物理实验
1 控制变量法:这个应该是最常见的实验方法。
例如,在“探究压强与哪些因素有关”、“探究电流与电阻的关系”、“研究弦乐器的音调与弦的松紧、长短和粗细的关系”等实验中都用到了该实验方法。
2 类比法:例如,在学习电流时,为了更好地理解,与生活中熟悉的水流作类比。
实验+推理法:有些理论只有在理想空间里才能通过实验得出,此时,我们可以在现实条件实验的基础上推导出来这些理论。
例如,在初二我们学过牛顿第一定律:一切物体在没有受到力的作用时,总保持静止状态或匀速直线运动状态。我们知道,物体在运动过程中必定会受到阻力作用,但是我们通过多次实验,可以推出这一结论。
3 描述法:例如,在生活中是不存在光线的,我们为了更好地学习光,才引进了“光线”这一词。
4 转换法:例如,我们在学习“声音是振动产生的”这一知识时,我们把音叉的微小振动转换为乒乓球的摆动。使实验现象更为明显。
5 模型法:我们在学习原子结构时,为了更好地认识原子的内部结构,用太阳系模型代表原子结构。
(1)物理实验扩展阅读:
物理实验是初高中阶段物理课程中包含的相关实验,包括电学实验、力学实验、热学实验、光学实验等等,常用于验证物理学科的定理定律。
实验物理是相对于理论物理而言,理论物理是从理论上探索自然界未知的物质结构、相互作用和物质运动的基本规律的学科。
理论物理的研究领域涉及粒子物理与原子核物理、统计物理、凝聚态物理、宇宙学等,几乎包括物理学所有分支的基本理论问题。而实验物理主要是从实验上来探索物质世界和自然规律。
实验室使用守则
1、为保护实验仪器和保持环境卫生,学生必须脱鞋进入实验室。
2、实验室是全校师生进行实验教学和科研活动的场所,学生进入实验室后要保持肃静,遵守纪律。
3、做实验前,认真听教师讲解实验目的、步骤、仪器的性能操作、方法和注意事项,认真检查所需仪器设备是否完好齐全,如有缺损要及时向教师报告。
4、实验时要遵守操作规程,按照实验步骤认真操作。
5、实验时要注意安全,防止意外发生。
6、爱护实验室仪器设备。
7、实验完毕要认真清理仪器设备,关闭水源电源。
性质
1.真理性:物理学的理论和实验揭示了自然界的奥秘,反映出物质运动的客观规律。
2.和谐统一性:神秘的太空中天体的运动,在开普勒三定律的描绘下,显出多么的和谐有序。物理学上的几次大统一,也显示出美的感觉。牛顿用三大定律和万有引力定律把天上和地上所有宏观物体统一了。
麦克斯韦电磁理论的建立,又使电和磁实现了统一。爱因斯坦质能方程又把质量和能量建立了统一。光的波粒二象性理论把粒子性、波动性实现了统一。爱因斯坦的相对论又把时间、空间统一了。
3.简洁性:物理规律的数学语言,体现了物理的简洁明快性。如:牛顿第二定律,爱因斯坦的质能方程,法拉第电磁感应定律。
4.对称性:对称一般指物体形状的对称性,深层次的对称表现为事物发展变化或客观规律的对称性。如:物理学中各种晶体的空间点阵结构具有高度的对称性。竖直上抛运动、简谐运动、波动镜像对称、磁电对称、作用力与反作用力对称、正粒子和反粒子、正物质和反物质、正电和负电等。
5.预测性:正确的物理理论,不仅能解释当时已发现的物理现象,更能预测当时无法探测到的物理现象。例如麦克斯韦电磁理论预测电磁波存在,卢瑟福预言中子的存在,菲涅尔的衍射理论预言圆盘衍射中央有泊松亮斑,狄拉克预言电子的存在。
6.精巧性:物理实验具有精巧性,设计方法的巧妙,使得物理现象更加明显。
㈡ 关于物理实验
1、硬纸板、塑料复梳子、硬纸制板用不同的速度刮过塑料尺子,可以验证不同的频率2、钢尺、压按在桌子边缘,露出不同的长度,用一样的力拨动,可以验证钢尺的长度和频率有关,压按在桌子边缘,露出一样的长度,用不同的力拨动,可以验证拨动力的大小和响度有关。3、橡皮筋、一端固定,拉出一定的长度,验证和钢尺相同4、啤酒瓶、装不同的水,敲击,可以验证长度和频率的关系5、一盆水,敲击水盆,可以说明声音是以波的形式传播
㈢ 物理实验报告的格式怎么写
格式如下:
实验的题目
实验原理:一般书上回写,抄就可以。
实验目的:一般都写掌握什么什么的方法啊。了解什么什么什么啊!
