进展?数学是无私的,它将自己的一切奉献给大家,从不索取什么;数学是公平的,它只将自己奉献给勤奋努力的人,鼓励他们继续奋斗;数学是“无情”的,它憎恨懒惰,面对那一只只贪婪而不肯付出的手,它一概置之不理。数学就像一根丝带,将自己与人们的生活紧紧地连在一起。
如果没有这根丝带,世界将会是怎样呢?其实,数学的美丽还远远不只这些。它带给人们独立性,带给人们成功的喜悦,带给人们探索与发现的精神,它将自己的“美”献给每一位热爱数学的人。数学是春天的第一滴春雨,滋润大地;数学是夏日的太阳,充满激情;数学是深秋丰收的田野,带给人无限喜悦;数学是寒冬的一片雪花,洁白无暇。它是智慧与汗水的结晶,它是送给奋斗者最好的礼物,它是千古文化不朽的功臣。啊,朋友,爱上数学,播下智慧的种子,洒下辛勤的汗水,收获成功的喜悦吧!

C. 帮忙想个高中数学小论文的题目

浅谈中学数学中的反证法
数学选择题的利和弊
浅谈计算机辅助数学教学
论研究性学习
浅谈发展数学思维的学习方法
关于整系数多项式有理根的几个定理及求解方法

D. 高中数学作文(论文)

论文其实就是一种文章,就一种讨论某种问题或研究某种问题的文章。它有自己独有的论文格式。 下面就是标准的论文格式:
1、论文格式的论文题目:(下附署名)要求准确、简练、醒目、新颖。
2、论文格式的目录
目录是论文中主要段落的简表。(短篇论文不必列目录)
3、论文格式的内容提要:
是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。
4、论文格式的关键词或主题词
关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。
主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语。(参见《汉语主题词表》和《世界汉语主题词表》)。
5、论文格式的论文正文:
(1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。
〈2〉论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:
a.提出问题-论点;
b.分析问题-论据和论证;
c.解决问题-论证方法与步骤;d.结论。
6、论文格式的参考文献
一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。
中文:标题--作者--出版物信息(版地、版者、版期)
英文:作者--标题--出版物信息
所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。
(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。
按照上边的论文格式来写,可以使你的论文更加容易被读者了解,被编辑采纳。

E. 征集北京市高中应用数学竞赛论文题目

考研的数学分为四种,分别是数学一、数学二、数学三、数学四
数学一是一般的理工科要考的,如计算机/材料等理工专业
数学二是对数学要求略微低一点的专业要考的,但他与数学一基本相当。如纺织专业
数学三是偏向于经济类别的考生,如经济管理 偏向概率
数学四是其它对数学要求相对低的学科

而四种数学出题的题型相同,所占比例也相同,你很容易在网上或者书店找到某一年的考试题看一下每年出的题类型相同的。

大纲见下:

全国硕士研究生入学考试数学三考试大纲

考试科目
微积分、线性代数、概率论与数理统计

微积分
一、函数。极限、连续
考试内容
函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 反函数、复合函数、隐函数、分段函数 基本初等函数的性质及其图形 初等函数 数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小和无穷大的概念及关系 无穷小的基本性质及阶的比较 极限四则运算 极限存在的两个准则(单调有界准则和夹逼准则)两个重要极限

函数连续与间断的概念 初等函数的连续性 闭区间上连续函数的性质
考试要求
1.理解函数的概念,掌握函数的表示法.
2.了解函数的有界性、单调性、周期性和奇偶性.
3.理解复合函数、反函数、隐函数和分段函数的概念.
4.掌握基本初等函数的性质及其图形,理解初等函数的概念.
5.会建立简单应用问题中的函数关系式.
6.了解数列极限和函数极限(包括左极限与右极限)的概念.
7.了解无穷小的概念和基本性质.掌握无穷小的比较方法.了解无穷大的概念及其与无穷小的关系.
8.了解极限的性质与极限存在的两个准则.掌握极限的性质及四则运算法则,会应用两个重要极限.
9.理解函数连续性的概念(含左连续与右连续).
10. 了解连续函数的性质和初等函述的连续性. 了解闭区间上连续函数的性质(有界性、最大值与最小值定理和介值定理)及其简单应用.

二、一元函数微分学
考试内容
导数的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 导数的四则运算 基本初等函数的导数 复合函数、反函数和隐函数的导数 高阶导数 微分的概念和运算法则 微分中值定理及其应用 洛必达(L'Hospital)法则 函数单调性 函数的极值 函数图形的凹凸性、拐点、浙近线 函数图形的描绘 函数的最大值与最小值

考试要求
1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念).
2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,掌握反函数与隐函数求导法以及对数求导法.
3.了解高阶导数的概念,会求简单函数的高阶导数.
4.了解微分的概念,导数与微分之间的关系,以及一阶微分形式的不变性,会求函数的微分.
5.理解罗尔(Rolle)定理、拉格朗日( Lagrange)中值定理、柯西(Cauchy)中值定理的条件和结论,掌握这三个定理的简单应用.
6.会用洛必达法则求极限.
7.掌握函数单调性的判别方法及其应用,掌握极值、最大值和最小值的求法(含解较简单的应用题).
8.会用导数判断函数图形的凹凸性和拐点,会求函数图形的渐近线.
9.掌握函数作图的基本步骤和方法,会作某些简单函数的图形.

三、一元函数积分学
考试内容
原函数与不定积分的概念 不定积分的基本性质 基本积分公式 不定积分的换元积分法和分部积分法 定积分的概念和基本性质 定积分中值定理 变上限定积分定义的函数及其导数 牛顿一莱布尼茨(Newton- Leibniz)公式 定积分的换元积分法和分部积分法 广义积分的概念和计算 定积分的应用
考试要求
1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握计算不定积分的换元积分法和分部积分法.
2.了解定积分的概念和基本性质,了解定积分中值定理,掌握牛顿一莱布尼茨公式,以及定积分的换元积分法和分部积分法.了解变上限定积分定义的函数并会求它的导数.
3.会利用定积分计算平面图形的面积和旋转体的体积,会利用定积分求解简单的经济应用问题.
4.了解广义积分的概念,会计算广义积分,了解广义积分(此处略)的收敛与发散的条件.

