当前位置:首页 » 历物理化 » 原子核物理实验方法

原子核物理实验方法

发布时间: 2022-06-17 14:20:43

『壹』 原子物理

经过相当长时期的探索,直到20世纪初,人们对原子本身的结构和内部运动规律才有了比较清楚的认识,之后才逐步建立起近代的原子物理学。

1897年前后,科学家们逐渐确定了电子的各种基本特性,并确立了电子是各种原子的共同组成部分。通常,原子是电中性的,而既然一切原子中都有带负电的电子,那么原子中就必然有带正电的物质。20世纪初,对这一问题曾提出过两种不同的假设。

1904年,汤姆逊提出原子中正电荷以均匀的体密度分布在一个大小等于整个原子的球体内,而带负电的电子则一粒粒地分布在球内的不同位置上,分别以某种频率振动着,从而发出电磁辐射。这个模型被形象的比喻为“果仁面包”模型,不过这个模型理论和实验结果相矛盾,很快就被放弃了。

1911年卢瑟福在他所做的粒子散射实验基础上,提出原子的中心是一个重的带正电的核,与整个原子的大小相比,核很小。电子围绕核转动,类似大行星绕太阳转动。这种模型叫做原子的核模型,又称行星模型。从这个模型导出的结论同实验结果符合的很好,很快就被公认了。

绕核作旋转运动的电子有加速度,根据经典的电磁理论,电子应当自动地辐射能量,使原子的能量逐渐减少、辐射的频率逐渐改变,因而发射光谱应是连续光谱。电子因能量的减少而循螺线逐渐接近原子核,最后落到原子核上,所以原子应是一个不稳定的系统。

但事实上原子是稳定的,原子所发射的光谱是线状的,而不是连续的。这些事实表明:从研究宏观现象中确立的经典电动力学,不适用于原子中的微观过程。这就需要进一步分析原子现象,探索原子内部运动的规律性,并建立适合于微观过程的原子理论。

1913年,丹麦物理学家玻尔在卢瑟福所提出的核模型的基础上,结合原子光谱的经验规律,应用普朗克于1900年提出的量子假说,和爱因斯坦于1905年提出的光子假说,提出了原子所具有的能量形成不连续的能级,当能级发生跃迁时,原子就发射出一定频率的光的假说。

『贰』 考兰州大学的粒子物理与原子核物理的研究生 考数几

◆粒子物理与原子核物理

(070202)★

01原子核理论

02实验核物理

03离子束物理及其应用

04强流中子技术及应用

05计算机技术与核仪器

①101思想政治理论

②201英语

③601高等数学(物理类)

④802量子力学(含原子物理学)或837原子核物理(含核物理实验方法)选一

复试笔试科目:普通物理(电磁学)
同等学力加试:

1.电动力学

2.量子力学、原子核物理选一门(与初试科目不能相同)