实验步骤:你做实验的过程
实验结果:
分析于讨论:写你的实验结果是否适合真实值!如果有误差要分析产生误差的原因!还有实验的一些比较关键的步骤的注意事项。
㈣ 初中物理实验
实验内容
章节
实验类型
备注
1
正确使用刻度尺测长度
第一章
测量的初步知识
演示实验
2
用毫米刻度尺测长度
学生实验
3
测变速直线运动的平均速度
第二章
简单的运动
学生实验
4
物体振动发声
第三章
声现象
演示实验
5
声音靠介质传播
演示实验
6
音调与频率的关系
演示实验
7
响度与振幅的关系
演示实验
8
温度计、体温计(实物或挂图)
第四章
热现象
演示实验
9
用温度计测水的温度
学生实验
10
晶体和非晶体的熔化
演示实验
11
蒸发吸热
演示实验
12
水沸腾过程中温度不变
演示实验
13
观察水的沸腾
学生实验
14
压缩体积、气体液化
演示实验
15
碘的升华和凝华
演示实验
16
光的直线传播
第五章
光的反射
演示实验
17
光的反射定律
演示实验
18
平面镜成像
演示实验
19
凹面镜的会聚作用和凸面镜的发散作用
演示实验
选做
20
测量教室中不同位置的照度
演示实验
选做
21
光的折射现象
第六章
光的折射
演示实验
22
凸透镜的会聚作用和凹透镜的发散作用
演示实验
23
凸透镜成像
演示实验
24
观察凸透镜所成的像
学生实验
25
照相机、幻灯机、放大镜(实物模型或挂图)
演示实验
26
白光的色散
演示实验
选做
27
研究透明物体和不透明物体的颜色
演示实验
选做
28
色光的合成
演示实验
选做
29
天平构造和使用方法
第七章
质量和密度
演示实验
30
用天平称固体和液体的质量
学生实验
31
相同体积不同物质的质量不等
演示实验
32
相同质量不同物质的体积不等
演示实验
33
同种物质的质量和体积成正比
演示实验
34
用天平和量筒测定固体和液体的密度
学生实验
35
对物体的推、拉、提、压等作用
第八章
力
演示实验
36
研究力的作用效果
演示实验
37
弹簧测力计的构造和使用方法
演示实验
38
用弹簧测力计测力
学生实验
39
研究力的三要素
演示实验
40
物重跟质量的关系
演示实验
41
重垂线
演示实验
42
研究同一直线上二力的合成
演示实验
43
互成角度的二力的合成
演示实验
选做
44
合力跟二力夹角的关系
演示实验
选做
45
运动物体受到阻力越小,前进距离越远
第九章
力和运动
演示实验
46
物体的惯性
演示实验
47
二力平衡的条件
演示实验
48
滑动摩擦力跟压力和表面状况有关系
演示实验
49
滚动摩擦比滑动摩擦小
演示实验
50
增大和减小摩擦的方法
演示实验
51
压力的作用效果与那些因素有关
第十章
压强
液体的压强
演示实验
52
液体内部的压强规律
演示实验
53
研究液体的压强
学生实验
选做
54
连通器
演示实验
55
大气压强的存在
第十一章
大气压强
演示实验
56
托里拆利实验(挂图)
演示实验
57
气压计(实物或挂图)
演示实验
58
水的沸点与气压的关系
演示实验
59
活塞式抽水机和离心式水泵(模型和挂图)
演示实验
选做
60
气体压强与体积的关系
演示实验
61
浸入液体中的物体受到浮力
第十二章
浮力
演示实验
62
用弹簧测力计测浮力(称重法测浮力)
演示实验
63
物体的浮沉条件
演示实验
64
阿基米德原理
演示实验
65
轮船、飞艇、气球、潜水艇(模型或挂图)
演示实验
66
流体压强与流速的关系
演示实验
选做
67
机翼的升力(模型或挂图)
演示实验
选做
68
杠杆的作用
第十三章
简单机械
演示实验
69
杠杆的平衡条件
演示实验
70
研究杠杆的平衡条件
学生实验
71
定滑轮、动滑轮、滑轮组
演示实验
72
轮轴
演示实验
选做
73
竖直提起和水平拉动物体作功
第十四章
功
演示实验
