当前位置:首页 » 历物理化 » 微生物燃料电池

微生物燃料电池

发布时间: 2020-11-19 07:45:48

『壹』 微生物燃料电池的前景

前景十分不错,属于创新科技,在环保、原料方面和目前能源利用有着很大的不同。目前还没有成熟技术,想要投资的话估计得不少钱。

『贰』 微生物燃料电池的核心技术

污物驱动的应用在于能够显著的移除废弃的底物。目前,使用传统的好氧处理时,氧化每千克碳水化合物就需要消耗1 kWh的能量。例如,生活污水的处理每立方米需要消耗0.5 kWh的能量,折算后在这一项上每人每年需要消耗的能源约为30 kWh。为了解决这一问题,需要开发一些技术,特别是针对高强度的废水。在这一领域中常用的是Upflow Anaerobic Sludge Blanket反应器,它产生沼气,特别是在处理浓缩的工业废水时。UASB反应器通常以每立方米反应器每天10~20 kg化学需氧量的负荷速率处理高度可降解性的废水,并且具有(带有一个燃烧引擎作为转换器)35%的总电力效率,意味着反应器功率输出为0.5~1 kW/m3。它的效率主要决定于燃烧沼气时损失的能量。未来如果发展了比现有的能更有效的氧化沼气的化学染料电池的话,很可能能够获得更高的效率。
能够转化具有积极市场价值的某种定性底物的电池,譬如葡萄糖,将以具有高能量效率作为首要目标。虽然MFCs的功率密度与诸如甲醇驱动的FCs相比是相当低的,但是对于这项技术而言,以底物安全性为代表的多功能性是它的一个重要优势。
全面的看,作为一种参考,以高速率的厌氧消化手段从生物量中重获能量的资本支出约为安装每百万瓦生产量花费100万瓦。后一数值也同样适用于通过传统的燃烧途径、风力涡轮机以及化学染料电池等方法利用化石燃料产能。因此这一手段也处于竞争之地。何况目前,微生物燃料电池尚未达到这一水准的功率输出。负荷速率为每天每立方米反应器0.1~10 kg的化学需氧量时,可以认为实际上能达到的功率输出在0.01~1.25 kW/m3之间。然而,对于好氧的处理过程,观察到的生长速率为消耗每克有机底物产生0.4克生物量生成,而对于厌氧发酵产生沼气的过程这一速率理论上仅为0.077。基于MFC过程的本质,其产量应该介于这两种代谢类型之间。观察到的以葡萄糖饲喂的MFCs的生长速率在0.07~0.22之间。由于废水处理设备中淤泥处理的花费多达每吨干物质500,这一数量的减少对于该过程的经济平衡具有重要的提示意义。
有效的设计和操作能够创造一种技术平台,能够在多种领域运用而不需要进行本质上的修改。除了经济方面,MFCs已经展现了支柱性的核心技术的姿态。它们在低的和适中的温度下能有效的产生能量并转化一系列的电子供体,甚至即使电子供体仅以低浓度存在。在这些方面现在还没有能够与之相媲美的其他已知技术。

『叁』 微生物电解池和微生物燃料电池的区别

从字面意思不难理解,微生物燃料电池与微生物电解池主要区别是:
1.微生物燃料电池(Microbial Fuel Cell,MFC)是一种利用微生物将有机物中的化学能直接转化成电能的装置。其基本工作原理是:在阳极室厌氧环境下,有机物在微生物作用下分解并释放出电子和质子,电子依靠合适的电子传递介体在生物组分和阳极之间进行有效传递,并通过外电路传递到阴极形成电流,而质子通过质子交换膜传递到阴极,氧化剂 (一般为氧气)在阴极得到电子被还原与质子结合成水。
2.微生物电解池,利用微生物作为反应主体,在阴阳极间施加电流,产生氢气或者甲烷的一种电解池。微生物电解池由池体、阳极、阴极、外电路及电源组成。在阳极上有一层由产电微生物形成的生物膜,这些微生物靠吃污水中的有机物为生。微生物电解池中的微生物,在其代谢过程中,电子从细胞内转移到了细胞外的阳极,然后通过外电路在电源提供的电势差作用下到达阴极。在阴极,电子和质子结合就产生了氢气。