原子核物理 《原子核物理》,卢希庭主编,原子能出版社

《原子核物理实验方法》复旦大学,清华大学、北京大学合编,第三版修本,

原子能出版社
高等数学(物理类) 《高等数学》(第一册、第二册),张志强编著,兰州大学出版社

《高等数学》(第三册),罗彦锋编著,兰州大学出版社

『叁』 什么是核物理学

编辑词条核物理学
核物理学又称原子核物理学,是20世纪新建立的一个物理学分支。它研究原子核的结构和变化规律;射线束的产生、探测和分析技术;以及同核能、核技术应用有关的物理问题。它是一门既有深刻理论意义,又有重大实践意义的学科
核物理学的发展历史
初期 1896年,贝可勒尔发现天然放射性,这是人们第一次观察到的核变化。现在通常就把这一重大发现看成是核物理学的开端。此后的40多年,人们主要从事放射性衰变规律和射线性质的研究,并且利用放射性射线对原子核做了初步的探讨,这是核物理发展的初期阶段。
在这一时期,人们为了探测各种射线,鉴别其种类并测定其能量,初步创建了一系列探测方法和测量仪器。大多数的探测原理和方法在以后得到了发展和应用,有些基本设备,如计数器、电离室等,沿用至今。
探测、记录射线并测定其性质,一直是核物理研究和核技术应用的一个中心环节。放射性衰变研究证明了一种元素可以通过衰变而变成另一种元素,推翻了元素不可改变的观点,确立了衰变规律的统计性。统计性是微观世界物质运动的一个重要特点,同经典力学和电磁学规律有原则上的区别。
放射性元素能发射出能量很大的射线,这为探索原子和原子核提供了一种前所未有的武器。1911年,卢瑟福等人利用α射线轰击各种原子,观测α射线所发生的偏折,从而确立了原子的核结构,提出了原子结构的行星模型,这一成就为原子结构的研究奠定了基础。此后不久,人们便初步弄清了原子的壳层结构和电子的运动规律,建立和发展了描述微观世界物质运动规律的量子力学。
1919年,卢瑟福等又发现用α粒子轰击氮核会放出质子,这是首次用人工实现的核蜕变(核反应)。此后用射线轰击原子核来引起核反应的方法逐渐成为研究原子核的主要手段。
在初期的核反应研究中,最主要的成果是1932年中子的发现和1934年人工放射性核素的合成。原子核是由中子和质子组成的,中子的发现为核结构的研究提供了必要的前提。中子不带电荷,不受核电荷的排斥,容易进入原子核而引起核反应。因此,中子核反应成为研究原子核的重要手段。在30年代,人们还通过对宇宙线的研究发现了正电子和介子,这些发现是粒子物理学的先河。
20世纪20年代后期,人们已在探讨加速带电粒子的原理。到30年代初,静电、直线和回旋等类型的加速器已具雏形,人们在高压倍加器上进行了初步的核反应实验。利用加速器可以获得束流更强、能量更高和种类更多的射线束,从而大大扩展了核反应的研究工作。此后,加速器逐渐成为研究原子核和应用技术的必要设备。
在核物理发展的最初阶段人们就注意到它的可能的应用,并且很快就发现了放射性射线对某些疾病的治疗作用。这是它在当时就受到社会重视的重要原因,直到今天,核医学仍然是核技术应用的一个重要领域。
大发展时期 20世纪40年代前后,核物理进入一个大发展的阶段。1939年,哈恩和斯特拉斯曼发现了核裂变现象;1942年,费密建立了第一个链式裂变反应堆,这是人类掌握核能源的开端。
在30年代,人们最多只能把质子加速到一百万电子伏特的数量级,而到70年代,人们已能把质子加速到四千亿电子伏特,并且可以根据工作需要产生各种能散度特别小、准直度特别高或者流强特别大的束流。
20世纪40年代以来,粒子探测技术也有了很大的发展。半导体探测器的应用大大提高了测定射线能量的分辨率。核电子学和计算技术的飞速发展从根本上改善了获取和处理实验数据的能力,同时也大大扩展了理论计算的范围。所有这一切,开拓了可观测的核现象的范围,提高了观测的精度和理论分析的能力,从而大大促进了核物理研究和核技术的应用。
通过大量的实验和理论研究,人们对原子核的基本结构和变化规律有了较深入的认识。基本弄清了核子(质子和中子的统称)之间的相互作用的各种性质,对稳定核素或寿命较长的放射性核素的基态和低激发态的性质已积累了较系统的实验数据。并通过理论分析,建立了各种适用的模型。
通过核反应,已经人工合成了17种原子序数大于92的超铀元素和上千种新的放射性核素。这种研究进一步表明,元素仅仅是在一定条件下相对稳定的物质结构单位,并不是永恒不变的。
天体物理的研究表明,核过程是天体演化中起关键作用的过程,核能就是天体能量的主要来源。人们还初步了解到在天体演化过程中各种原子核的形成和演变的过程。在自然界中,各种元素都有一个发展变化的过程,都处于永恒的变化之中。
通过高能和超高能射线束和原子核的相互作用,人们发现了上百种短寿命的粒子,即重子、介子、轻子和各种共振态粒子。庞大的粒子家族的发现,把人们对物质世界的研究推进到一个新的阶段,建立了一门新的学科——粒子物理学,有时也称为高能物理学。各种高能射线束也是研究原子核的新武器,它们能提供某些用其他方法不能获得的关于核结构的知识。
过去,通过对宏观物体的研究,人们知道物质之间有电磁相互作用和万有引力(引力相互作用)两种长程的相互作用;通过对原子核的深入研究,才发现物质之间还有两种短程的相互作用,即强相互作用和弱相互作用。在弱作用下宇称不守恒现象的发现,是对传统的物理学时空观的一次重大突破。研究这四种相互作用的规律和它们之间可能的联系,探索可能存在的靳的相互作用,已成为粒子物理学的一个重要课题。毫无疑问,核物理研究还将在这一方面作出新的重要的贡献。
核物理的发展,不断地为核能装置的设计提供日益精确的数据,从而提高了核能利用的效率和经济指标,并为更大规模的核能利用准备了条件。人工制备的各种同位素的应用已遍及理工农医各部门。新的核技术,如核磁共振、穆斯堡尔谱学、晶体的沟道效应和阻塞效应,以及扰动角关联技术等都迅速得到应用。核技术的广泛应用已成为现代化科学技术的标志之一。
完善和提高 20世纪70年代,由于粒子物理逐渐成为一门独立的学科,核物理已不再是研究物质结构的最前沿。核能利用方面也不像过去那样迫切,核物理进入了一个纵深发展和广泛应用的新的更成熟的阶段。
在现阶段,粒子加速技术已有了新的进展。由于重离子加速技术的发展,人们已能有效地加速从氢到铀所有元素的离子,其能量可达到十亿电子伏每核子。这就大大扩充了人们变革原子核的手段,使重离子核物理的研究得到全面发展。
随着高能物理的发展,人们已能建造强束流的中高能加速器。这类加速器不仅能提供直接加速的离子流,还可以提供次级粒子束。这些高能粒子流从另一方面扩充了人们研究原子核的手段,使高能核物理成为富有生气的研究方面。
从核物理基础研究看,主要目标在两个方面:一是通过核现象研究粒子的性质和相互作用,特别是核子间的相互作用;再者是核多体系的运动形态的研究。很明显,核运动形态的研究将在相当长的时期内占据着核物理基础研究的主要部分。
核物理学的应用
核物理研究之所以受到人们的重视得到社会的大力支持,是和它具有广泛而重要的应用价值密切相关的。目前,几乎没有一个核物理实验室不在从事核技术的应用研究。有些设备甚至主要从事核技术应用工作。
核技术应用主要为核能源的开发服务,如提供更精确的核数据和探索更有效地利用核能的途径等;另外,同位素的应用是核技术应用最广泛的领域。同位素示踪已应用于各个科学技术领域;同位素药剂应用于某些疾病的诊断或治疗;同位素仪表在各工业部门用作生产自动线监测或质量控制装置。
加速器及同位素辐射源已应用于工业的辐照加工、食品的保藏和医药的消毒、辐照育种、辐照探伤以及放射医疗等方面。为了研究辐射与物质的相互作用以及辐照技术,已经建立了辐射物理、辐射化学等边缘学科以及辐照工艺等技术部门。
由于中子束在物质结构、固体物理。高分子物理等方面的广泛应用,人们建立了专用的高中子通量的反应堆来提供强中子束。中子束也应用于辐照、分析、测井及探矿等方面。中子的生物效应是一个重要的研究方向,快中子治癌已取得一定的疗效。
离子束的应用是越来越受到注意的一个核技术部门。大量的小加速器是为了提供离子束而设计的,离子注入技术是研究半导体物理和制备半导体器件的重要手段。离子束已经广泛地应用于材料科学和固体物理的研究工作。离子束也是用来进行无损、快速、痕量分析的重要手段,特别是质子微米束,可用来对表面进行扫描分析。其精度是其他方法难以比拟的。
在原子核物理学诞生、壮大和巩固的全过程中,通过核技术的应用,核物理和其他学科及生产、医疗、军事等部分建立了广泛的联系,取得了有力的支持;核物理基础研究又为核技术的应用不断开辟新的途径。核基础研究和核技术应用的需要,推进了粒子加速技术和核物理实验技术的发展;而这两门技术的新发展,又有力地促进了核物理的基础和应用研究。

『肆』 求原子核物理的液滴模型解释,有文献更好.

①液滴模型。主要的实验事实依据是核的密度为很大的常数,显示核基本上是不可压缩的;原子核的比结合能近乎为常数,核的结合能正比于核子数,表明核力具有饱和性,核子只与邻近的几个核子相互作用。这与宏观的液滴甚为相似。据此,30年代中期N.玻尔等人提出液滴模型,把原子核看成一个带电的不可压缩液滴,根据液滴的经典运动规律对原子核作动力学描述,并适当加入量子效应引起的修正;以后又逐步增加一些新的自由度,如将质子、中子分别看成两类流体,甚至将自旋取向不同也看成不同流体,并引入可压缩性、粘滞性等性质。根据液滴模型可得出准确度相当高的原子核质量半经验公式,在一定程度上可说明原子核的表面振动,相当成功地说明原子核裂变的机制。其不足是不能说明原子核性质的周期性变化现象。

『伍』 科学揭秘:苏联的第一颗原子弹是如何研制细节剖析

1949年8月29日, 苏联 试爆了 第一颗原子弹 。俄罗斯核物理专家叶·韦利霍夫接受记者采访,介绍了当时研制 原子弹 的经过。

记者尤里· 梅德韦杰夫 :哈里顿院士1993年说,苏联的原子弹是根据情报部门获取的美国原子弹的材料复制而成的。是这样的吗?

尤里·梅德韦杰夫:铀矿足够吗?

叶·韦利霍夫:最初使用的并不是本国的铀矿。我们非常走运:哈里顿和基科因在德国发现了100吨铀矿。这在1946年的物理反应堆试验中发挥了重大作用。第一颗原子弹使用的铀是从德国、捷克及本国获得的。

尤里·梅德韦杰夫;1949年8月29日进行了我国第一颗原子弹的试验。据说,为了以防万一,贝利亚准备了一份一旦发射失败就予以处决的人员名单。后来,这些本来可能被处决的人却得到了英雄奖章,有的还获得了列宁勋章。

叶·韦利霍夫:不排除这种可能,但确切情况我不了解。

尤里·梅德韦杰夫:这场疯狂的军备竞赛有必要吗?在建设秘密军营过程中,有许多囚犯和军人丧生,有的深受其害。

叶·韦利霍夫:这是一个复杂的问题。研制原子弹付出了巨大的人员伤亡代价,但我同时在直接参与了这项工作的人员的回忆录中还读到:这些年代是他们一生中最美好的年华,一种非凡的激情将他们连接在一起。有一封信中还说,我国第一颗原子弹就像初恋一样让人难以忘怀。

应当考虑到那些年代的特殊背景。美国人在日本使用原子弹向苏联敲响了警钟:这意味着,明天我们也可能遭到袭击,尽管苏联在战争中取得了胜利。但对许多人来说,研制原子弹是战争的继续。谁也不知道,自己将派往何处,也不知道什么是辐射,谁也不能拒绝。

尤里·梅德韦杰夫:难道人们真的以为美国人会向前不久的盟友投掷原子弹吗?

