数学的美妙
A. 《数学真美妙》读后感
最近,学校组织全校同学开展“读书节”活动。在学校老师的推荐下,我读到了一本让我在欢乐中学习的好书——《数学真好玩》。
“这是一本能让人十分钟爱上的数学书”字。书的扉页上写着这样一行字。书中以作者的弟弟菲洛和爷爷为主角,通过爷爷生动风趣的一个个故事,带领我们和菲洛一起探索数学王国的奥秘。
这本书看似其貌不扬,但读起来却让人爱不释手。平常被看得复杂和繁琐的数字,被书中幽默的对话、生动的例子,充满意大利风情的插图,欢快地展现在读者的面前。在作者的笔下,好奇的弟弟总是不断地向爷爷提出问题,而教龄40年的爷爷总是不厌其烦地向他讲解。
书中的爷爷慈祥和蔼,弟弟菲洛聪明淘气,所有抽象、枯燥的数学知识都在爷孙两人的对话中展现出来,变得亲切易懂,你会发现,数学并不仅仅是数字、公式、例题,它还是历史、趣味和生活道理,原来数学这么好玩、如此简单!
当然,书中最令我喜爱的,还是正文前面的那些标题。我不喜欢那些故弄玄虚的标题,一看到那样的标题,我阅读的兴趣就会大打折扣。而《数学真好玩》这本书,却给了我完全不一样的感受。
就比如“肚脐的位置恰倒好处”这个标题,一见到它,我的心里就产生了一个大大的悬念。恰到什么好处?为什么恰到好处?急切地催使我继续看下去。
可相反的,如果把这个标题改为“黄金比例”或“0.618的比例”,给人的感觉就完全不一样了。文章会显得呆板、无趣,就更加谈不上什么生动形象了,而这些也正是我从这本书的阅读中获取的最大收获。
同学们,这是一本让人10分钟就爱上数学的神奇之书,就在此书中,你会和菲洛一起体验到前所未有的趣味数学学习方法,认识数学的奇妙与乐趣,学会用数学知识解决实际问题,变为生活中的小小数学达人。让我们一同跟随爷爷和菲洛在数学世界中探险,体验一段快乐而充实的数学之旅
B. 为什么说数学是美妙的
长期以来,一个令人困惑的现象是:一些同学视数学如畏途,兴趣淡漠,导致数学成绩普遍低于其他学科。这使一些教师、家长乃至专家、学者大伤脑筋!“兴趣是最好的老师。”对任何事物,只有有了兴趣,才能产生学习钻研的动机。兴趣是打开科学大门的钥匙。对数学不感兴趣的根本原因是没有体会到蕴含于数学之中的奇趣和美妙。一个美学家说:“美,只要人感受到它,它就存在,不被人感受到,它就不存在。”对数学的认识也是这样。有人说:“数学真枯燥,十个数字来回转,加、减、乘、除反复用,真乏味!”有人却说:“数学真美好,十个数字颠来倒,变化无穷最奇妙!”认为枯燥,是对数学的误解;感到了兴趣,才能体会到数学的奥妙。其实,数学确实是个最富有魅力的学科。它所蕴含的美妙和奇趣,是其他任何学科都不能相比的。尽管语文的优美词语能令人陶醉,历史的悲壮故事能使人振奋,然而,数学的逻辑力量却可以使任何金刚大汉为之折服,数学的浓厚趣味能使任何年龄的人们为之倾倒!茫茫宇宙,浩浩江河,哪一种事物能脱离数和形而存在?是数、形的有机结合,才有这奇奇妙妙千姿百态的大千世界。数学的美,质朴,深沉,令人赏心悦目;数学的妙,鬼斧神工,令人拍案叫绝!数学的趣,醇浓如酒,令人神魂颠倒。因为它美,才更有趣;因为它有趣,才更显得美。美和趣的和谐结合,便出现了种种奇妙。这也许正是历史上许许多多的科学家、艺术家,同时也钟情于数学的原因吧!数学以它美的形象,趣的魅力,吸引着古往今来千千万万痴迷的追求者。
一、数学的趣味美
数学是思维的体操。思维触角的每一次延伸,都开辟了一个新的天地。数学的趣味美,体现于它奇妙无穷的变幻,而这种变幻是其他学科望尘莫及的。揭开了隐藏于数学迷宫的奇异数、对称数、完全数、魔术数的面纱,令人惊诧;观看了数字波涛、数字漩涡令人感叹!一个个数字,非但毫不枯燥,却生机勃勃,鲜活亮丽!根据法则、规律,运用严密的逻辑推理演化出的各种神机妙算、数学游戏,是数学趣味性的集中体现,显示了数学思维的出神入化!各种变化多端的奇妙图形,赏心悦目;各种扑朔迷离的符形数谜,牵魂系梦;图形式题的巧解妙算,启人心扉,令人赞叹!魔幻迷题,运用科学思维,“弹子会告密”、“卡片能说话”,能知你姓氏,知你出生年月,甚至能窥见你脑中所想,心中所思,真是奇趣玄妙,鬼斧神工。面对这样一些饶有兴味的问题,怎能说数学枯燥乏味呢?