四、多元函数微积分学
考试内容
多元函数的概念 二元函数的几何意义 二元函数的极限与连续性 有界闭区域上二元连续函数的性质 多元函数的偏导数的概念与计算 多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算 无界区域上简单二重积分的计算
考试要求
1.了解多元函数的概念,了解二元函数的几何意义.
2.了解二元函数的极限与连续的直观意义,了解有界闭区域上二元连续函数的性质.
3.了解多元函数偏导数与全微分的概念,掌握求多元复合函数偏导数和全微分的方法,会用隐函数的求导法则.
4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件。会求二元函数的极值,会用拉格朗日乘数法求条件极值.会求简单多元函数的最大值和最小值,会求解一些简单的应用题.
5.了解二重积分的概念与基本性质,掌握二重积分(直角坐标、极坐标)的计算方法.会计算无界区域上的较简单的二重积分.

五、无穷级数
考试内容
常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p级数以及它们的收敛性 正项级数收敛性的判别 任意项级数的绝对收敛与条件收敛 交错级数与莱布尼茨定理 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式
考试要求
1.了解级数的收敛与发散、收敛级数的和的概念.
2.掌握级数的基本性质和级数收敛的必要条件.掌握几何级数及p级数的收敛与发散的条件.掌握正项级数的比较判别法和比值判别法.
3.了解任意项级数绝对收敛与条件收敛的概念,以及它们之间的关系.掌握交错级数的莱布尼茨判别法.
4.会求幂级数的收敛半径、收敛区间及收敛域.
5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项微分和逐项积分),会求简单幂级数在其收敛区间内的和函数.
6.掌提 ex,sinx,cosx,ln(1+x)与(1+x)a幂级数的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展成幂级数.

六、常微分方程与差分方程
考试内容
常微分方程的概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程 差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 微分方程与差分方程的简单应用
考试要求
1.了解微分方程的阶及其解、通解、初始条件和特解等概念.
2.掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法.
3.会解二阶常系数齐次线性方程.
4.会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程.
5.了解差分与差分方程及其通解与特解等概念.
6.掌握一阶常系数线性差分方程的求解方法.
7.会应用微分方程和差分方程求解简单的经济应用问题.

线性代数
一、行列式
考试内容
行列式的概念和基本性质 行列式按行(列)展开定理
考试要求
1.了解n阶行列式的概念,掌握行列式的性质.
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.
二、矩阵
考试内容
矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算
1、理解矩阵的概念,了解单位矩阵、对角矩阵、数量矩阵、三角矩阵的定义和性质,了解对称矩阵和反对称矩阵及正交矩阵等的定义和性质。
2、掌握矩阵的线性运算、乘法,以及他们的运算规律,掌握矩阵转置的性质,了解方阵的幂,掌握方阵乘积的行列式的性质.
3.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求矩阵的逆.
4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,会用初等变换求矩阵的逆和秩.
5.了解分块矩阵的概念,掌握分块矩阵的运算法则.
三、向量
考试内容
向量的概念 向量的线性组合与线性表示 向量组线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系
考试要求
1.了解向量的概念,掌握向量的加法和数乘运算法则.
2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.
3.理解向量组的极大无关组的概念,掌握求向量组的极大无关组的方法.
4.了解向量组等价的概念,理解向量组的秩的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系,会求向量组的秩.
四、线性方程组
考试内容
线性方程组的克莱姆(Cramer)法则 线例方程组有解和无解的判定 齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系 非齐次线性方程组的通解
考试要求
1.会用克莱姆法则解线性方程组.
2.掌握线性方程组有解和无解的判定方法.
3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.
4.掌握非齐次线性方程组的通解的求法,会用其特解及相应的导出组的基础解系表示齐次线性方程组的通解.
五、矩阵的特征值和特征向量
考试内容
矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值和特征向量及相似对角矩阵
考试要求
1、理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.
2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.
3.掌握实对称矩阵的特征值和特征向量性质.
六、二次型
考试内容
二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准报和规范形 正交变换 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性
考试要求
1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换和合同矩阵的概念.
2.理解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理的条件和结论,会用正交变换和配方法化二次型为标准形.
3.理解正定二次型、正定矩阵的概念,掌握正定矩阵的性质.

概率论与数理统计
一、随机事件和概率
考试内容
随机事件与样本空间 事件的关系与运算 完全事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验
考试要求
1.了解样本空间(基本时间空间)的概念,理解随机事件的概念,掌握事件的关系及运算.
2、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、乘法公式、全概率公式以及贝叶斯公式等基本公式.
3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念.
二、随机变量及其概率分布
考试内容
随机变量及其概率分布 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的概率分布 随机变量函数的概率分布
考试要求
1.理解随机变量及其概率分布的概念,理解分布函数F(x)=P{X<=x}(负无穷2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、超几何分布、泊松(Poisson)分布及其应用.
3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.
4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布N(μ,σ2)、指数分布及其应用,其中参数为λ(λ>0)的指数分布的密度函数为f(x)=(此处略).
5.会根据自变量的概率分布求其简单函数的概率分布.