74
研究功的原理
演示实验
75
测滑轮组的机械效率
学生实验
初四
序号
实验名称
章节
实验类型
备注
1
物体的动能与质量和速度的关系
第一章
机械能
演示实验
2
物体的势能与高度、弹性形变的关系
演示实验
3
滚摆、单摆
演示实验
4
水轮机、水电站、潮汐电站、风力发电机(模型和挂图)
演示实验
选做
5
扩散现象
第二章
分子运动理论
内能
演示实验
6
显示分子间存在作用力
演示实验
7
温度越高,扩散过程越快
演示实验
8
摩擦生热
演示实验
9
压缩气体做功,温度升高
演示实验
10
气体膨胀做功,温度降低
演示实验
11
热传递现象
演示实验
12
不同物质的比热容 不同
演示实验
13
利用内能来做功
第三章
内能的利用
热机
演示实验
14
汽油机、柴油机(模型或挂图)
演示实验
15
火箭(模型或挂图)
演示实验
选做
16
⑴ 带电体吸引轻小物体⑵电荷间的相互作用
第四章
电路
演示实验
17
验电器的使用
演示实验
18
电流的形成
演示实验
19
常见的导体和绝缘体
演示实验
20
⑴电路的组成部分 ⑵通路、开路、短路
演示实验
21
串联电路和并联电路
演示实验
22
组成串联电路和并联电路
学生实验
23
电流产生的效应
第五章
电流
演示实验
24
电流表的使用
演示实验
25
用电流表测电流
学生实验
26
电压表的使用
第六章
电压
演示实验
27
用电压表测电压
学生实验
28
导体电阻跟长度、横截面积、材料和温度的关系
第七章
电阻
演示实验
29
(1)滑动变阻器的构造和使用(2)电阻箱
演示实验
30
用滑动变阻器改变电流
学生实验
31
常见的半导体器件(实物或挂图)
演示实验
选做
32
超导现象(录象或挂图)
演示实验
选做
33
电流跟电压和电阻的关系
第八章
欧姆定律
演示实验
34
用电压表和电流表测电阻
学生实验
35
研究串联电路的电阻
演示实验
36
研究并联电路的电阻
演示实验
37
(1)电流做功(2)电能表
第九章
电功和电功率
演示实验
38
⑴测定用电器的电功率 ⑵用电器的铭牌
演示实验
39
测定小灯泡的电功率
学生实验
40
通电导体放出的热量跟电流、电阻和通电时间的关系
演示实验
41
电热器(实物或挂图)
演示实验
42
(1)家庭电路(挂图或参观)(2)测电笔
第十章
安全用电
演示实验
43
保险丝和空气开关的作用
演示实验
44
研究家庭电路中电流过大的原因
演示实验
45
安全用电(挂图)
演示实验
46
(1)各种形状的永磁体(2)指南针
第十一章
电和磁(一)
演示实验
47
(1)磁极间的相互作用(2)磁化现象
演示实验
48
⑴用铁屑显示永磁体的磁场 ⑵显示磁场有方向性
演示实验
49
地磁场(挂图)
演示实验
50
奥斯特实验
演示实验
51
(1)通电螺线管的磁性(2)右手螺旋法则
演示实验
52
研究电磁铁
学生实验
53
电磁铁的作用
演示实验
54
电磁继电器
演示实验
55
电磁式电话(模型或挂图)
演示实验
56
研究电磁感应现象
第十二章
电和磁(二)
演示实验
57
交流发电机(模型或挂图)
演示实验
58
通电直导线在磁场中运动
演示实验
59
通电线圈在磁场中转动
演示实验
60
直流电动机(模型或挂图)
演示实验
61
电磁波的存在
第十三章
无线电通信常识
演示实验
选做
62
无线电波的发射和接收(挂图)
演示实验
选做
63
电视发射接收示意图(挂图)
演示实验
选做
64
⑴激光手电筒 ⑵激光的应用
(选做)
65 第十四章
能源的开发和利用
原子和原子核
66
α、β、γ射线和射线的防护( 选做)
67
⑴链式反应 ⑵核电站(选做)
68
⑴热电站 ⑵蓄能电站 ⑶太阳能电站
㈤ 物理实验
恕我直言,这里面的东西挺多,关系到 测量误差、不确定度与数据处理