叶·韦利霍夫:不少院士对此确信无疑。

『陆』 原子核物理方面的问题,希望可以得到解答

这个不算是核物理范畴的题目。应该是高中阶段考察动量守恒和质能方程的题目。
该实验是He(氦)核轰击Be(铍)靶的物理实验,实验确实属于核物理实验。
但即便是速度10七次方,由狭义相对论对到的质量速度公式,其质量的变化也是微乎其微,可以忽略不计。因此,请用动量守恒来解决第一问。如下
其中质量比为核子数之比。He是4,Be是9,n是1,C是12
C12在Y方向分速度为(4/12)*10E7m/s。在X方向分速度为(1.5/3)*10E7m/s。
求得C12,速度为0.6*10E7m/s。(1)得解
(2)问可有质能方程求得,E=△m*c²。其中E=5.7MeV=5.7*10E6*1.6*10E-19J
求得△m=1.013*10E-29Kg

『柒』 科学家汤姆生、卢瑟福、玻尔、道尔顿关于原子理论(观点)研究获得的具体途径或方法。

汤姆生的"葡萄干布丁"模型,他认为原子是一个均匀的球体,质子均匀分布其中,而电子就象葡萄干一样镶嵌在其中.他好象通过测定电子的质荷比来提出这个模型的~.(http://www.cnysgz.com:801/ygjy/ygwl/Print.asp?ArticleID=2581 这个是汤姆生的方法的介绍)

卢瑟福,他的模型是"太阳系轨道"模型,他认为原子象太阳系,原子核集中大部分质量和正电荷,而电子象行星一样在外围转动,他是通过阿尔法散射实验来提出这个模型的,这个实验高中的原子物理有介绍.

玻尔,是卢瑟福的学生,他的模型和卢瑟福大体相仿,不同的是电子运动的轨道是有限的,电子只能在这些轨道上"跃迁",而跃迁就是吸收和放出能量的过程.他是通过研究氢原子的光谱(巴尔末公式),而这个研究过程在高中原子物理学中也有介绍,可以参看相关的书籍.

道尔顿的原子模型就非常简单了,他认为原子是不可再分的实心球体.

下面还有相关介绍,看亦可,不看亦可.

原子研究发展史
BC400年希腊哲学家德谟克列特提出原子的概念。
1803年道尔顿提出原子说。
1833年法拉第提出电解定律,此暗示原子带电,且电可能以不连续的粒子存在。
1874年司通内建议电解过程被交换的粒子叫做「电子」。
1879年克鲁克斯从放电管(高电压低气压的真空管)中发现阴极射线。
1886年哥德斯坦从放电管中发现阳极射线。
1897年汤姆生证实阴极射线即阴极材料上释放出的高速电子流,并测量出电子的荷质比。e/m=1.7588 × 108 库仑 / 克
1909年米立坎的油滴实验测出电子之带电量,并强化了「电子是粒子」的概念。
1911年拉塞福的α粒子散射实验,发现原子有核,且原子核带正电、质量极大、体积很小。其条利用(粒子(即氦核)来撞击金箔,发现大部分(99.9%)粒子直穿金箔,其中少数成大角度偏折,甚至极少数被反向折回(十万分之一)。
1913年莫士勒从 X 一射线光谱波长的关系,建立原子序概念。
1913年汤姆生之质谱仪测量质量数 , 并发现同位素。
1919年拉塞褔发现质子。其利用α粒子撞击氮原子核与发现质子 接著又用α粒子撞击棚 (B) 、氟 (F) 、铝 (A1) 、磷 (P) 核等也都能产生质子,故推论「质子」为元素之原子核共有成分。
1932年查兑克发现中子。其利用α粒子撞击铍原子核
1935年汤川秀树发现介子理论,这种介子使原子核稳定。

1897年,J.J.汤姆逊在研究阴极射线的时候,发现了原子中电子的存在。这打破了从古希腊人那里流传下来的“原子不可分割”的理念,明确地向人们展示:原子是可以继续分割的,它有着自己的内部结构。那么,这个结构是怎么样的呢?汤姆逊那时完全缺乏实验证据,他于是展开自己的想象,勾勒出这样的图景:原子呈球状,带正电荷。而带负电荷的电子则一粒粒地“镶嵌”在这个圆球上。这样的一幅画面,也就是史称的“葡萄干布丁”模型,电子就像布丁上的葡萄干一样。

但是,1910年,卢瑟福和学生们在他的实验室里进行了一次名留青史的实验。他们用α粒子(带正电的氦核)来轰击一张极薄的金箔,想通过散射来确认那个“葡萄干布丁”的大小和性质。但是,极为不可思议的情况出现了:有少数α粒子的散射角度是如此之大,以致超过90度。对于这个情况,卢瑟福自己描述得非常形象:“这就像你用十五英寸的炮弹向一张纸轰击,结果这炮弹却被反弹了回来,反而击中了你自己一样”。

卢瑟福发扬了亚里士多德前辈“吾爱吾师,但吾更爱真理”的优良品格,决定修改汤姆逊的葡萄干布丁模型。他认识到,α粒子被反弹回来,必定是因为它们和金箔原子中某种极为坚硬密实的核心发生了碰撞。这个核心应该是带正电,而且集中了原子的大部分质量。但是,从α粒子只有很少一部分出现大角度散射这一情况来看,那核心占据的地方是很小的,不到原子半径的万分之一。

于是,卢瑟福在次年(1911)发表了他的这个新模型。在他描述的原子图象中,有一个占据了绝大部分质量的“原子核”在原子的中心。而在这原子核的四周,带负电的电子则沿着特定的轨道绕着它运行。这很像一个行星系统(比如太阳系),所以这个模型被理所当然地称为“行星系统”模型。在这里,原子核就像是我们的太阳,而电子则是围绕太阳运行的行星们。

但是,这个看来完美的模型却有着自身难以克服的严重困难。因为物理学家们很快就指出,带负电的电子绕着带正电的原子核运转,这个体系是不稳定的。两者之间会放射出强烈的电磁辐射,从而导致电子一点点地失去自己的能量。作为代价,它便不得不逐渐缩小运行半径,直到最终“坠毁”在原子核上为止,整个过程用时不过一眨眼的工夫。换句话说,就算世界如同卢瑟福描述的那样,也会在转瞬之间因为原子自身的坍缩而毁于一旦。原子核和电子将不可避免地放出辐射并互相中和,然后把卢瑟福和他的实验室,乃至整个英格兰,整个地球,整个宇宙都变成一团混沌。

不过,当然了,虽然理论家们发出如此阴森恐怖的预言,太阳仍然每天按时升起,大家都活得好好的。电子依然快乐地围绕原子打转,没有一点失去能量的预兆。而丹麦的年轻人尼尔斯.玻尔照样安安全全地抵达了曼彻斯特,并开始谱写物理史上属于他的华彩篇章。

玻尔没有因为卢瑟福模型的困难而放弃这一理论,毕竟它有着α粒子散射实验的强力支持。相反,玻尔对电磁理论能否作用于原子这一人们从未涉足过的层面,倒是抱有相当的怀疑成分。曼彻斯特的生活显然要比剑桥令玻尔舒心许多,虽然他和卢瑟福两个人的性格是如此不同,后者是个急性子,永远精力旺盛,而他玻尔则像个害羞的大男孩,说一句话都显得口齿不清。但他们显然是绝妙的一个团队,玻尔的天才在卢瑟福这个老板的领导下被充分地激发出来,很快就在历史上激起壮观的波澜。