三、随机变量的联合概率分布
考试内容
随机变量联合分布函数 离散型随机变量的联合概率分布、边缘分布和条件分布 连续型随机变量的联合概率密度、边缘密度和条件密度 随机变量的独立性和相关性 常见二维随机变量的联合分布 两个及两个以上随机变量的函数的概率分布
考试要求
1.理解随机变量的联合分布函数的概念和基本性质.
2.理解随机变量的联合分布的概念、性质及其两种基本表达式:离散型联合概率分布和连续型联合概率密度.掌握两个随机变量的联合分布的边缘分布和条件分布.
3.理解随机变量的独立性及相关性的概念,掌握随机变量独立的条件;理解随机变量的不相关性与独立性的关系.
4.掌握二维均匀分布和二维正态分布,理解其中参数的概率意义.
5.会根据两个随机变量的联合概率分布求其函数的概率分布,会根据多个独立随机变量的概率分布求其函数的概率分布.
四、随机变量的数字特征
考试内容
随机变量的数学期望(均值)、方差和标准差及其性质 随机变量函数的数学期望 切比雪夫(Chebyshev)不等式 矩、协方差和相关系数及其性质
考试要求
1.理解随机变量数字特征(数学期望、方差、标准差、协方差、相关系数)的概念,并会运用数字特征的基本性质计等具体分布的数字特征,掌握常用分布的数字特征.
2.会根据随机变量的概率分布求其函数的数学期望;会根据两个随机变量联合概率分布求其函数的数学期望.
3.掌握切比雪夫不等式.
五、大数定律和中心极限定理
考试内容
切比雪夫(Chebyshev)大数定律 伯努利(Bernonlli)大数定律 辛钦(Khinchine)大数定律 棣莫弗一拉普拉斯( De Moivre- Laplace)定理(二项分布以正态分布为极限分布) 列维一林德伯格(Levy-Lindberg)定理(独立同分布随机变量列的中心极限定理)
考试要求
1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量的大数定律)成立的条件及结论.
2.掌握棣莫弗—拉普拉斯中心极限定理、列维—林得伯格中心极限定理的结论和应用条件,并会用相关定理近似计算有关事件的概率.
六、数理统计的基本概念
考试内容
总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 χ2分布 t分布 F分布 分位数 正态总体的常用抽样分布
考试要求
1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念.其中样本方差定义为:S2=(此处略)
2.了解产生χ2变量、t变量和F变量的典型模式;理解标准正态分布、χ2分布、t分布和F分布的分位数,会查相应的数值表.
3.掌握正态总体的抽样分布.
七、参数估计
考试内容
点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念 单个正态总体的均值的区间估计 单个正态总体方差和标准差的区间估计 两个正态总体的均值差和方差比的区间估计
考试要求
1.理解参数的点估计、估计量与估计值的概念;了解估计量的无偏性、有效性(最小方差性)和相合性(一致性)的概念,并会验证估计量的无偏性;会利用大数定律证明估计量的相合性.
2.掌握矩估计法(一阶、二阶矩)和最大似然估计法.
3.掌握建立未知参数的(双侧和单侧)置信区间的一般方法;掌握正态总体均值、方差、标准差、矩以及与其相联系的数字特征的置信区间的求法.
4 掌握两个正态总体的均值差和方差比及相关数字特征的置信区间的求法.
八、假设检验
考试内容
显著性检验的基本思想和步骤 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验
考试要求
1.理解“假设”的概念和基本类型;理解显著性检验的基本思想,掌握假设检验的基本步骤;会构造简单假设的显著性检验.
2.理解假设检验可能产生的两类错误,对于较简单的情形,会计算两类错误的概率.
3.了解单个和两个正态总体参数的假设检验.
试卷结构
(一)内容比例
微积分 约50%
线性代数 约25%
概率论与数理统计 约 25%
(二)题型比例
境空题与选择题约 30%
解答题(包括证明题) 约70%

由于这里回答问题限制字数,所以数学四的考纲无法贴上,请你自己去查找,网上有

F. 高中数学论文怎么写

只有这个了,凑合吧。
把循环小数化成分数的方法,可以用移动循环节的过程来推导,也可以用无限递缩等比数列的求和公式计 算得到。下面我们运用猜想验证的方法来推导。
(一)化纯循环小数为分数
大家都知道:一个有限小数可以化成分母是10、100、1000 ……的分数。那么,一个纯循环小数可以化成 分母是怎样的分数呢?我们先从简单的循环节是一位数字的纯循环小数开始。如:@①、@②……化成分数时 ,它们的分母可以写成几呢?
想一想:可能是10吗?不可能。因为1/10=0.1〈@①,3/10=0.3〉@②;可能是8吗?不可能。 因为1/ 8=0.125〉@①,3/8=0.375〉@②;那么,可能是几呢?因为1/10〈@①〈1/8,3/10〈@②〈3/8,所以分 母可能是9。 下面我们来验证一下自己的猜想:1/9=1÷9=0.111……=@①;3/9=1/3=1÷3=0.333……= @②。
计算结果说明我们的猜想是对的。那么,所有循环节是一位数字的纯循环小数都可以写成分母是9的分数吗 ?让我们根据自己的猜想, 把@③、@④化成分数后再验证一下。
@③=4/9 验证:4/9=4÷9=0.444……
@④=6/9=2/3 验证:2/3=2÷3=0.666……
经过上面的猜想和验证,我们可以得出这样的结论:循环节是一位数字的纯循环小数化成分数时,用一个 循环节组成的数作分子,用9 作分母;然后,能约分的再约分。
循环节是两位数字的纯循环小数怎样化成分数呢?如:@⑤、@⑥……化成分数时,它们的分母又可以写 成多少呢?
想一想:可能是100吗?不可能。因为12/100=0.12〈@⑤,13/100=0.13〈@⑥。可能是98吗?不可能。 因为12/98≈0.1224〉@⑤,13/98≈0.1327〉@⑥;可能是多少呢?因为12/100〈@⑤〈12/98,13/100〈@⑥ 〈13/98,所以分母可能是99。是否正确,还需验证一下。
12/99=12÷99=0.121212……=@⑤;
13/99=13÷99=0.131313……=@⑥。
验证结果说明我们的猜想是正确的。那么,所有循环节是两位数字的纯循环小数都可以写成分母是99的分 数吗?让我们再运用猜想的方法,把@⑦、@⑧化成分数后,验算一下。
@⑦=15/99=5/33,验算:5/33=5÷33=0.151515……
@⑧=18/99=2/11,验算:2/11=2÷11=0.181818……
经过这次猜想和验证,我们可以得出这样的结论:循环节是两位数字的纯循环小数化成分数时,用一个循 环节组成的数作分子,用99作分母;然后,能约分的再约分。
现在,你能推断出循环节是三位数字的纯循环小数化成分数的方法吗?
因为循环节是一位数字的纯循环小数化成分数时,用9作分母, 循环节是两位数字的纯循环小数化成分数 时,用99作分母,所以循环节是三位数字的纯循环小数化成分数时,我们猜想是用999作分母, 分子也是一个 循环节组成的数。让我们再来验证一下,如果这个猜想也是正确的,那么,我们就可以依次推下去了。
附图{图}
实验证明:我们的猜想是完全正确的。照此推下去,循环节是四位数字的纯循环小数化成分数时,就要用 9999作分母了。实践证明也是正确的。所以,纯循环小数化成分数的方法是:
用9、99、999……这样的数作分母,9 的个数与循环节的位数相同;用一个循环节所组成的数作分子;最 后能约分的要约分。
二、化混循环小数为分数
我们已经运用猜想验证的方法研究过怎样化纯循环小数为分数,再用这种方法研究一下怎样化混循环小数 为分数。
还是先从较简单的数入手,如:
附图{图}
……这样循环节只有一位数字的混循环小数化成分数时,分子、分母分别有什么特点呢?
这样想:一个混循环小数有循环部分,还有不循环部分,能否将它改写成一个纯循环小数与一个有限小数 的和,然后再化成分数呢?让我们试试看。
附图{图}
观察以上过程,你能看出循环节只有一位数字的混循环小数化成的分数有什么特点吗?很容易看出:它们 的分母都是由一个9与几个0组成的数。再仔细观察可以发现:0 的个数恰好与不循环部分的数字个数相同。它 们的分子有什么特点呢?不难看出:它们的分子都比不循环部分与第一个循环节所组成的数要小。到底小多少 呢?让我们算一算:
(1)21-19=2 (2)543-489=54 (3)696-627=69
细心观察不难看出:分子恰好是一个比不循环部分与第一个循环节所组成的数少一个由不循环部分的数字 所组成的数。这个规律具有普遍性吗?让我们运用以上的规律把
附图{图}
化成分数,验证一下它的正确性。
附图{图}
验证:352/1125=352÷1125=0.312888……
验证的结果是完全正确的。那么,循环节是两位数字的混循环小数化成的分数,分子、分母是否也有这样 的规律呢?分子是由一个比小数的不循环部分与第一个循环节所组成的数少一个不循环部分的数字所组成的数 ;分母是由9和0组成的数,0 的个数与不循环部分的数字个数相同,9的个数与一个循环节的数字个数相同。 让我们按照猜想的方法试把
附图{图}
化成分数,然后再验证一下。
附图{图}
实践证明,我们的猜想是正确的。那么,循环节是三位数、四位数……的混循环小数是否也能按照这样的 方法化分数呢?让我们把
附图{图}
化成分数后,再验证一下
附图{图}
验证的结果也是正确的,说明我们的猜想可能是正确的。这个方法也确实是正确的。当然,我们在运用猜 想验证的方法时,并不一定每次的猜想都是正确的。如果不正确,就需要根据具体情况进行修改,然后再验证 ,直至正确为止。
猜想验证的方法是人类探索未知的一种重要方法,很多科学规律的发现,都是先有猜想,而后被不断的验 证、再猜想、再验证才被认识。猜想验证也是一种重要的数学思想方法。我们应在向学生讲解具体知识的同时 ,也要求他们从小就学习运用这种思想方法。
字库未存字注释:
@①原字为0.1,1上加.
@②原字为0.3,3上加.
@③原字为0.4,4上加.
@④原字为0.6,6上加.
@⑤原字为0.12,12上加.
@⑥原字为0.13,13上加.
@⑦原字为0.15,15上加.
@⑧原字为0.18,18上加.