主要公式、理论给你,关键在后面的第5部分:
1.真值与误差
一个被测量值x与真值x0之间总是存在着这种差值,这种差值称为测量误差
即绝对误差, Δx=x-x0
又有相对误差, E = (Δx/x0)* 100%
2.误差的分类
正常测量的误差,按其产生的原因和性质,一般可分为系统误差、随机误差和粗大误差三大类。这种划分及其相应的概念,虽然与现在广泛采用的描述测量结果的不确定度概念之间不一定存在简单的对应关系,甚至有些概念可能还是不太严格的。但是作为思维和理解的基础,还是应该有所了解。
系统误差指 试验原理中隐含 或 器材造成 的恒定、不可消除的误差
随机误差指 每次试验中因测量环境(如温度、适度、操作者状态等)等因素
造成的,随机发生的误差
粗大误差指 就如 倾城恋雨 所说的 “坏值”
3.随机误差的分布
随机误差分布满足正态分布关系,即偏离误差越多,几率越小。
4.测量的精密度、准确度和精确度
测量的精密度、准确度和精确度都是评价测量结果的术语,但目前使用时其涵义并不尽一致,以下介绍较为普遍采用的意见。
(1)精密度
精密度是指对同一被测量作多次重复测量时,各次测量值之间彼此接近或分散的程度。它是对随机误差的描述,它反映随机误差对测量的影响程度。随机误差小,测量的精密度就高。
(2)正确度
正确度是指被测量的总体平均值与其真值接近或偏离的程度。它是对系统误差的描述,它反映系统误差对测量的影响程度。系统误差小,测量的正确度就高。
(3)准确度
准确度是指各测量值之间的接近程度和其总体平均值对真值的接近程度。它包括了精密度和正确度两方面的含义。它反映随机误差和系统误差对测量的综合影响程度。只有随机误差和系统误差都非常小,才能说测量的准确度高。
“准确度”是国际上计量规范较常使用的标准术语。
下面是重点!!!!!!!!!!!!!!!!!!!!!!!!!!:
5. 不确定度
先说简单的,
B类不确定度:
从物理实验教学的实际出发,一般只考虑由仪器误差影响引起的B类不确定度uB的计算。在某些情况下,有的依据仪器说明书或检定书,有的依据仪器的准确度等级,有的则粗略地依据仪器的分度或经验,从这些信息可以获得该项系统误差的极限Δ(有的标出容许误差或示值误差),而不是标准不确定度。它们之间的关系为
uB = Δ / C
式中,C为置信概率p=0.683时的置信系数,对仪器的误差服从正态分布、均匀分布、三角分布,C分别为3、√3、√6。在缺乏信息的情况下,对大多数普通物理实验测量可认为一般仪器误差概率分布函数服从均匀分布,即C= 。物理实验中 主要与未定的系统误差有关,而未定系统误差主要是来自于仪器误差 仪,用仪器误差 仪代替 ,所以一般B类不确定度可简化计算为
uB = Δ仪 / √3
常用仪器的 Δ仪 要查表,
我总结的是,要估读仪器的是最小刻度的一半,不要估读的仪器就是最小刻度,
如 米尺要估读 其Δ仪 为 0.5 mm ,千分尺要估读 其Δ仪 为 0.005 mm ,而卡尺不要估读 其Δ仪 为 0.05mm 或 0.02mm (视精度不同而定)……
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
这里的 B类不确定度uB 就是 误差(尺本身)带来的影响
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
然后是复杂的,A类不确定度:
对直接测量来说,如果在相同条件下对某物理量X进行了n次重复独立重复测量,其测量值分别为x1,x2,x3,…,xn, 用 x平均 来表示平均值,则
x平均 = (x1+x2+x3+…+xn)/ n (1)
为单次测量的实验标准差,由贝塞尔公式计算得到
S(xi)=√{[ 1/(n—1)]*∑(xi - x平均)^2} (2)
其中 ∑ 为 i取从1到n,对(xi - x平均)^2求和