1912年7月,玻尔完成了他在原子结构方面的第一篇论文,历史学家们后来常常把它称作“曼彻斯特备忘录”。玻尔在其中已经开始试图把量子的概念结合到卢瑟福模型中去,以解决经典电磁力学所无法解释的难题。但是,一切都只不过是刚刚开始而已,在那片还没有前人涉足的处女地上,玻尔只能一步步地摸索前进。没有人告诉他方向应该在哪里,而他的动力也不过是对于卢瑟福模型的坚信和年轻人特有的巨大热情。玻尔当时对原子光谱的问题一无所知,当然也看不到它后来对于原子研究的决定性意义,不过,革命的方向已经确定,已经没有什么能够改变量子论即将崭露头角这个事实了。

在浓云密布的天空中,出现了一线微光。虽然后来证明,那只是一颗流星,但是这光芒无疑给已经僵硬而老化的物理世界注入了一种新的生机,一种有着新鲜气息和希望的活力。这光芒点燃了人们手中的火炬,引导他们去寻找真正的永恒的光明。

终于,7月24日,玻尔完成了他在英国的学习,动身返回祖国丹麦。在那里,他可爱的未婚妻玛格丽特正在焦急地等待着他,而物理学的未来也即将要向他敞开心扉。在临走前,玻尔把他的论文交给卢瑟福过目,并得到了热切的鼓励。只是,卢瑟福有没有想到,这个青年将在怎样的一个程度上,改变人们对世界的终极看法呢?

是的,是的,时机已到。伟大的三部曲即将问世,而真正属于量子的时代,也终于到来。

*********
饭后闲话:诺贝尔奖得主的幼儿园

卢瑟福本人是一位伟大的物理学家,这是无需置疑的。但他同时更是一位伟大的物理导师,他以敏锐的眼光去发现人们的天才,又以伟大的人格去关怀他们,把他们的潜力挖掘出来。在卢瑟福身边的那些助手和学生们,后来绝大多数都出落得非常出色,其中更包括了为数众多的科学大师们。

我们熟悉的尼尔斯.玻尔,20世纪最伟大的物理学家之一,1922年诺贝尔物理奖得主,量子论的奠基人和象征。在曼彻斯特跟随过卢瑟福。

保罗.狄拉克(Paul Dirac),量子论的创始人之一,同样伟大的科学家,1933年诺贝尔物理奖得主。他的主要成就都是在剑桥卡文迪许实验室做出的(那时卢瑟福接替了J.J.汤姆逊成为这个实验室的主任)。狄拉克获奖的时候才31岁,他对卢瑟福说他不想领这个奖,因为他讨厌在公众中的名声。卢瑟福劝道,如果不领奖的话,那么这个名声可就更响了。

中子的发现者,詹姆斯.查德威克(James Chadwick)在曼彻斯特花了两年时间在卢瑟福的实验室里。他于1935年获得诺贝尔物理奖。

布莱克特(Patrick M. S. Blackett)在一次大战后辞去了海军上尉的职务,进入剑桥跟随卢瑟福学习物理。他后来改进了威尔逊云室,并在宇宙线和核物理方面作出了巨大的贡献,为此获得了1948年的诺贝尔物理奖。

1932年,沃尔顿(E.T.S Walton)和考克劳夫特(John Cockcroft)在卢瑟福的卡文迪许实验室里建造了强大的加速器,并以此来研究原子核的内部结构。这两位卢瑟福的弟子在1951年分享了诺贝尔物理奖金。

这个名单可以继续开下去,一直到长得令人无法忍受为止:英国人索迪(Frederick Soddy),1921年诺贝尔化学奖。瑞典人赫维西(Georg von Hevesy),1943年诺贝尔化学奖。德国人哈恩(Otto Hahn),1944年诺贝尔化学奖。英国人鲍威尔(Cecil Frank Powell),1950年诺贝尔物理奖。美国人贝特(Hans Bethe),1967年诺贝尔物理奖。苏联人卡皮查(P.L.Kapitsa),1978年诺贝尔化学奖。

除去一些稍微疏远一点的case,卢瑟福一生至少培养了10位诺贝尔奖得主(还不算他自己本人)。当然,在他的学生中还有一些没有得到诺奖,但同样出色的名字,比如汉斯.盖革(Hans Geiger,他后来以发明了盖革计数器而著名)、亨利.莫斯里(Henry Mosley,一个被誉为有着无限天才的年轻人,可惜死在了一战的战场上)、恩内斯特.马斯登(Ernest Marsden,他和盖革一起做了α粒子散射实验,后来被封为爵士)……等等,等等。

卢瑟福的实验室被后人称为“诺贝尔奖得主的幼儿园”。他的头像出现在新西兰货币的最大面值——100元上面,作为国家对他最崇高的敬意和纪念。



1912年8月1日,玻尔和玛格丽特在离哥本哈根不远的一个小镇上结婚,随后他们前往英国展开蜜月。当然,有一个人是万万不能忘记拜访的,那就是玻尔家最好的朋友之一,卢瑟福教授。

虽然是在蜜月期,原子和量子的图景仍然没有从玻尔的脑海中消失。他和卢瑟福就此再一次认真地交换了看法,并加深了自己的信念。回到丹麦后,他便以百分之二百的热情投入到这一工作中去。揭开原子内部的奥秘,这一梦想具有太大的诱惑力,令玻尔完全无法抗拒。

为了能使大家跟得上我们史话的步伐,我们还是再次描述一下当时玻尔面临的处境。卢瑟福的实验展示了一个全新的原子面貌:有一个致密的核心处在原子的中央,而电子则绕着这个中心运行,像是围绕着太阳的行星。然而,这个模型面临着严重的理论困难,因为经典电磁理论预言,这样的体系将会无可避免地释放出辐射能量,并最终导致体系的崩溃。换句话说,卢瑟福的原子是不可能稳定存在超过1秒钟的。

玻尔面临着选择,要么放弃卢瑟福模型,要么放弃麦克斯韦和他的伟大理论。玻尔勇气十足地选择了放弃后者。他以一种深刻的洞察力预见到,在原子这样小的层次上,经典理论将不再成立,新的革命性思想必须被引入,这个思想就是普朗克的量子以及他的h常数。

应当说这是一个相当困难的任务。如何推翻麦氏理论还在其次,关键是新理论要能够完美地解释原子的一切行为。玻尔在哥本哈根埋头苦干的那个年头,门捷列夫的元素周期律已经被发现了很久,化学键理论也已经被牢固地建立。种种迹象都表明在原子内部,有一种潜在的规律支配着它们的行为,并形成某种特定的模式。原子世界像一座蕴藏了无穷财宝的金字塔,但如何找到进入其内部的通道,却是一个让人挠头不已的难题。

然而,像当年的贝尔佐尼一样,玻尔也有着一个探险家所具备的最宝贵的素质:洞察力和直觉,这使得他能够抓住那个不起眼,但却是唯一的,稍纵即逝的线索,从而打开那扇通往全新世界的大门。1913年初,年轻的丹麦人汉森(Hans Marius Hansen)请教玻尔,在他那量子化的原子模型里如何解释原子的光谱线问题。对于这个问题,玻尔之前并没有太多地考虑过,原子光谱对他来说是陌生和复杂的,成千条谱线和种种奇怪的效应在他看来太杂乱无章,似乎不能从中得出什么有用的信息。然而汉森告诉玻尔,这里面其实是有规律的,比如巴尔末公式就是。他敦促玻尔关心一下巴尔末的工作。