G. 提供一些数学研究课题,可以写高中数学论文的那种

数学研究性学习课题

1、银行存款利息和利税的调查
2、气象学中的数学应用问题
3、如何开发解题智慧
4、多面体欧拉定理的发现
5、购房贷款决策问题
6、有关房子粉刷的预算
7、日常生活中的悖论问题
8、关于数学知识在物理上的应用探索
9、投资人寿保险和投资银行的分析比较
10、黄金数的广泛应用
11、编程中的优化算法问题
12、余弦定理在日常生活中的应用
13、证券投资中的数学
14、环境规划与数学
15、如何计算一份试卷的难度与区分度
16、数学的发展历史
17、以“养老金”问题谈起
18、中国体育彩票中的数学问题
19、“开放型题”及其思维对策
20、解答应用题的思维方法
21、高中数学的学习活动——解题分析 A)从尝试到严谨、B)从一个到一类
22、高中数学的学习活动——解题后的反思——开发解题智慧
23、中国电脑福利彩票中的数学问题
24、各镇中学生生活情况
25、城镇/农村饮食构成及优化设计
26、如何安置军事侦察卫星
27、给人与人的关系(友情)评分
28、丈量成功大厦
29、寻找人的情绪变化规律
30、如何存款最合算
31、哪家超市最便宜
32、数学中的黄金分割
33、通讯网络收费调查统计
34、数学中的最优化问题
35、水库的来水量如何计算
36、计算器对运算能力影响
37、数学灵感的培养
38、如何提高数学课堂效率
39、二次函数图象特点应用
40、统计月降水量
41、如何合理抽税
42、市区车辆构成
43、出租车车费的合理定价
44、衣服的价格、质地、品牌,左右消费者观念多少?
45、购房贷款决策问题
研究性学习的问题与课题 (来自《数学百草园》,作者叶挺彪)
《 立几部分 》

问题1
平几中证点共线、线共点往往较难,通常出现在竞赛中。而立几中的这类问题却是非简单,主要的依据仅仅是平面的基本性质:两个平面的公共点共线。可否将平几问题的这类问题进行升维处理。即把它转化为立几问世题加以解答。

问题2
用运变化的观点对待数学问题,将会发现问题的实质及问题之间的联系,但对于立几中的这方面还显得不够,可以通过整理、收集这方面的材料加以综合研究。

问题3 作为降维处理的一个例子:可考虑异面直线距离的几种转化,如转化为线面距、点线距、面面距等。

问题4
异面直线的距离是:异面直线上两动点的连线中最短的线段长度。所以可以用函数的观点来解决。即建立一个两动点的距离函数,利用求函数的最小值达到目的。

问题5
立几中的许多问题可化归为确定点在平面内的射影位置。如点面距、点线距、体积等。于是确定点在平面内的射影显得非常重要,试给出一种通用方法进行确定。

问题6
作二面角的平面角是立几中的难点,常用方法有:定义法、三垂线法、垂面法。其实质是以点定位,即当点在二面角的棱上时用定义法、当点在一个半平面内时用三垂线法、当点在空间时时用垂面法。问题似乎已解决。但对于较复杂的图形,由于点的个数较多,以哪个点作为定位点就难以决定。试给出以线定位来作二面角的平面角的方法及步骤。

问题7
等积变换在立几中大显上内身手,而非等积变换是它的一般情形,作用更大,却被人们所忽视。利用非等积变换能解决求体积、求距离、证明位置关系等问题。试利用类比平几的相应方法探索之。