『肆』 微生物燃料电池(Microbial Fuel Cell,MFC)是一种利用微生物将有机物中的化学能直接转化成电能的装置

请注意题干强调3是质子交换膜,质子交换膜只允许质子通过,左边的铵根是无回法到右边的,只有右下答角的硝酸根通过化学反应才能转化成氮气,所以C错误
注意图中氢原子移动方向,可以判断出右电极为正。再看图的右侧电极,向其加入氧气、铵根、二氧化碳转化产物为水和氮气,水中的氧原子为-2价,显而易见氧气参与正极反应,发生还原反应。答案D真确

『伍』 微生物燃料电池是怎样研发的

中国科学家在微生物来燃料电池的产电源机制研究方面取得突破性进展。他们从污染环境中分离出一株嗜碱性假单胞菌,该菌株在碱性条件下能够分解有机物的同时产生电能,最佳pH为9.5。通过研究发现,该菌株在微生物燃料电池体系中代谢有机物的同时,产生酚嗪-1-羧酸介体,该介体起电子穿梭的作用,从而实现电子从有机物到电极的传递过程。

『陆』 什么是微生物燃料电池

微生物燃料电池的概念已经提出将近三十年了。当时一个英国研究人员在碳水化合物中培养细菌的过程中,连接两个电极时,观测到了微弱的电流。尽管它还只处于实验室研究阶段。但其研究已经逐渐成形,有望成为一种替代能源。

事实上,光合作用细菌可以有效地从它们的食物中分离出能量。微生物可以从有机废物中剥离电子,然后形成电流。利用先进的电子提取技术,可以使这个转化过程更有效地进行。

目前,研究人员们把微生物封装在密闭的无氧测试管中,测试管的形状被做成类似电路的回路。当处理废物时,先把有机废水通入管中,作为副产品电子向阳极移动,然后通过回路流到阴极。另外一种副产品质子通过一块离子交换膜流到阴极。在阴极中,电子和质子与氧气发生反应形成水。

一块微生物燃料电池,理论上最大可以产生1.2伏特电压。但是可以像电池一样把足够多的燃料电池并联和串联起来,产生足够高的电压来作为一种有实际应用的电源。

光合作用细菌

『柒』 微生物燃料电池的优势

与现有的其它利用有机物产能的技术相比,微生物燃料电池具有操作上和功能上的优势: 首先,它将底物直接转化为电能,保证了具有高的能量转化效率; 其次,不同于现有的所有生物能处理,微生物燃料电池在常温环境条件下能够有效运作; 第三,微生物燃料电池不需要进行废气处理,因为它所产生的废气的主要组分是二氧化碳,一般条件下不具有可再利用的能量; 第四,微生物燃料电池不需要输入较大能量,因为若是单室微生物燃料电池仅需通风就可以被动的补充阴极气体; 第五,在缺乏电力基础设施的局部地区,微生物燃料电池具有广泛应用的潜力,同时也扩大了用来满足我们对能源需求的燃料的多样性。

『捌』 微生物燃料电池研究中有哪些问题尚未解决

主要问题是成本和功率密度。

1 引言 微生物燃料电池(Microbial Fuel Cells,MFCs),是一种以微生物为阳极催化剂,将有机物中的化学能直接转化为电能的装置。1911年,英国植物学家Potter便发现细菌培养液可产生电流,这是关于微生物燃料电池的最早报道。近年来,MFC技术因其诸多优点及应用范围的扩大,引起了世界各国研究者的高度关注。
毋庸置疑,微生物燃料电池(Microbial fuel cells,MFCs)是一种新兴的高效的生物质能利用方式,它利用细菌分解生物质产生生物电能,具有无污染、能量转化效率高、适用范围广泛等优点。因此MFCs逐渐成为现今社会的研究热点之一。
2 微生物燃料电池的工作原理
图1是典型的双室结构MFcs工作原理示意图,系统主要由阳极、阴极和将阴阳极分开的质子交换膜构成。阳极室中的产电菌催化氧化有机物,使其直接生成质子、电子和代谢产物,氧化过程中产生的电子通过载体传送到电极表面。根据微生物的性质,电子传送的载体可以为外源、与呼吸链有关的NADH和色素分子以及微生物代谢的还原性物质。阳极产生的H+透过质子交换膜扩散到阴极,而阳极产生的电子流经外电路循环到达电池的阴极.电子在流过外电阻时输出电能。电子在阴极催化剂作用下。与阴极室中的电子接受体结合,并发生还原反应。