二、数学的形象美
黑格尔说:“美只能在形象中出现。”谈到形象美,一些人便联想到文学、艺术,如影视、雕塑、绘画等等。似乎数学中的数与形只是抽象的孪生兄弟。其实不然。数学是研究数与形的科学,数形的有机结合,组成了万事万物的绚丽画面。
数字美:阿拉伯数字的本身便有着极美的形象:1字像小棒,2字像小鸭,3字像耳朵,4字像小旗。瞧,多么生动。
符号美:“=”(等于号)两条同样长短的平行线,表达了运算结果的唯一性,体现了数学科学的清晰与精确。
“≈”(约等于号)是等于号的变形,表达了两种量间的联系性,体现了数学科学的模糊与朦胧。
“>”(大于号)、“<”(小于号),一个一端收紧,一个一端张开,形象的表明两量之间的大小关系。
{[()]}(大、中、小括号)形象地表明了内外、先后的区别,体现对称、收放的内涵特征。
线条美:看到“⊥”(垂直线条),我们想起屹立街头的十层高楼,给我们是挺拔感;看到“—”(水平线条),我们想起了无风的湖面,给我们的是沉静感;看到“~”(曲线线条),我们想起了波涛滚滚的河水,给我们的是流动感。几何形体中那些优美的图案更是令人赏心悦目。三角形的稳定性,平行四边形的变态性,圆蕴含的广阔性,都给人以无限遐想。脱式运算的“收网式”变形以及统计图表,则是数与形的完美结合。我国古代的太极图,把平面与立体、静止与旋转,数字与图形,更作了高度的概括!
三、简洁美
数学科学的严谨性,决定它必须精练、准确,因而简洁美是数学的又一特色。
数学的简洁美表现在:
1.定义、规律叙述的高度浓缩性,使它的语言精练到“一字千金”的程度。质数的定义是“只有1和它本身两个约数的数”,若丢掉“只”字,便荒谬绝伦;小数性质中“小数末尾的0”中的“末尾”若说成“后面”,便“失之千里”。此种例证不胜枚举。
2.公式、法则的高度概括性。一道公式可以解无数道题目,一条法则囊括了万千事例。
三角形的面积=底×高÷2。把一切类型的三角形(直角的、钝角的、锐角的;等边的、等腰的、不等边的)都概括无遗。“数位对齐,个位加起,逢十进一”把20以内、万以内、多位数的各种整数相加方法,全部包容了进去。
3.符号语言的广泛适用性。
数学符号是最简洁的文字,表达的内容却极其广泛而丰富,它是数学科学抽象化程度的高度体现,也正是数学美的一个方面。a+b=b+aabc=acb=bca,其中a,b,c可以是任何整数、小数或分数。所以,这些用符号表达的算式,既节省了大量文字,又反映了普遍规律,简洁,明了,易记。充分体现了数学语言干练、简洁的特有美感。
四、对称美
对称是美学的基本法则之一,数学中众多的轴对称、中心对称图形,幻方、数阵以及等量关系都赋予了平衡、协调的对称美。略举几例:
算式:
2∶3=4∶6
X+5=17-9
数阵:
数学概念竟然也是一分为二的成对出现的:“整—分,奇—偶,和—差,曲—直,方—圆,分解—组合,平行—交叉,正比例—反比例,显得稳定、和谐、协调、平衡,真是奇妙动人。图形:数学中蕴含的美的因素是深广博大的。数学之美还不仅于此,它贯穿于数学的方方面面。数学的研究对象是数、形、式,数的美,形的美,式的美,随处可见。它的表现形式,不仅有对称美,还有比例美、和谐美,甚至数学的本身也存在着题目美、解法美和结论美。上述这些只是浮光掠影的点点滴滴,然而,也足见数学的迷人风采了。打开这本书,如同进入一个奇妙世界,呈现眼前的尽是数、形变幻的奇妙景观,一个个“枯燥”的数字活蹦乱跳地为你作精彩表演,一个个“抽象”的概念娓娓动听地向你讲述生动的故事。它揭示了隐藏于深层的数学秘密,展示了数学迷宫的绚丽多彩。数的变幻,形的奇妙,有的令你追根究底,有的令你流连忘返,有的令你惊讶感叹,有的令你拍案叫绝,走进这个奇妙世界,必将如咀嚼一枚橄榄果,品尝到数学的浓浓趣味,感受到数学王国神异奇妙,从而使我们眼界大开。你将惊呼:“哇!数学原来是这么有趣啊!”