为平均值的实验标准差,其值为
S(x平均)= S(xi)/ √n (3)
由于多次测量的平均值比一次测量值更准确,随着测量次数的增多,平均值收敛于期望值。因此,通常以样本的算术平均值 作为被测量值的最佳值,以平均值的实验标准差 作为测量结果的A类标准不确定度。所以
uA = S(x平均) (4)
当测量次数n不是很少时,对应的置信概率为68.3%。当测量次数n较少时,测量结果偏离正态分布而服从t分布,则A类不确定度分量 uA 由S(x平均)乘以因子tp求得。即
uA = tp * S(x平均) (5)
tp因子与置信概率和测量次数有关,可查表。
通常认为测量次数足够多, tp 取 1 ,(5)式 即变为 (4)式
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
这里的 uA 则为 标准差(多次测量,得到标准差)带来的影响
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
注意:在大多数普通物理实验教学中,为了简便,一般就取tp=1,这样,A类不确定度可简化计算为 ,但 uA 与 S(x平均) 概念不同。
评价自己的试验数据!!!!!!!!!!!!!!!!!!!!!!!!
要评价自己的试验数据,一般用置信区间和置信概率来描述
上面的推导中,置信概率均取了 68.3 %
置信区间为 ( x平均 - u ,x平均 + u )
其中u由, u = √(uA^2 + uB^2)求得
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
你可以这样写:
根据测量,XXXXX的长度为 处在区间( x平均 - u ,x平均 + u )内,置信概率为 68.3 % 。
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
当然,这个区间是要算出来的啦,有点小麻烦 ……
有点长,不知您看完看懂没有
ps:这里只写了直接测量值的误差估计,因为问题中的两个都是直接测量值
要了解更多关于间接测量值的知识(无非就是求偏导加权平方和开根号的琐事)
您可以上网找物理试验的相关资料学习……
㈥ 物理实验误差分哪几类
根据实验误差的性质及产生的原因,可将误差分为系统误差、随机误差和粗大误差三种。
1、系统误差
由某些固定不变的因素引起的。在相同条件下进行多次测量,其误差数值的大小和正负保持恒定,或误差随条件改变按一定规律变化。
2、随机误差
由某些不易控制的因素造成的。在相同条件下作多次测量,其误差数值和符号是不确定的,即时大时小,时正时负,无固定大小和偏向。随机误差服从统计规律,其误差与测量次数有关。随着测量次数的增加,平均值的随机误差可以减小,但不会消除。
3、粗大误差
与实际明显不符的误差,主要是由于实验人员粗心大意,如读数错误,记录错误或操作失败所致。这类误差往往与正常值相差很大,应在整理数据时依据常用的准则加以剔除。
(6)物理实验扩展阅读:
产生偶然误差的原因很多,例如读数时,视线的位置不正确,测量点的位置不准确,实验仪器由于环境温度、湿度、电源电压不稳定、振动等因素的影响而产生微小变化等等。这些因素的影响一般是微小的,而且难以确定某个因素产生的具体影响的大小,因此偶然误差难以找出原因加以排除。
实验误差的特点
1、非零性
实验误差永远不等于零。不管人们主观愿望如何,也不管人们在测量过程中怎样精心细致地控制,误差还是要产生的,不会消除,误差的存在是绝对的。
2、随机性
实验误差具有随机性。在相同的实验条件下,对同一个研究对象反复进行多次的实验、测试或观察,所得到的竟不是一个确定的结果,即实验结果具有不确定性。
3、未知性
实验误差是未知的。通常情况下,由于真值是未知的。研究误差时,一般都从偏差入手。