图1 微生物燃料电池工作原理示意图
下面以典型的葡萄糖为底物的反应为例说明MFCs的工作原理,反应中氧气为电子受体,反应完成后葡萄糖完全被氧化。
阳极反应:
?_CHO?6HO?CO?24H?24e612622
阴极反应:
?_6O2?24H?24e?12H2O
总反应:
C6H12O6?6O2?6CO2?6H2O

3 微生物燃料电池的应用现状
迄今为止,MFCs的性能远低于理想状态。制约MFCs性能的因素包括动力学因素、内阻因素和传递因素等。动力学制约的主要表现为活化电势较高,致使在阳极或者阴极上的表面反应速率较低,难以获得较高的输出功率。内电阻具有提高电池的输出功率的作用,主要取决于电极间电解液的阻力和质子交换膜的阻力。缩短电极间距、增加离子浓度均可降低内阻。不用质子交换膜也可以大大降低MFCs的内阻,这时得到的最大功率密度有质子交换膜的5倍,但必须注意氧气扩散的问题。另一个重要制约因素为电子传递过程中的反应物到微生物活性位间的传质阻力和阴极区电子最终受体的扩散速率。最终电子受体采用铁氰酸盐或阴极介体使用铁氰化物均可以获得更大的输出功率和电流。另外,微生物对底物的亲和力、微生物的最大生长率、生物量负荷、反应器搅拌情况、操作温度和酸碱度均对微生物燃料电池内的物质传递有影响。
当前针对微生物燃料电池主要研究其产电性能,同时由于其特殊的结构与原理,MFCs还有许多潜在应用领域,主要包括废水处理、电助产氢、传感器三方面。
3.1 废水处理
近年来,微生物燃料电池被尝试用来处理富含生物可降解有机物的废水,在废水降解的同时产电。表3.1列举了目前MFCs用于废水处理的现状。

微生物燃料电池用于污水处理的例子

此外,微生物燃料电池处理废水具有诸多优点,还可与传统厌氧、好氧工艺相结合,达到更好的处理效果。

3.2 电助产氢
微生物燃料电池由于输出效率低,难以直接应用,而MFC电助产氢技术是较有前途的一种方式。其工作原理为:无氧条件下,对双室MFC阴极施加一个远小于水分解电压的小电压,可促进转移到阴极的电子和质子结合生成氢气,达到利用MFC系统产氢的目的。
微生物燃料电池电助产氢反应器的优点是阴极省略了MFC常用的电子受体——氢气,可避免因氧气通过质子交换膜向阳极扩散而影响反应器运行;同时该工艺产生的氢气纯度较高,可积累、储存及运输,推动了MFC技术的实际应用。
3.3 生物传感器
根据MFCs的工作原理,在一定浓度范围内,MFCs的电流(或电压)输出与阳极的基质浓度有线性关系,因此可开发基于MFCs的传感器,最典型的是BOD5快速检测。Lorenzo等以人工废水为燃料构建型BOD5传感器,该传感器输出功率与BOD5浓度有良好的线性关系,且有非常高的重复性和稳定性,可连续运行7个月。
除了作为BOD5传感器外,有研究者尝试利用MFC型的传感器通过对UAFB中发
酵液pH和沼气流速进行实时监测,实现对厌氧硝化过程动态变化的监测。还有研究者通过在MFCs的质子交换膜两侧添加2片微硅板作电流收集器,由电流变化来反映基质中的有毒化合物。这些研究都有助于扩大MFCs技术的应用领域。
4 微生物燃料电池技术发展前景
MFCs技术正在不断成长并且已经在许多方面取得了重大突破。但是,由于其功率偏低,该技术还没有实现真正的大规模实际应用。基于其产电性能的制约因素,今后的研究方向主要可归纳为以下几点。
(1)深入研究并完善MFCs的产电理论。MFCs产电理论研究处于起步阶段,电池输出功率较低,严重制约了MFCs的实际应用。MFCs中产电微生物的生长代谢过程,产电呼吸代谢过程以及利用阳极作为电子受体的本质是今后的研究重点。
(2)筛选与培育高活性微生物。目前大多数微生物燃料电池所用微生物品种单一。要达到实际应用的目的,需要寻找自身可产生氧化还原介体的高活性微生物和具有膜结合电子传递化合物质的微生物。今后的研究应致力于发现和选择这种高活性微生。
(3)优化反应器的结构;5建议;微生物燃料电池潜在的优点使研究者对其发展前景十分;(1)加强MFCs的机理研究,通过分析阳极微生物;(2)通过优化MFCs的结构、材料和运行方式等,;MFCs作为一种可再生的清洁能源技术正在迅速兴起;力,同时也扩大了用来满足我们对能源需求的燃料的多;7参考文献;[1]姜秀华.微生物电池技术研究[D].科技资讯;[2]张静,张宝