突然间,就像伊翁(Ion)发现了藏在箱子里的绘着戈耳工的麻布,一切都豁然开朗。山重水复疑无路,柳暗花明又一村。在谁也没有想到的地方,量子得到了决定性的突破。1954年,玻尔回忆道:当我一看见巴尔末的公式,一切就都清楚不过了。

要从头回顾光谱学的发展,又得从伟大的本生和基尔霍夫说起,而那势必又是一篇规模宏大的文字。鉴于篇幅,我们只需要简单地了解一下这方面的背景知识,因为本史话原来也没有打算把方方面面都事无巨细地描述完全。概括来说,当时的人们已经知道,任何元素在被加热时都会释放出含有特定波长的光线,比如我们从中学的焰色实验中知道,钠盐放射出明亮的黄光,钾盐则呈紫色,锂是红色,铜是绿色……等等。将这些光线通过分光镜投射到屏幕上,便得到光谱线。各种元素在光谱里一览无余:钠总是表现为一对黄线,锂产生一条明亮的红线和一条较暗的橙线,钾则是一条紫线。总而言之,任何元素都产生特定的唯一谱线。

但是,这些谱线呈现什么规律以及为什么会有这些规律,却是一个大难题。拿氢原子的谱线来说吧,这是最简单的原子谱线了。它就呈现为一组线段,每一条线都代表了一个特定的波长。比如在可见光区间内,氢原子的光谱线依次为:656,484,434,410,397,388,383,380……纳米。这些数据无疑不是杂乱无章的,1885年,瑞士的一位数学教师巴尔末(Johann Balmer)发现了其中的规律,并总结了一个公式来表示这些波长之间的关系,这就是著名的巴尔末公式。将它的原始形式稍微变换一下,用波长的倒数来表示,则显得更加简单明了:

ν=R(1/2^2 - 1/n^2)

其中的R是一个常数,称为里德伯(Rydberg)常数,n是大于2的正整数(3,4,5……等等)。

在很长一段时间里,这是一个十分有用的经验公式。但没有人可以说明,这个公式背后的意义是什么,以及如何从基本理论将它推导出来。但是在玻尔眼里,这无疑是一个晴天霹雳,它像一个火花,瞬间点燃了玻尔的灵感,所有的疑惑在那一刻变得顺理成章了,玻尔知道,隐藏在原子里的秘密,终于向他嫣然展开笑颜。

我们来看一下巴耳末公式,这里面用到了一个变量n,那是大于2的任何正整数。n可以等于3,可以等于4,但不能等于3.5,这无疑是一种量子化的表述。玻尔深呼了一口气,他的大脑在急速地运转,原子只能放射出波长符合某种量子规律的辐射,这说明了什么呢?我们回忆一下从普朗克引出的那个经典量子公式:E = hν。频率(波长)是能量的量度,原子只释放特定波长的辐射,说明在原子内部,它只能以特定的量吸收或发射能量。而原子怎么会吸收或者释放能量的呢?这在当时已经有了一定的认识,比如斯塔克(J.Stark)就提出,光谱的谱线是由电子在不同势能的位置之间移动而放射出来的,英国人尼科尔森(J.W.Nicholson)也有着类似的想法。玻尔对这些工作无疑都是了解的。

一个大胆的想法在玻尔的脑中浮现出来:原子内部只能释放特定量的能量,说明电子只能在特定的“势能位置”之间转换。也就是说,电子只能按照某些“确定的”轨道运行,这些轨道,必须符合一定的势能条件,从而使得电子在这些轨道间跃迁时,只能释放出符合巴耳末公式的能量来。

我们可以这样来打比方。如果你在中学里好好地听讲过物理课,你应该知道势能的转化。一个体重100公斤的人从1米高的台阶上跳下来,他/她会获得1000焦耳的能量,当然,这些能量会转化为落下时的动能。但如果情况是这样的,我们通过某种方法得知,一个体重100公斤的人跳下了若干级高度相同的台阶后,总共释放出了1000焦耳的能量,那么我们关于每一级台阶的高度可以说些什么呢?

明显而直接的计算就是,这个人总共下落了1米,这就为我们台阶的高度加上了一个严格的限制。如果在平时,我们会承认,一个台阶可以有任意的高度,完全看建造者的兴趣而已。但如果加上了我们的这个条件,每一级台阶的高度就不再是任意的了。我们可以假设,总共只有一级台阶,那么它的高度就是1米。或者这个人总共跳了两级台阶,那么每级台阶的高度是0.5米。如果跳了3次,那么每级就是1/3米。如果你是间谍片的爱好者,那么大概你会推测每级台阶高1/39米。但是无论如何,我们不可能得到这样的结论,即每级台阶高0.6米。道理是明显的:高0.6米的台阶不符合我们的观测(总共释放了1000焦耳能量)。如果只有一级这样的台阶,那么它带来的能量就不够,如果有两级,那么总高度就达到了1.2米,导致释放的能量超过了观测值。如果要符合我们的观测,那么必须假定总共有一又三分之二级台阶,而这无疑是荒谬的,因为小孩子都知道,台阶只能有整数级。

在这里,台阶数“必须”是整数,就是我们的量子化条件。这个条件就限制了每级台阶的高度只能是1米,或者1/2米,而不能是这其间的任何一个数字。

原子和电子的故事在道理上基本和这个差不多。我们还记得,在卢瑟福模型里,电子像行星一样绕着原子核打转。当电子离核最近的时候,它的能量最低,可以看成是在“平地”上的状态。但是,一旦电子获得了特定的能量,它就获得了动力,向上“攀登”一个或几个台阶,到达一个新的轨道。当然,如果没有了能量的补充,它又将从那个高处的轨道上掉落下来,一直回到“平地”状态为止,同时把当初的能量再次以辐射的形式释放出来。

关键是,我们现在知道,在这一过程中,电子只能释放或吸收特定的能量(由光谱的巴尔末公式给出),而不是连续不断的。玻尔做出了合理的推断:这说明电子所攀登的“台阶”,它们必须符合一定的高度条件,而不能像经典理论所假设的那样,是连续而任意的。连续性被破坏,量子化条件必须成为原子理论的主宰。

我们不得不再一次用到量子公式E = hν,还请各位多多包涵。史蒂芬.霍金在他那畅销书《时间简史》的Acknowledgements里面说,插入任何一个数学公式都会使作品的销量减半,所以他考虑再三,只用了一个公式E = mc2。我们的史话本是戏作,也不考虑那么多,但就算列出公式,也不强求各位看客理解其数学意义。唯有这个E = hν,笔者觉得还是有必要清楚它的含义,这对于整部史话的理解也是有好处的,从科学意义上来说,它也决不亚于爱因斯坦的那个E = mc2。所以还是不厌其烦地重复一下这个方程的描述:E代表能量,h是普朗克常数,ν是频率。