问题8 将三垂线定理进行推广与引伸,即所谓三面角的正、余弦定理及其特例直三面角的正、余弦定理。以开阔眼界。

《解几部分 》

问题9
对于数学的公式,我们应当做到三会:即正用、变用和逆用。如解几中有许多公式如两点距离、点到直线距离公式,定比分点、斜率公式等,考虑其逆用,就可得到构造法证题,试研究解几中的各种公式逆用,以充实构造法证明。

问题10
我们对待任何问题(包括解决数学问题)往往用自己的审美意识去审视,以调节自己的行动计划。在解几中探索与搜集以美的启迪思维的题材,加以整理与综合研究。

问题11 整理解几中常常被人忽视和特例而使问题的解决不完整的有素材,如用点斜式而忽视斜率存在,截距式而忽视截距为零等。

问题12 利用角参数与距离参数的相互转化以实现命题的演变,达到以点带面,触类旁通的目的。

问题13 将与中点有关的问题及解决方法进行推广,使之适用于定比分点的相应问题与方法。

问题14 研究求轨迹问题中的坐标转移法与参数法的相互联系。

问题15 关于斜率为 1的特殊直线的对称问题的简捷解法中,概括出适用范围更加广阔的解题策略。

问题16
解决椭圆问题不如圆容易,能否使问题化归,即椭圆问题的圆化处理,进而研究圆锥曲线(包括其退化情形如两条相交线,平行线等)的圆化处理。

问题17 整理与焦半径有关的问题,并将之“纯代数化”,进而研究其“纯代数解法”,从中探索新方法。

问题18 把点差法解中点弦问题进行推广,使之能解决“定比分点弦”问题。

问题19 求轨迹问题中,纯粹性的简捷判别。

问题20 在定比分点公式、弦长公式、点到直线的距离公式的推导过程中隐含着“射影思想”,扩大这思想在解几中的地位或功能。

问题21 对平移变换的解题功能进行综述。

问题22
与中点弦有关的圆锥曲线中的参数范围确定问题,往往需要建立不等式进行求解,各种方法中以点在曲线内部条件为隹。试将这方法推广到定比分点弦的情形。

《函数部分 》

问题23 空集是一切集合的子集,但在解决关集合问题时,常常忽略这一事实。试整理这方面的各类问题。

问题24 整理求定义域的规则及类型(特别是复合函数的类型)。

问题25
求函数的值域、单调区间、最小正周期等有关问题时,往往希望将自变量在一个地方出现,所以变量集中的原则就提供了解题的方向,试研究所有与变量集中原则有关的类型(如配方法、带余除法等)。

问题26 总结求函数值域的有关方法,探索判别式法的一般情形——实根分布的条件用于求值域。

问题27 利用条件最值的几何背景进行命题演变,与命题分类。

问题28
回顾解指数、对数方程(不等式)的化归实质(利用外层函数的单调性去掉两边的外层函数的符号),我们称之为“给函数更衣”,于是我们可以随心所欲地将方程(不等式)进行演变。你能利用这一点编拟一些好题吗。

问题29 探求“反函数是它本身”的所有函数。从而可解决一类含抽象函数的方程,概括所有这种方程的类型。

问题30 在原点有定义的奇函数,其隐含条件是f(0)=0,试以这一事实编拟、演变命题。

问题31 把两面镜子相对而立,若你处于其中,将看到许多肖像位置呈现出周期性,你能把这一事实数学化吗?若把轴对称改为中心对称又怎么结论?

问题32
对于含参数的方程(不等式),若已知解的情况确定参数的取值范围,我们通常用函数思想及数形结合思想进行分离参数,试概括问题的类型,总结分离参数法。

问题33 改变含参数的方程(不等式)的主元与参数的地位进行命题的演变。探索换主元的功能。

《三角部分 》

问题34 数形结合是数学中的重要的思想方法之一,而单位圆中的三角函数线却被人们所遗忘,试探它在解决三角问题中的数形结合功能。

问题35 概括sinx+cosx=a时相应x的取值范围,及问题条件中涉及这一条件时的所隐含的结论。

问题36 整理三角代换的的类型,及其能解决的哪几类问题。

问题37 三角最值的构造证法中,型如 ,可转化成:1)动点(ccosx.asinx)与定点(-d,-b)连线的斜率;2)或先化为
从而转化为动点(cosx.sinx)与定点 连线斜率等,考虑各种构造法的背景的联系,能否以此联系用于解决几何问题。

问题38 一个三角公式不仅能正用,还需会逆用与变用,试将后者整理之。

问题39 概括三角恒等式证明中的一次弦式、高次弦式和切式证明的常用方法。

问题40
三角形的形状判定中,对于含边角混合关系的条件,利用正、余弦定理总有两种转化,即转化为角关系或边关系,探索其中一种对另一种解法的启示功能。

《不等式部分 》

问题41
一个数学命题若从正面入手分类情况较多,运算量较大,甚至无法求解,此时不妨考虑其反面进行求解得解集,然后再取其补集即得原命题的解。我们把它称为“补集法”,试整理常见的类型的补集法。

问题42 概括使用均值不等式求最值问题中的“凑”的技巧 ,及拆项、添项的技巧。

问题43 观察式子的结构特征,如分析式子中的指数、系数等启示证题的的方向。

问题44 探求一此著名不等式(如柯西不等式、排序不等式等)和多种证法,寻找其背景以加深对不等式的理解。

问题45 整理常用的一此代换(三角代换、均值代换等),探索它在命题转化中的功能。

问题46 考虑均值不等式的变用,及改变之后的不等式的背景意义。

问题47 分母为多项式的轮换对称不等式,由于难以参于通分,证明往往较难。探求一种代换,将分母为多项式的转化为单项式。

问题48 探索绝对值不等式和物理模拟法

如果还有什么相关的课题,请各位同行提出。
参考资料:http://sx.dhyz.com/new/Article_Print.asp?ArticleID=174

H. 求适合高中生的数学建模论文题目

怎样才能在不打伞的情况下,,少淋雨

I. 高中数学论文

数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具.
同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的.
现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程.
例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了.
又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学.
再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就.
谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等.
还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学.
谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量.
至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理.
我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.”
正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.