C. 数学之美的内容
数学美是自然美的客观反映,是科学美的核心。简言之数学美就是数学中奇妙版的有规律的让人愉悦的美的东西权。
作为科学语言的数学,数学具有一般语言文字与艺术所共有的美的特点,即数学在其内容结构上和方法上也都具有自身的某种美,既所谓数学美。
数学美的含义是丰富的,如数学概念的简单性、统一性,结构关系的协调性、对称性,数学命题与数学模型的概括性、典型性和普遍性,还有数学中的奇异性等等都是数学美的具体内容。
(3)数学的美妙扩展阅读:
数学美有别与其它的美,它没有鲜艳的色彩,没有美妙的声音,没有动感的画面,它却是一种独特的美。
德国数学家克莱因曾对数学美作过这样的描述:“音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科技可以改善物质生活,但数学却能提供以上一切。”
大多数的数学家会由他们的工作及一般数学里得出美学的喜悦。他们形容数学是美丽的来表示这种喜悦。有时,数学家会形容数学是一种艺术的形式,或至少是一个创造性的活动。通常拿来和音乐和诗歌相比较。
D. 数学中最美妙的数是多少
7,这是一个魔数。
E. 为什么数学这么美
数学思维很美,美在它的逻辑严密性,是人类的想象的结晶,不需要任何试验验证。思考着数学时是很快乐的。
F. 数学美的内涵是什么阐述数学美的内涵。
一、数学的简洁美
简洁本身就是一种美,而数学的首要特点在于它的简洁。大干世界,纷繁多样,在杂乱无章的客观现象中,抽象出数学理论,用简单、清晰的数学形式来表达,反过来再解释、处理更多的客观事物和现象,这就是数学的简洁美。就象优秀的诗词讲究用最少的文字表达最丰富的内容一样,数学中的公式、法则、定理等,用精炼的语言和符号,高度概括了现实世界量的关系和结构。你看,世界上存在着何其多的三角形,形态之多令人难以想象,然而它们的面积计算,都可以高度凝结成这样一个关系式广计算所有多边形的面积。形式是如此的简单,而应用是那么的广5=十。A,由此我们还能推泛。数学符号的产生发展,使得数学的表达式极其简洁。一大堆的数字计算,一连串的数字算式,是多么让人心烦理不出一个头绪来。但是我们可用一个数学表达式将它们全部概括进来。连乘积n.(n一1)(n-2)……3·2·1写起是多么的麻烦啊,可以用阶乘符号“n!”十分简洁地表示了出来。使用符号“》”来进行推理,给人一种严谨有序清晰明快的美感。
二、数学的统一美
把众多的概念、公式和理论,用一个更高层次的概念、公式或理论统一起来,会使人们得到一种心理上的愉悦,这就是数学的统一美。在数学研究中,人们总是在谋求更高程度的抽象,以便有更大的概括面和更广的适用范围,这样许多概念又属于一个种概念之下,许多公式又有一个统一的公式。如小学几何中有许多概念:正方形、长方形、梯形、平行四边形,但它们却都是四边形。在小学数学中,我们有三角形、平行四边形、梯形的面积公式、虽然它们各不相同.但它们却可用公式s=1/2(a十b)h统一起来(公式中“a为上底、b为下底、h为高)。在数学学习中,许多优秀的学生,在解题过程中,时时在追求着数学问题中存在的统一美,他们觉得只有找到一类题型的统一解答规律,才是真正掌握数学知识的主人,才能从中获得美的享受。
三、数学的奇异美
奇异是指规律的奇巧或结果的出人预料。数学中的奇异美就象波澜起伏的文学故事,珍贵奇异的艺术品一样扣人心弦,给人以美的享受。无论你画出怎样的一个三角形,它的三条高线交于一点,三条中线交于一点。三条角平分线交于一点,其中显示了一种奇巧的美,使人们感到三角形中似乎蕴含着一种神奇的规律,让人惊奇、神秘。在运算中,我们会对3十9十3×9=39,4十9十4×9=49等式惊讶.因为左右两边的数字是如此的对称,我们还会为4109589041096×83=341095890410968这个乘法算式拍案称奇,因为两乘数与积的数字竞然会如此地巧合。数学中不少结论令人赞叹,因为其巧妙无比.正是因为这一点数学才有无穷的魅力。在数学的发展史上,往往正是数学自身的奇异性的美,吸引着数学家向更新、更深的层次探索,弄它个水落石出。
四、数学美的奇异性
美在于奇特而令人惊异.——培根
奇异性是数学美的一个重要特性.奇异性包括两个方面内容:一是奇妙,二是变异.数学中不少结论令人 赞叹,因为其巧妙无比,正是因为这一点数学才有无穷的魅力.变异是指数学理论拓广或统一性遭到破坏后,产生新方法、新思想、新概念、新理论的起点.变异有悖于人们的想象与期望,因此就更引起人们的关注与好奇.凡是新的不平常的东西都能在想象中引起一种乐趣,因为这种东西会使人的心灵感到一种愉快的新奇,满足它(心灵)的好奇心,将会使之得到原来不曾有过的一种观念.数学中许多新的分支的诞生,都是人们对于数学奇异性探讨的结果.在数学发展史上,往往正是数学自身的奇异性的魅力,吸引着数学家向更新、更深的层次探索,弄它个水落石出!