㈦ 高中阶段都有什么物理实验
1、研究匀变速直线运动
打点计时器打下的纸带。选点迹清楚的一条,舍掉开始比较密集的点迹,从便于测量的地方取一个开始点O,然后(每隔5个间隔点)取一个计数点A、B、C、D。测出相邻计数点间的距离s1、s2、s3利用打下的纸带可以,求任一计数点对应的即时速度v:如(其中T=5×0.02s=0.1s)。
2、验证力的平行四边形定则
目的:实验研究合力与分力之间的关系,从而验证力的平行四边形定则。
器材:方木板、白纸、图钉、橡皮条、弹簧秤(2个)、直尺和三角板、细线
该实验是要用互成角度的两个力和另一个力产生相同的效果,看其用平行四边形定则求出的合力与这一个力是否在实验误差允许范围内相等,如果在实验误差允许范围内相等,就验证了力的合成的平行四边形定则。
3、研究平抛物体的运动(用描迹法)
目的:进上步明确,平抛是水平方向和竖直两个方向运动的合成运动,会用轨迹计算物体的初速度。
该实验的实验原理:平抛运动可以看成是两个分运动的合成,一个是水平方向的匀速直线运动,其速度等于平抛物体的初速度;另一个是竖直方向的自由落体运动;利用有孔的卡片确定做平抛运动的小球运动时的若干不同位置,然后描出运动轨迹,测出曲线任一点的坐标x和y,就可求出小球的水平分速度,即平抛物体的初速度。
4、验证机械能守恒定律
验证自由下落过程中机械能守恒,纸带的左端是用夹子夹重物的一端。
⑴、要多做几次实验,选点迹清楚,且第一、二两点间距离接近2mm的纸带进行测量。
⑵、用刻度尺量出从0点到1、2、3、4、5各点的距离h1、h2、h3、h4、h5,利用“匀变速直线运动中间时刻的即时速度等于该段位移内的平均速度”,算出2、3、4各点对应的即时速度v2、v3、v4,验证与2、3、4各点对应的重力势能减少量mgh和动能增加量是否相等。
5、用描迹法画出电场中平面上等势线
目的:用恒定电流场(直流电源接在圆柱形电极板上)模拟静电场(等量异种电荷描绘等势线方法.
实验所用的电流表是零刻度在中央的电流表,在实验前应先测定电流方向与指针偏转方向的关系:将电流表、电池、电阻、导线按图1或图2 连接,其中R是阻值大的电阻,r是阻值小的电阻,用导线的a端试触电流表另一端,就可判定电流方向和指针偏转方向的关系。
参考资料来源:网络-物理实验 (中学物理课程包含的实验)
㈧ 一些简单有趣的物理小实验。
一些简单有趣的物理小实验:瓶内吹气球、能抓住气球的杯子、会吸水的杯子、会吃鸡蛋的瓶子、瓶子瘪了。
一、瓶内吹气球
思考:瓶内吹起的气球,为什么松开气球口,气球不会变小?
材料:大口玻璃瓶,吸管两根:红色和绿色、气球一个、气筒
操作:
1、用改锥事先在瓶盖上打两个孔,在孔上插上两根吸管:红色和绿色
2、在红色的吸管上扎上一个气球
3、将瓶盖盖在瓶口上
4、用气筒打红吸管处将气球打大
5、将红色吸管放开气球立刻变小
6、用气筒再打红吸管处将气球打大
7、迅速捏紧红吸管和绿吸管两个管口
8、放开红色吸管口,气球没有变小
讲解:当红色吸管松开时,由于气球的橡皮膜收缩,气球也开始收缩。可是气球体积缩小后,瓶内其他部分的空气体积就扩大了,而绿管是封闭的,结果瓶内空气压力要降低——甚至低于气球内的压力,这时气球不会再继续缩小了。
二、能抓住气球的杯子
思考:你会用一个小杯子轻轻倒扣在气球球面上,然后把气球吸起来吗?
材料:气球1~2个、塑料杯1~2个、暖水瓶1个、热水少许
流程:
1、 对气球吹气并且绑好
2、 将热水(约70℃)倒入杯中约多半杯
3、 热水在杯中停留20秒后,把水倒出来
4、 立即将杯口紧密地倒扣在气球上
5 、轻轻把杯子连同气球一块提起
说明:1.杯子直接倒扣在气球上,是无法把气球吸起来的。2.用热水处理过的杯子,因为杯子内的空气渐渐冷却,压力变小,因此可以把气球吸起来。
三、会吸水的杯子
思考:用玻璃杯罩住燃烧中的蜡烛,烛火熄灭后,杯子内有什么变化呢?