回到正题,玻尔现在清楚了,氢原子的光谱线代表了电子从一个特定的台阶跳跃到另外一个台阶所释放的能量。因为观测到的光谱线是量子化的,所以电子的“台阶”(或者轨道)必定也是量子化的,它不能连续而取任意值,而必须分成“底楼”,“一楼”,“二楼”等,在两层“楼”之间,是电子的禁区,它不可能出现在那里。正如一个人不能悬在两级台阶之间漂浮一样。如果现在电子在“三楼”,它的能量用W3表示,那么当这个电子突发奇想,决定跳到“一楼”(能量W1)的期间,它便释放出了W3-W1的能量。我们要求大家记住的那个公式再一次发挥作用,W3-W1 = hν。所以这一举动的直接结果就是,一条频率为ν的谱线出现在该原子的光谱上。

玻尔所有的这些思想,转化成理论推导和数学表达,并以三篇论文的形式最终发表。这三篇论文(或者也可以说,一篇大论文的三个部分),分别题名为《论原子和分子的构造》(On the Constitution of Atoms and Molecules),《单原子核体系》(Systems Containing Only a Single Nucleus)和《多原子核体系》(Systems Containing Several Nuclei),于1913年3月到9月陆续寄给了远在曼彻斯特的卢瑟福,并由后者推荐发表在《哲学杂志》(Philosophical Magazine)上。这就是在量子物理历史上划时代的文献,亦即伟大的“三部曲”。

『捌』 不知哪位哥有关于原子核物理的资料,小生跪求

铀原子核裂变现象的发现还得从美籍意大利物理学家费米利用中子轰击铀核的实验研究工作谈起。当人工放射性核素发现以后,科学家们就纷汾利用α粒子、质子以及中子去轰击周期表上各种元素,以求获得更多的人工放射性核素。而费米就是利用α粒子轰击铍能发射中子的核反应过程,把镭和铍均匀混合在一起,就可以制成能发射大量中子的镭-铍中子源。然后,利用这些中子去轰击各种元素,并用自制的高灵敏度盖革—弥勒计数管进行测量。结果发现将近六十多种被中子照射过的元素中,约有四十多种能产生放射性核素。
后来,费米在长期的实验工作中发现,如果把所用的镭-铍中子源加以适当改进,在中子源和银圆筒之间加上一层石蜡或其它含氢物质,就能使银的放射性强度大大增加,这可从盖革—弥勒计数管上得到反映。

这是因为镭-铍中子源所发射的快中子能量很大,不易和银发生反应。现在通过石蜡后快中子被减速成热中子,其能量和分子热运动能量相当,即能量为0.0253电子伏或速度为每秒2200米。由于热中子运动速度很慢,它在核周围的停留时问就会加长,因此和核作用的机会也就越多,所产生的放射性也就越强,计数就大大增加。

费米在获得热中子后,重新对铀核进行轰击试验。看它能否被铀核俘获生成更多的原子序数大于92的93、94……一系列超铀元素。然而,大量实验结果证明,在铀核俘获中子后的生成物中,呈现出非常复杂的辐射成分。在测量中发现它们是由多种β射线所组成,先后共测得四种不同能量的β射线,根据它们辐射强度随时间衰减的曲线分析,得到四种不同的半衰期,分别为10秒、40秒、12分和90分。而费米及其助手当时也无法从这些复杂的放射性物质中识别出事先想找到的93号新元素。这是因为他们中间缺少精通化学分析的科学家。即使在这些新产生的放射性物质中确已存在93号元素,他们也不能用化学方法由辨别它们。

由于费米及其同事在生产人工放射性核素中一直认为元素俘获一个中子后,经过β衰变能生成原子序数增加1的新元素,所以费米等人总是专心致志地去寻找原子序数比铀更大的超铀元素。因而对在实验过程中所遇到的那些复杂的β衰变现象未能做出符合客观实际的解释,对铀核反应过程中所形成的放射性核素,也未能作直接的化学测定,就误认为93号元素已经找到。这样也就错过了发现“铀核裂变”的良机。

正像约里奥·居里夫妇在1932年研究α粒子轰击铍时,未能及时发现中子一样,费米他们虽然已到了发现铀核裂变的门口,却未能再往前路一步,没有能及早揭开铀核裂变的秘密。直至1939年,93号元素才被美国物理学家麦克米伦和艾贝尔森在伯克利的加利福尼亚大学辐射实验室,用热中子轰击铀靶而生成。并用化学方法鉴别出第一个难以捉摸的超铀元素—镎。

与此同时,奥地利物理学家梅特涅和她的合作者—德国物理化学家哈恩一起在柏林威廉皇家研究院,从事中子轰击铀核的研究工作,并利用他们在化学分析工作方面的有利条件,对所生成的多种放射性同位素进行了详细研究。

他们在测量中发现,实际情况要比费米最初预料的还要复杂得多。这是指各种放射性强度的衰减曲线在不同的观测时间内变化很大,也就是税,即使中子照射停止,有些放射性物质仍能不断产生,其衰变过程还是相当复杂的。

另外,他们还测得了费米没有测到的半衰期,其中包括某些长半衰期,一共有九种,—它们分别为10秒、40秒、2.2分、16分(费米测得为13分)、23分、59分(费米测得为90分)、5.7小时、45小时和66小时。然而,在分析与这些半衰期相对应的放射性同位素时,他们却仍认为是生成了超铀元素,即想象在铀元素中形成了类铂、类金、类铼、类锇和类铱的93、94、95、96和97号新元素。但是,当用化学方法对它们进行鉴别时,很快发现这种想象是错误的。

梅特涅和哈恩他们所用的化学鉴别法是一种在放射化学中常用的分析微量放射性物质的方法。即为了能取得微量的放射性物质,往往预先加入几毫克相同的稳定元素或化学性质相似的元素(通常称为载体),这种裁体能把微量放射性物质载带入沉淀物中。如果不是同种元素,则可设法把微量放射性物质与裁体分离。哈恩他们曾经选择了各种元素作为载体,并把它加入被中子轰击过的铀元素里。其中有一种钡元素,当他们把钡从中子轰击过的铀元素中分离出来进行测量时,果然发现有相当一部分的放射性物质被钡载带出来。

那末这些放射性物质到底是什么核素呢?由于他们和费米一样,也是一心想寻找超铀元素,而不愿往“铀前”元索(原子序数远小于铀)方面考虑。为此他们认为那些化学性质和钡相似的放射性核素很可能是“镭”。它在周期表中是第83号元素,位于钡元素的下面,和钡是同族元素,所以在化学性质上,镭和钡确有很多相似之处。然而,两者毕竟不是同一种元素,所以可用化学方法把载体钡和放射性物质“镭”分离开来。但事与愿违,虽然作了很大努力,但始终未能把“镭”从钡载体中分离开来。事实上,这一实验结果已经表明此种“镭”放射性物质就是钡,但他们就是不敢下此结论。

与此同时,法国的约里奥·居里夫妇也在自己的实验室里进行过中子轰击铀的试验。同样他们也测得了一些被命名为“类铼”、“类锇”和“类铱”的93、94和95号元素。他们的实验结果也未能超越费米等人的结论。

然而,有些在思想上框框比较少的年轻科学家,他们根据在实验中一方面未能直接分离得到超铀元素;另一方面从钡载体中确实测得了放射性物质的存在,且又不能把它同钡分离出来的实验结果,提出了富有创见的大胆设想。其中最值得一提的是德国年轻科学家诺达克夫妇,他们当时都在布列斯高的弗莱堡大学物理化学学院中工作。他们认为费米所做的中子轰击铀的实验,在化学分析方面未能对超铀元素的发现提出过令人信服的论据。

为此,他们在1934年曾经提出过自己的看法,他们认为铀核在中子作用下发生了核裂变反应。而且这种反应和其它核反应有很大区别,似乎在中子轰击铀核时,铀核被分裂成几块碎片是完全可能的。同时,这些碎片应是已知元素的同位素,但不是被轰击元素铀的相邻元素。