J. 高中数学论文

你们才高中,我想老师不会让你们写学术性太强的东西,他让你们写论文无非是要求你们主动的把学到的数学知识自己疏理一下,加强知识的系统性,加深对知识的理解,或者谈谈自己对数学的感想。如果非要范文,下面有一篇这方面的。

数学学习兴趣及其培养
内容摘要:学习兴趣是学习动机的一种最重要的成分,它对学生的学习起着重要的作用。
学习兴趣促进学生智力的发展,获得较大的成功;同时,这种愉快的精神感受又促进学生对
数学学习产生更大的兴趣,二者之间相互促进,使数学学习活动更加活跃、有效,学生的心理
素质得到更加和谐的发展。本文讨论了兴趣的特点、形成、发展规律及在教师教学中的应用
等,给出了米切尔关于兴趣的结构模型研究。影响兴趣的形成与发展的因素有个体需要、年
龄、性格和能力、他人、集体与地区的影响等。在数学教学中,如何培养和激发学生的学习
兴趣,是广大数学教师必须重视的一个问题。教师应将对学生学习兴趣的培养渗透到每个教
学环节,贯穿于数学教学的全过程。
关键词:学习兴趣 兴趣 认知
学习兴趣对数学学习具有一定的影响。兴趣是学习活动中的重要动力,是学习获得良好效果的必要条件。数学学习是学生根据数学教学计划、目的要求进行的,由获得数学知识经
验而引起的比较持久的行为变化过程。由于数学有其突出的特点,所以学生在获得数学知识
经验时也有其特殊性的表现和要求,如数学学习中的再创造性比其它学科要高,数学学习需
要较强的抽象概括能力等。这样学生在学习数学时保持浓厚的兴趣就犹为必要。
学习数学的兴趣产生于教学过程的趣味性和艺术性情感中,产生于学习过程中的成功与
愉快体验之中。当学生的精神处于兴奋状态展开数学学习活动时,学生就会产生强烈的求知
欲望,就会在追求与探讨中发展数学的思维能力,促进智力的发展,获得较大的成功;同时,
这种愉快的精神感受又促进学生对数学学习产生更大的兴趣,二者之间相互促进,使数学学
习活动更加活跃、有效,学生的心理素质得到更加和谐的发展。
1.学习兴趣及特点
1.1 学习兴趣
兴趣是人们爱好某种活动或力求认识某种事物的倾向,这种倾向和一定的情感联系着,
兴趣是在需要的基础上产生的,是在生活实践的过程中形成与发展起来的。学习兴趣是学生
基于自己的学习需要而表现出来的一种认识倾向。从表现形式上讲,学习兴趣是学生学习需
要的动态表现形式,是社会和教育对学生的客观要求在学生头脑中的反映;从系统上讲,学
习兴趣是学习动机系统中的一个子系统,它是学习动机中最现实、最活跃的成分,是力求认
识世界、渴望获得科学文化知识的带有情绪色彩的认识倾向。
教育心理学的研究表明,如果大脑中有关学习的神经细胞处于高度的兴奋状态,而无关
部分处于高度的抑制状态,有关学习的神经纤维通道便能高度畅通,学习时信息传输就会处
于最佳状态。学生一旦对数学知识产生兴趣,就会产生巨大的认识能力,能集中注意力学习,
使信息的传导达到最佳状态;反之,如果学生的学习存在着被迫、苦恼、烦躁、紧张,就会
使神经细胞中应当抑制的部分变为兴奋,而应当兴奋的部分受到抑制,从而影响学习效果。
1.2 兴趣的特点
1.2.1 兴趣是后天形成的,是在需要的基础上发展起来的。人们在实践活动中,通过对
某种事物反复接触和了解,随着有关知识经验的不断积累,逐渐形成和发展了对某事物的兴
趣。学习的兴趣是可以诱发和培养的。
1.2.2 兴趣具有指向性。任何一种兴趣都对一定事件或活动,为实现某种目的而产生的。
人对他感兴趣的事物总是心驰神往,积极地把注意指向并集中于该种活动。兴趣的指向性是
建立在需要的基础之上的。
1.2.3 兴趣具有情绪性。在许多心理学教材和工具书中给兴趣下定义时都指出兴趣带有
情绪性。生活实践也表明,人们从事感兴趣的活动时,总会处在愉快、满意、兴致淋漓的情
绪状态;一个人做没有兴趣的工作时总觉得在做苦差事。
1.2.4 兴趣具有动力性。兴趣的动力作用可以概括为:(1)对一个人所从事的活动起支
持、推动和促进作用。(2)为未来活动做准备。
1.2.5 兴趣具有衍生性。人们对事物的认识一般是在旧有的认知结构的基础上进行扩
展,而事物之间往往相互联系,所以从旧有的兴趣中往往会产生出新的兴趣。
1.2.6 兴趣具有稳定性。兴趣的稳定性是指下躯持续时间而言,按兴趣维持时间长短可
分为持久兴趣与短暂兴趣。直观兴趣是一种短暂兴趣,数学内容的有趣性和实用性、数学美
感引起的自觉兴趣和潜在兴趣则是持久兴趣。
2 影响兴趣形成与发展的因素
2.1 兴趣与需要的关系
皮亚杰指出:“兴趣,实际上,就是需要的延伸,它表现出对象与需要之间的关系,因
为我们之所以对一个对象发生兴趣,是由于它能满足我们的需要。”人的需要是多种多样的,
兴趣也随需要而异。研究表明,一般具有高认知需要的人更喜欢复杂任务;而具有低认知需
要的人则更喜欢简单的任务。
2.2 兴趣与年龄的关系
不同年龄的人有不同的兴趣。年龄的增长直接影响到人的兴趣的数量和质量,对认识兴
趣中具有中心意义的读书倾向变化的研究表明,不同年龄阶段的儿童的读书兴趣是有其各自
的特点的。9—13 岁的儿童是读书最盛的,进入青年期读书活动的比率逐渐减少。但年龄越
增长,选择力越强,感受性和理解力越敏锐,读书兴趣的质量在提高。
2.3 兴趣与性格和能力的关系
不同性格的人兴趣有所区别。如情绪稳定的人兴趣也较稳定。此外,兴趣受能力制约。
当自己感到问题的难度太大或太小时,个人对它就难于发生兴趣。
2.4 兴趣与他人、集体及地区的影响有关
学生的兴趣常常受教师兴趣 的影响。个人的兴趣也受集体、地区、集团的影响。