材料:玻璃杯(比蜡烛高)1个、蜡烛1支、平底盘子1个、打火机1个、水若干
操作:
1、点燃蜡烛,在盘子中央滴几滴蜡油,以便固定蜡烛。
2、在盘子中注入约1厘米高的水。
3、 用玻璃杯倒扣在蜡烛上
4、观察蜡烛燃烧情形以及盘子里水位的变化
讲解:1.玻璃杯里的空气(氧气)被消耗光后,烛火就熄灭了。 2.烛火熄灭后,杯子里的水位会渐渐上升。
四、会吃鸡蛋的瓶子
思考:为什么,鸡蛋能从比自己小的瓶子口进去?
材料:熟鸡蛋1个、细口瓶1个、纸片若干、火柴1盒
操作:
1、熟蛋剥去蛋壳。
2、将纸片撕成长条状。
3、将纸条点燃后仍到瓶子中。
4、等火一熄,立刻把鸡蛋扣到瓶口,并立即将手移开。
讲解:1.纸片刚烧过时,瓶子是热热的。2.鸡蛋扣在瓶口后,瓶子内的温度渐渐降低,瓶内的压力变小,瓶子外的压力大,就会把鸡蛋挤压到瓶子内。
五、瓶子瘪了
思考:你能不用手,把塑料瓶子弄瘪吗?
材料:水杯2个、温开水1杯、矿泉水瓶1个
操作:
1、将温开水到入瓶子,用手摸摸瓶子,是否感觉到热。
2、把瓶子中的温开水再倒出来,并迅速盖紧瓶子盖。
3、观察瓶子慢慢的瘪了。
讲解:1. 加热瓶子里的空气,使它压力降低。2. 由于瓶子外的空气比瓶子内的空气压力大,所以把瓶子压瘪了。
(8)物理实验扩展阅读:
物理实验教学是物理教学的重要形式和方法。一般分为演示实验、课内小实验(边讲边实验)、学生分组实验和课外实验。演示实验是以教师为主要操作者的表演示范实验。
课内小实验是穿插在课堂教学过程中的学生操作的小实验。学生分组实验是学生自己动手使用仪器、观察测量、取得资料数据、分析处理数据、总结概括结论的过程,包括验证性实验和探索性实验。
㈨ 物理实验报告格式
1.实验名称
2.实验目的
3.实验原理
4.实验器材
5.实验步骤
6.实验数据记录
7.实验数据分析,误差分析
㈩ 大学物理实验都有哪些
大学物理实验有:杨氏模量,迈克尔逊干涉仪,全息照相,衍射光栅,单缝衍射,光电效应,用分光计测量玻璃折射率,透镜组基点的测量,测量波的传播速度,密里根油滴实验,模拟示波器的使用,磁电阻巨磁电阻测量,半导体电光光电器件特性测量、等厚干涉
1、杨氏模量
杨氏模量是描述固体材料抵抗形变能力的物理量。当一条长度为L、截面积为S的金属丝在力F作用下伸长ΔL时,F/S叫应力,其物理意义是金属丝单位截面积所受到的力;ΔL/L叫应变,其物理意义是金属丝单位长度所对应的伸长量。
2、迈克尔逊干涉仪
迈克尔逊干涉仪,是1881年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。它是利用分振幅法产生双光束以实现干涉。
3、等厚干涉
等厚干涉是由平行光入射到厚度变化均匀、折射率均匀的薄膜上、下表面而形成的干涉条纹.薄膜厚度相同的地方形成同条干涉条纹,故称等厚干涉.(牛顿环和楔形平板干涉都属等厚干涉.)
4、示波器的使用
波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点(这是传统的模拟示波器的工作原理)。
5、电桥法测电阻
采用典型的四线制测量法。以期提高测量电阻(尤其是低阻)的准确度。程控恒流源、程控前置放大器、A/D转换器构成了测量电路的主体。中央控制单元通过控制恒流源给外部待测负载施加一个恒定、高精度的电流,然后,将所获得的数据(包括测试电压、当前的测试电流等)进行处理,得到实际电阻值。