(3)优化反应器的结构。研究与开发单室结构和多级串联微生物燃料电池,利用微生物固定化技术、贵金属修饰技术等改善电极的结构和性能。选择吸附性能好、导电性好的材料作为阳极,选择吸氧电位高且易于扑捉质子的材料作为阴极。

5 建议
微生物燃料电池潜在的优点使研究者对其发展前景十分看好,但由于输出功率较低,限制了在生产生活中的应用。因此,建议研究者主要从以下三方面对MFCs做进一步研究:
(1)加强MFCs的机理研究,通过分析阳极微生物确定电子产生和传递机理,实现对高效产电微生物的筛选和改造。
(2)通过优化MFCs的结构、材料和运行方式等,提高电子传质速率,降低电压损失,提高MFCs产电性能。尝试MFCs的工程放大,实现实际应用。 6 结语
MFCs作为一种可再生的清洁能源技术正在迅速兴起,并已逐步显现出它独有的社会价值和市场潜力。随着研究的不断深入以及生物电化学的不断进步,MFCs必将得到不断地推广和应用。与微生物燃料电池相比,燃料电池目前使用存在着成本仍偏高, 利用率不太高的缺点,所以微生物电池有着广阔的应用前景。与现有的其它利用有机物产能的技术相比,微生物燃料电池具有操作上和功能上的优势:首先,它将底物直接转化为电能,保证了具有高的能量转化效率;其次,不同于现有的所有生物能处理,微生物燃料电池在常温环境条件下能够有效运作;第三,微生物燃料电池不需要进行废气处理,因为它所产生的废气的主要组分是二氧化碳,一般条件下不具有可再利用的能量;第四,微生物燃料电池不需要输入较大能量,因为若是单室微生物燃料电池仅需通风就可以被动的补充阴极气体;第五,在缺乏电力基础设施的局部地区,微生物燃料电池具有广泛应用的潜
力,同时也扩大了用来满足我们对能源需求的燃料的多样性。研究微生物电池是一件造福人类的伟大举措,我们应该投入更多的人力和物力。

『玖』 微生物燃料电池的产电机理

一般来说,燃料电池都需要对生物燃料分子进行分解和重建,这个过程会释放出电子,电子

聚集在一起形成电流。利用生物质能的装置。可分为间接型燃料电池和直接型燃料电池。

在间接型燃料电池中,由水的厌氧酵解或光解作用产生氢等电活性成分,然后在通常的

氢-氧燃料电池的阳极上被氧化。 在直接型燃料电池中,有一种氧化还原蛋白质作为

电子由基质直接转移到电极的中间物。如利用N,N,N',N'-四甲基-P-苯氨基二胺作为

介质,由甲醇脱氢酶和甲酸脱氢酶所催化的甲醇的完全氧化作用,可用来产生电流。

生物燃料电池尚处于试验阶段,已可提供稳定的电流,但工业化应用尚未成熟。

热点内容
幼儿园班主任学期工作总结 发布:2025-01-23 04:41:37 浏览:342
马云是什么老师 发布:2025-01-23 04:05:27 浏览:116
创客教学模式 发布:2025-01-23 03:53:26 浏览:457
杨小敏老师 发布:2025-01-23 03:48:13 浏览:852
小孩子学英语 发布:2025-01-23 03:21:06 浏览:452
电能电功教学设计 发布:2025-01-23 03:20:24 浏览:969
博白县教育科研网 发布:2025-01-23 01:35:39 浏览:438
玄武区教育 发布:2025-01-23 00:14:34 浏览:262
为什么电脑自动重启 发布:2025-01-23 00:06:01 浏览:284
胡姓班主任 发布:2025-01-22 23:37:52 浏览:182