这是一个后来在1939年被证实的极其有价值的假定。然而当时却未能引起像费米那样的物理学权威人士的重视,当然也就根本谈不被被承认了。费米在获悉这些不同意见后,仍坚持认为能量很低的热中子决不能击破如此坚固的原子核堡垒,使核发生裂变,这简直是难以想象的。特别是当费米得知当时世界—致公认的放射化学权威哈恩也同意他已经获得超铀元素的看法时,他对自己的实验结果就更加确信无疑了,这样费米他们也就又一次失去了完成—项重大发现的机会,这也是费米在自己的科研生涯中所犯的一次最大的失误。

二十年后,在安葬这位伟大的科学家时,曾经参加过这项实验的费米的一位学生物理学家西格列说:“上帝按照他自己的不可思议的动机,使我们当时在核分裂现象上成为盲人”。当然实际上使他们迷失方向的决非是上帝的旨意,而是当时他们在化学知识方面的不足,以及主观上犯了先验论的错误所致。世上任何一位科学家在自己短暂的科学生活中,总是难免有不足之处的,但他们对推动科学事业发展的不朽功勋却永远值得大家称颂。

不管怎样,许多科学家在用中子轰击铀核的实验中,不断找到各种各样铀前元素的事实有力地冲击着费米等人认为获得了超铀元素的错误结论。例如,在1938年,伊伦·居里和萨维基从被中子轰击过的铀中,测得了一种在哈恩等人实验中所没有测得的半衰期为3.5小时的新的放射性核素。它的化学性质和稀土元素镧十分相似,起初假定它是锕的放射性同位素。但在进一步测量中发现,这种放射性同位素可用化学方法把它和锕分离,却不能与镧分开。

由此可见,这些半衰期为3.5小时的放射性物质与其说是锕的同位素,倒不如说是镧的同位素更符合实际。这就是说他们实际上已经测得了铀核的裂变产物镧,发现了铀核的裂变现象。但当他们发表找到镧元素的论文时,却仍认为镧是由铀俘获中子后所形成的超铀元素衰变而成,决没有想到镧是铀核在中子直接作用下的裂变产物。仍旧未能冲破权威们关于生成超铀元素的束缚。

正当原子核科学事业不断向前发展的时候,希特勒法西斯统治下的纳粹德国所发动的侵略战争也正在逐步升级。1938年3月,中立的奥地利被德国所吞并。而这时正在德国从事铀核裂变研究工作的梅特涅教授,由于她是犹太人,她的奥地利国籍使她成了敌对国的公民,这样她就被迫离开拍林前往瑞典的斯德哥尔摩避难。

她的合作者、德国籍的哈恩和施特拉斯曼仍旧留在柏林继续对铀核的裂变现象进行研究,且也向伊伦·居里等人一样找到了镧的同位素。同时他们得到启发,把过去同钡载体—齐沉淀下来的“镭”同位素,重新进行化学分离。

当时他们采用了比较先进的“分步结晶法”的化学分离技术,结果仍然未能从钡载体中分离出所想象的“镭”,看来这种和钡载体结合得如此紧密的放射性核素只能是钡本身。正如哈恩和施特拉斯曼后来在自己著作中所描述的那样:“作为化学家的我们,不得不肯定地声明,铀俘获中子后所产生的新物质的性质并不和镭相同,而恰恰是和钡相同”。

至此应该说他们已经发现了铀核在中子作用下发生了裂变的奇迹,可是奇迹的创造者却还是不敢承认。这是因为虽从化学角度上看,这些精通各种化学分析方法的著名化学家,他们对自己的实验结果是深信不疑的,但从核物理观点上看,这似乎又是不可能发生的事情。即当用能量很低的热中子去轰击周期表上最重的铀核时,结果怎么会得到原子序数为56的中等质量数的钡元素呢?它只比铀元素的—半大一点。

如果铀核不是分裂成大小差不多的两半片。那末钡是得不到的。像铀核这种密度很高的坚硬堡垒,很难想像它能被能量很低的热中子炸成两半。难怪哈恩他们即使早已发现了铀核的裂变现象,但却迟迟不敢发表自己的实验结果。

然而哈恩他们也深深懂得科学研究本身是不能有任何虚假的。在被中子轰击过的铀元素中,钡核镧等中等质量元素的出现是谁也抹煞不了的实验事实,为了尊重事实,他们觉得完全有必要赶快把这个新发现的实验结果公布与世。

在1938年8月22日,他们终于正式发表了这—重要的实验事实,同时还写信给在瑞典避难的梅特纳教授。她曾和他们共事过三十年,由于希特勒的战争政策和迫害犹太人的罪恶行径,使她未能参加最后阶段的实验工作。但现在她终于知道了在被中子轰击过的铀元素中,确实存在着钡同位素。喜悦的心情使她久久不能平静,她反复思考铀核俘获中子后怎么会生成钡的奇怪现象。

她想铀核中有92个质子146个中子;而钡只有56个质子和82个中子。两者的质量数和原子序数相差这样大,这在以往的任何核反应过程中都是从未有过的。不论是α粒子或质子和中子,当它们轰击靶核时,只能生成某种和原来靶核质量数相近的新元素,同时伴随着放射出某些质量数较小的粒子,如α粒子、质子、中子、电子或正电子等。而在中子与铀核的反应过程中,却出现了意想不到的钡元素,这到底是什么缘故?她想很可能在铀核俘获中子的过程中发生了某种特殊的核反应。

为此她大胆地假定是否存在着这样一种可能性,即当稳定性较差的铀核吞噬中子后,使铀核得到了多余的能量,并处于激发态,显得更加不稳定,最后分裂成两个较轻的核碎片,而铀核的电荷数和质量数也将分成大约相等的两部分。这样就能满意地解释哈恩他们所发现的钡和镧的实验结果,因为它们的质量数几乎是铀的一半。

接着,梅特涅又立刻把上述想法告诉了她的侄子弗里施,当时他流亡丹麦,在哥本哈根玻尔所主持的研究所工作。他们两人经过仔细而又深入的讨论后,完成了关于解释铀核裂变现象的论文,并想在1939年1月发表。于此同时,弗里施把论文送给了与梅特涅教授有着很密切联系的玻尔教授。因为在他们的论文中,引用了玻尔的核理论对铀核的裂变现象进行了说明。当时有位美国生物学家阿诺德刚好也在哥本哈根工作,他建议把铀核分裂成两片的现象仿照活细胞的一分为二现象称作为“裂变”,从此这个名称就一直被沿用至今。

梅特涅和弗里施在关于铀原子核俘获中子产生裂变的论文中,主要引用了玻尔关于原子核结构的液滴模型理论,对铀核所以能产生裂变得到钡和澜等元素的结果,进行了十分生动而又令人信服的描述。弗里施在描述当时的情况中说:“我们逐渐清楚了,铀原子核被破裂成两个几乎相等的部分……可以说是完全按照—定形式发生的。情形是这样的……原始的铀核逐渐变形,中部变窄,最终分裂成两半。这种情况与生物学上细胞繁殖的分裂过程非常相似,这使我们有理由把这种现象在自己的第一篇报告中称作为‘核分裂’”。

他们在分析铀核为什么能产生裂变的出发点是把铀核看为带电的液滴,这就是玻尔的核液滴模型的根据。由于铀核中有92个质子和146个中子,这同质子数和中子数相等的稳定核相比较,可看出铀核中存在着过量的中子,所以铀核本身就是一种很不稳定的原子核。