2.5 兴趣与性别的关系
从调查中可知兴趣有受性别影响的倾向。田中在苏州、无锡、镇江3 地区6 县市9 所学
校的初三县市中进行调查显示,对数学表现兴趣的是男生多于女生,声明对数学不感兴趣甚
至讨厌数学的也是男生多于女生。
3 兴趣的形成过程
儿童的兴趣在最初主要是与刺激联系在一起的。首先,刺激本身固有的一些特性都先于
经验而有引起人注意和兴趣的功能。其次,使人觉得有趣的活动和经验本身也将引起人们的
注意和兴趣。
要引起或培养一个人的兴趣要按以下两个步骤进行:(1)发现个人或团体目前感兴趣的
具体领域和现有水平;(2)把希望其从事的活动直接或通过中间的步骤与其目前的兴趣领域
连接起来。
章凯和张必隐提出了兴趣的“信息—目标”理论。该理论认为,个体心理的发展是以不
断从环境获得信息为基础的;个体在与环境相互作用时希望从中获得信息,以消除原有的或
新产生的心理不确定性,实现心理目标的形成、演化和发展的心理过程即兴趣。
4 兴趣的作用
兴趣在学生的学习活动中起着重要的作用。俄国大教育家乌申斯基指出:“没有丝毫兴
趣的强制性学习,将会扼杀学生探求真理的欲望。”教育实践证明,学生对学习本身、对学
习科目有兴趣,就可以激起他的学习积极性,推动他在学习中取得好成绩。
兴趣对未来活动具有准备作用,对正在进行的活动具有推动作用,对活动的创造性态度
具有促进作用。兴趣是推动认识活动的重要动力,是影响学习效果的重要因素。
兴趣作为人从事活动的内容或方向,并不是固定不变的。兴趣可以被培养,被“镶嵌”
于人的个性之中。由于兴趣—注意的指向性和集中性等特点,人的兴趣和认知的相互作用经
常会导致一种恒常而稳定的兴趣—认知倾向。当认知倾向在个体身上内化而恒常地表现出来
时,就表现为一种稳定的兴趣的个性倾向性。
5 兴趣的发展规律
5.1 兴趣发展逐步深化
人的兴趣的发展,一般要经过有趣—乐趣—志趣三个阶段。有趣是兴趣发展的低级水平,
它往往是由某些外在的新异现象所引起而产生的直接兴趣。它为时短暂,带有直观性、盲目
性和广泛性。
乐趣是兴趣发展的中级水平,它是在有趣的基础上逐步定向而形成的。在这个阶段,学
生的兴趣会向专一的、深入的方向发展,即对某一客体产生了特殊爱好。乐趣已具有专一性、
自发性和坚持性的特点。
志趣则是兴趣发展的最高水平。它与崇高的理想和远大的奋斗目标相结合,是在乐趣的
基础上发展起来的。其特点是具有社会性、自觉性、方向性和更强的坚持性,甚至终身不变。
5.2 直接兴趣与间接兴趣的相互转化
兴趣一般分为直接兴趣和间接兴趣两类。直接兴趣是对事物本身感到需要而引起的兴
趣,间接兴趣只是对这种事物或活动的将来结果感到重要,而对事物本身并没有兴趣。间接
兴趣在一定条件下可以转化为直接兴趣。学生遇到稍微简单、容易和生动有趣的知识时,便
会产生直接兴趣;但一旦遇到复杂的、困难的和枯燥的知识时,便需要有间接兴趣来维持学
习。当学生通过顽强学习,克服了学习中的困难时,便又会对这种知识产生直接兴趣。
5.3 中心兴趣与广泛兴趣的相互促进
中心兴趣是指对某一方面的事物或活动有着极浓厚又稳定的兴趣;广泛兴趣是指对多方
面的事物或活动具有的兴趣。广泛兴趣是中心兴趣的基础。
5.4 好奇心、求知欲、兴趣密切联系,逐步发展
从横的方面来看,好奇心、求知欲和兴趣是相互促进、彼此强化的;从纵的方面看,三
者又是沿着好奇心—求知欲—兴趣的方向发展的。
好奇心是人们对新奇事物积极探求的一种心理倾向,它可以说是一种本能。好奇心儿童
期最为强烈。求知欲是人们积极探求新知识的一种欲望,它带有一定的感情色彩。青少年时
期是求知欲最旺盛的时期。某一方面的求知欲如果反复地表现出来,就形成了某一个人对某
事物或活动的兴趣。
5.5 兴趣与努力不可分割
兴趣与努力是可以相互促进的,而不是两个对立面。学生的学习活动既离不开学习兴趣,
也离不开勤奋努力,兴趣与努力不断相互促进,方能使学习达到最佳境地。
6 激发和培养学生学习数学的兴趣
数学的特点是抽象、严谨、应用广泛。徐德雄对江山中学、武汉中学、金陵中学、浦城
一中的高三毕业班学生的调查显示45.4%的学生认为课业负担较重的科目是数学,32.8%
的学生认为考试次数最多的是数学。因此,在数学教学中,如何培养和激发学生的学习兴趣,
是广大数学教师必须十分重视的一个问题,对于学习兴趣的培养应当渗透到每个教学环节,
贯穿于数学教学的全过程。
6.1 要求学生建立积极的心理准备状态
教师要教会学生在学习中遇到不懂的地方有积极的心理暗示,鼓励学生创造性地使用一
些方法,增加学习的趣味性。兴趣是可以自己培养的,关键是有积极的态度。
6.2 帮助学生形成正确的学习价值观
学习价值观使学生形成明确的学习需要,为兴趣的生成奠定基础。在教学中,教师要充
分挖掘教学内容的功利和精神价值,并及时准确地传递给学生,帮助学生形成正确的学习目
的,明确学习的价值和意义,以唤醒学生学习的内在冲动和激情,促进学习兴趣的生成。 学
习价值观激发学习动机和求知欲,为兴趣的深入发展注入动力。教师应善于从帮助学生确立
科学合理的学习价值观入手,以培养学生正确的学习理念和优秀的学习品质为切入点,将兴
趣根植于崇高的理想信仰和正确的价值观基础之上。只有这样,学生才能形成真实的、稳定
的、深入的、持久的学习兴趣,才能真正达到兴趣促进学习的目的。
6.3 提高教学水平引发学生学习兴趣
6.3.1 设悬激趣