G. 数学的简洁美主要体现在什么地方
19世纪大数学家高斯就说过“数学是科学中的皇后”),它具有简洁美(抽象美、符号美、统一美等)、和谐美(对称美、形式美等)、奇异美(有限美、神秘美等)。美在一个困难问题的简单解答,一个复杂问题的简单答案;美在种种图案、建筑物、衣服式样、家具及装饰等事物的对称性上;美在人们对和谐、有规律的事物的喜爱以及从事物中发现普遍性与统一性的秩序和规律中。 1、美观:数学对象以形式上的对称、和谐、简洁,总给人的观感带来美丽、漂亮的感受。 比如:几何学常常给人们直观的美学形象,美观、匀称、无可非议; 在算术、代数科目中也很多: 如(a+b)·c=a·c+b·c; a+b=b+a 这些公式和法则非常对称与和谐,同样给人以美观感受。 但是外形上的的美观,并不一定是真实和正确的。 比如:sin(A+B)=sinA+sinB是何等的“对称”、“和谐”、“美观”啊!但是它是错误的,就象“”虽然美丽但是有“毒”。 2、美好:数学上的许多东西,只有认识到它的正确性,才能感觉到它的“美好”。 不美丽的例子很多,比如二次方程的求根公式,无论从哪方面看都不对称、不和谐、不美观。但是,当我们真正了解它、运用它,就会感到它的价值,它的美好。这一公式告诉我们许多信息:±表示它有两个根,a≠0、△会显示根的数目和方程的性质…… 3、美妙:美妙的感觉需要培养,美妙的感觉往往来自“意料之外”但在“情理之中”的事物。三角形的高交于一点就是这样;2个圆柱体垂直相截后将截面展开,其截线所对应的曲线竟然是一条正弦曲线,与原来猜想的是一断圆弧大出“意料之外”,经过分析证明的确是正弦曲线,又在“情理之中”,美妙的感觉就油然而生了。 4、完美:数学总是尽量做到完美无缺。这就是数学的最高“品质”和最高的精神“境界”。欧氏几何公理化体系的建立,“1+1”的证明都是追求数学完美的典型例子。
H. 数学真美妙读后感
数学真美妙读后感
今年暑假,我看一本叫《数学真美妙》的书。
这本书分为十二章,有数内学游戏、数学奇观、容数学猜想、数学美妙等若干部分。每一章都很有趣。书中还详细介绍了国内外古代数学知识,如伏羲氏与八卦,河图与十进制,洛书和九宫格,魔方和数独,这些都引起我对数学的浓厚兴趣。
最让我回味的是第一章24点经典题目。所谓24点就是把四张有数字的纸或扑克牌用加减乘除来凑成24。我有不少题目都答不出来,但外公却很快算出来了。我们一起讨论,外公从旁指点,总算都算完了。最后一章也很好玩,讲述阿基米德怎样发现阿基米德原理并用它测出国王王冠里有没有银子。
书里还有许多有趣的数学题,让我越看越有劲,越做越开心。数学真有趣,怪不得叫数学真美妙呢
I. 数学的奇妙之处
令这个数为X则[(x+52.8)* 5-3.9343]除以0.5—10x 也就是10x+52.8 * 10 —3.9343 * 2 —10x显然任何数都一样