它像普通的水滴是由水分子间的表面张力维持形状一样,组成原子核的质子和中子(统称为核子)之间的相互作用力(也称核力)促使原子核也能保持一定的形状。而带正电子的质子又同普通电子一样,也有趋向于表面的特性,它们各自在核表面上占据着一定的位置。另外质子间的静电斥力使得质子有逃逸出核的可能,而核力又要把质子拉回到核里。

铀原子核内各核子间虽然受到十分复杂的作用,而处于很不稳定的状态。但是如果没有外来的干扰,大多数情况下,铀核还能维持比较完整的形状。

然而,一旦铀核俘获了一个中子以后,形成铀的复合核,并受到中子带来的额外能量的扰动,结果使得铀核内的核子更加剧烈地颤动起来,铀核变成了椭圆形。随后就愈变愈烈成为不能复原的哑铃状形。直到核内的电磁斥力把几乎相等的两部分从哑铃的颈部完全断裂开来,形成两个新的中等质量数的原子核,同时放射出2~3个中子。

此外,由于铀核的分裂并不是每次都在同一个哑铃颈上断开,所以许多铀核分裂的结果就能得到—系列不同质量数的裂变碎片,这就是铀核裂变产物十分复杂的主要原因。不过通常仍然有一种比较常见的分裂形式,即分裂成钡和镧。它们的原子序数分别为56和36,加起来刚好等于铀的原子序数92。这和很多科学家在研究铀核俘获中子的实验中,多次测得钡元素的结果相—致。

当玻尔看到自己的液滴模型核理论能如此精确无误地解释铀核俘获中子的裂变现象时,其兴奋激动的心情是难以表达的。正像他在自己短短的1500字的自传中曾经描述过的那样:“有助于揭开那遮蔽真理帐幕的—角,并且从而可以走到较为接近真理的路上,也许是一个科学家所能获得的最大快乐”。

当时玻尔为此差一点没有赶上去美国的火车。就在他赴美开会之际,梅特纳和弗里施为了验证他们对铀核裂变现象的解释,再一次对铀核俘获中子后的裂变产物进行了测量。他们从中不仅找到了钡和镧等其它元素,而且当他们将裂变后的两部分裂变碎片的质量相加时,发现它们比裂变前的铀核和中子的质量之和要小。这就是说,在铀核的裂变反应过程中发生了质量亏损。

根据爱因斯坦的质能公式,即能量E等于质量和光速平方的乘积。这些失去的质量必定在铀核发生裂变反应的过程中,以能量的形式释放出来。弗里施在实验中观测到了这个异常巨大的能量,它能把测量仪表的指针逼到刻度以外,其数值约为200兆电子伏。

接着他们又把这个伟大发现通过海底电报告诉了已抵达美国的玻尔。当玻尔得知这一足以震惊世界的消息已被证实后,立即在一次物理学家会议上宣布了关于发现铀核裂变的消息。与会者无不为之激动万分,并立刻投入到铀核裂变研究中去。数周之后,各国科学家也都先后证实了铀核被中子裂变,和能释放出巨大能最的事实。从此以后,核科学研究工作也就进入了利用原子核能,为人类造福的新时代。

『玖』 构建出世界的原子是这么微小的颗粒,是怎么被人类发现的

原子很小,真的非常小。你可能听说过,大千世界都是由微小的原子构成的。你或许也知道,我们无法用肉眼看到它们。但原子确实存在,并与每样事物发生相互作用,构筑了我们的世界。



同时,斯基帕以及其他物理学家还用查德威克在20世纪30年代使用过的中子束发射技术,对原子进行研究。斯基帕解释说:“我们所做的就是向许多物质发射中子束。根据散射图像,我们可以推断原子核中散射出许多中子。这样,我们就能计算出发生散射的物质的质量和大致体积。”

但是,原子并不是始终纹丝不动地待在那儿等着我们对它进行检测。有时原子会发生衰变,这就意味着它们具有放射性。

自然界中的许多元素都具有放射性。衰变过程会产生能量,这就是核能的基础,也是核弹的基础。核物理学家研究的主要内容,就是深入了解核反应过程中发生的变化。伽马射线就是一种原子衰变辐射。不同的放射性原子会产生不同的伽马射线形态,这就意味着我们能够通过探测原

子衰变过程中伴随的伽马射线的能量来辨别原子。这就是利物浦大学的哈克尼斯· 布伦南进行的实验。布伦南进一步解释说:“这一实验所需的探测器,必须既能探测到射线的存在,又能探测出射线的能量。因为每种元素的原子核都有其独特的指纹图谱。”

射线探测区也可能存在其他类别的原子,尤其是在一些大型核反应中。因此,准确了解存在哪些放射性同位素就显得格外重要。也正因为这样,这类实验通常都在核电站或是发生过核事故的地区进行。现在,哈克尼斯·布伦南及其同事的重点就放在研发对存在辐射的区域进行探测的系统装置上。她说:“我们所要研制的科技设备和工具,需要能够对存在辐射的特定区域进行三维成像。”原子如此之小,但我们能从中了解到很多奇妙的物理学知识

云室是一种核辐射探测装置,放射源周围弥漫着冷却到-40℃、达到过饱和状态的酒精蒸汽云。辐射源放射出的带电粒子从酒精分子中转移电子,在经过的路径上产生离子。与此同时,酒精沿着带电粒子经过的路径浓缩为小液滴。这一实验呈现出的结果令人惊叹不已。

我们还远远没有搞清楚原子究竟是什么,只是揭示出它们有着惊人的复杂结构,在自然界中能够发生许多奇异的变化。研究原子的过程使我们的科技水平以及利用核能的能力有了大幅进步,让我们更好地了解了我们生活的世界。与此同时,也能更好地预防辐射对我们的伤害。

正如哈克尼斯·布伦南所说,“原子虽然如此之小,但我们能从中了解到很多奇妙的物理学知识”。我们周围的所有事物,都是由微小的原子构成的。深入地了解原子,我们才能更好地了解世界。

『拾』 粒子物理与原子核物理的课程设置

英语
English
专业外语
Specialty English
科学社会主义理论与实践
Theory and practice of scientific socialism
自然辩证法概论
Dialectics of Nature Studies
高等量子力学
Advanced Quantum Mechanics
群论
Group Theory
量子场论
Quantized filed theory
粒子物理
Particle Physics
粒子物理与核物理实验方法
Experiment Methods of Particle and Nuclear Physics
原子核理论
Nuclear Theory
量子统计
Quantum Statistical Physics
计算物理
Computational Physics
核电子学
Nuclear Electronics
广义相对论与宇宙学
General relativity theory and cosmology

热点内容
轩辕剑数学 发布:2025-01-10 23:23:31 浏览:683
国泰君安2016暑期 发布:2025-01-10 22:30:34 浏览:624
师德锤炼典型案例 发布:2025-01-10 21:48:58 浏览:6
使徒的气息有什么用 发布:2025-01-10 21:42:23 浏览:748
东营泰贝尔化学科技有限公司 发布:2025-01-10 19:59:16 浏览:443
八字教师 发布:2025-01-10 18:25:48 浏览:7
京东怎么样 发布:2025-01-10 18:11:48 浏览:81
小学语文教师随笔 发布:2025-01-10 17:32:48 浏览:86
文章说英语 发布:2025-01-10 14:10:08 浏览:972
华祺教育 发布:2025-01-10 13:53:42 浏览:186