创设悬念,是教师根据教材的数学内容,设置问题情境,使学生产生强烈的求知欲望,激发学习兴趣。如教学“正比例”知识时,教师向学生提出一个实际问题:谁能有办法测量
我们校内操场枫树的高度呢?同学们顿时兴趣大发,争论不休,却又想不出什么好办法。这
时教师对同学们说:“我倒有一个且很简单的测量办法,不用爬树也不用砍树便可以测出树
的高度”。同学们哗然,产生悬念:老师是用什么办法测量树高的呢?很自然地产生了求知
欲望,由此学生主动学习,兴趣盎然,从而达到了预期的教学目的。收到良好效果,悬念也
得到解决。
6.3.2 实践激趣
数学教学中,给学生设置创造思考问题的机会和条件,指导学生在实践中,观察的基础
上,动脑筋思考获得新知识。《数学课程标准》中指出:“学生能够认识到数学存在于现实生
活中,并被广泛应用于现实世界,才能切实体会到数学的应用价值。”学好数学知识,是为
了更好地为生活服务。把知识应用于生活,做到学以致用,让学生充分体验数学的应用价值,
同时让学生在解决实际生活中的数学问题时,体验到探索数学的无穷乐趣,从而形成长久的
兴趣。
6.3.3 竞争激趣
课堂教学中,教师要注重学生争胜好强的特点,发挥他们的学习积极性,给他们提供足
够的机会,鼓励他们竞争。
6.3.4 操作激趣
感知-表象—概念是儿童认识数学的过程,从具体到抽象,从感性到理性的过程。教学
时要注重学生的操作训练,激发学习兴趣,发展学生思维,把抽象的知识转变为具体的内容,
使学生的认识由感性的基础上升到理性知识。
6.3.5 评价激趣
教学中不管学生对知识的接受理解能力如何。教师都要以亲切的语言给予评价和诱导,
忌用简单、粗糙的语言挫伤学生的学习知识性:
第一、利用成功评价激趣。如学生通过自己学习实践得出圆周率时,教师评价学生说:
“圆周率是我国古代数学家花了很长的时间,反复实验才计算出来,而今你们通过自己的实
践也成功地算出来了,真了不起。希望同学们从小就要这样认真学习,事业一定能成功。”
从而激发学生的学习兴趣。
第二、利用诱导语言激趣。个别同学在学习过程中遇到困难时,要及时给予点拨诱导,
让他们跳一下也能摘到果子。给予“试试看”、“再想想”等亲切的语言鼓励他们学习成功,
产生兴趣。
6.3.6 加强直观,引导动手操作
在课堂教学中,采用直观教具、投影仪等生动形象的教学手段,能使静态的数学知识动
态化,不但能激发学生学习的积极性,而且学生学到的知识也能印象深刻,永久不忘。动手
操作能有效地引发学生的学习兴趣。
6.4 建立平等和谐的师生关系
教育是心灵的艺术,应该体现出民主与平等的现代意识。学生对堂课的兴趣与积极性的
高低,常依赖于对教师的情感。由此可见,高尚纯洁的爱则是师生心灵的通道,是启发学生
心扉的钥匙,是引导学生前进的路标。教师除了要有人格魅力外,在教学中,要以一颗火热
的心爱护学生,真诚地对待学生。对学生要一视同仁,才能赢得学生的信赖。在生活上关心
他们,在学习上帮助他们,在课堂上注重多表扬少批评,经常走到他们中间,找他们谈心,
参加他们的活动,为他们服务,这样才能成为他们的知心朋友,尤其是对学习困难的学生更
应多给他们关爱,多找出其闪光点培养他们的自信心,只有这样,建立了平等和谐的师生关
系,学生才会亲其师、信其道、学其知,产生兴趣。
6.5 应用现代化教学手段培养学习兴趣
学生的认识能力是否会有长足的进步,常常取决于我们能否提供一个良好的外界条件。
在过去教学中,多数是填鸭式教学,教师只是讲讲、写写,学生只是听听、记记,对知识的
理解、认识的提高,很多都是抽象的、模糊的,很难真正搞清楚,而现代教学手段的应用恰
好弥补了这一不足。
随着科学技术的发展,现代媒介也逐渐走入课堂,广泛用于教学中。应用现代化教学手
段,诸如电影,电视,尤其是多媒体计算机辅助教学,代替了过去把黑板、粉笔作为教具的
教学模式,既可以提高学生的认识能力,还可以培养学生的学习兴趣,让学生把动画、图象、
立体声融合起来,真正做到“图文并茂”,把学生带入一种心旷神怡的境界,有身临其境之
感,觉得生动有趣,这样就能激发起学生的学习热情,从而收到良好的效果。
参考文献:
[1]陈在瑞、路碧澄注。数学教育心理学。北京:中国人民大学出版社,1995。
[2]李洪玉,何一粟著。学习动力。武汉:湖北教育出版社,1999。
[3]李洪玉,何一粟著。学习能力发展心理学。合肥:安徽教育出版社,2004。
[4]刘显国。激发学习兴趣艺术。北京:中国林业出版社,2004。
[5]田中。初中学生性别与数学学习关系的问卷调查分析。数学通报,2000(6)。
[6]徐德雄。高中数学学业负担的调查及对策。中学数学教学参考,1997(3)。

热点内容
小学数学资格证面试 发布:2025-02-27 11:35:59 浏览:816
围棋历史故事 发布:2025-02-27 11:09:02 浏览:5
教师资格证面试的问题 发布:2025-02-27 10:42:56 浏览:962
river教学视频 发布:2025-02-27 10:13:55 浏览:903
五年级上册语文试卷分析 发布:2025-02-27 09:06:11 浏览:186
小学六年级数学补习 发布:2025-02-27 07:30:00 浏览:330
一只贝教学反思 发布:2025-02-27 06:59:50 浏览:198
小说英语 发布:2025-02-27 04:54:34 浏览:531
初三化学酸碱 发布:2025-02-27 04:39:39 浏览:250
gb是哪个国家 发布:2025-02-27 04:29:47 浏览:622