图解生物化学
书上有,看书就行了。
先是戊糖磷酸分解,然后糖酵解产生丙酮酸,最后三羧酸循环。
『贰』 求这本书的pdf:中文翻译版:图解生物化学(原书第5版)
希望能帮到你
祝好。
『叁』 生物化学 ATP
化学渗透假说的证明实验中提到:每对电子通过复合体1和复合体3时(即生成1摩尔ATP),分别有4个质子从基质中泵出,通过复合体4时有2个质子泵出。途中也是这样表示的,你仔细看一下,化学渗透假说通过的是哪个复合物。
『肆』 真核生物染色体结构中染色质丝的逐级组装过程图解,人卫出版的生物化学,里面图看不怎么懂,请高手帮忙呀
其实你属于原理不清,导致不懂!染色体结构中,前期纺锤体解体,出现纺锤丝;中期染色亩侍体分离,现染烂耐敏色单体;后期染色单体长大饥枝并分离;末期染色单体变成染色体,纺锤丝消失,出现纺锤体
『伍』 动物细胞有氧呼吸总共能够产生多少ATP
第一阶段
有氧呼吸过程示意
[H]是一种十分简化的表示方式。这一过程中实际上是氧化型辅酶Ⅰ(NAD+)转化成还原性辅酶Ⅰ(NADH + H+),和FAD+转化为FADH2。
有氧呼吸主要在线粒体内,而无氧呼吸主要在细胞基质内。
有氧呼吸需要氧气分子参加,而无氧呼吸不需要氧气分子参加。
有氧呼吸分解产物是能量(ATP)和二氧化碳,水,而无氧呼吸分解产物主要是酒精或乳酸以及少量能量。
有氧呼吸释放能量较多,无氧呼吸释放能量较少。
总反应式
C6H12O6+6H2O+6O2→6CO2+12H2O+大量能量(最多38个ATP,一般是29-30个ATP)
过程中的能量变化
在有氧呼吸过程中,葡萄糖彻底氧化分解,1mol的葡萄糖在彻底氧分解以后,共释放出2870kJ的能量,其中有1161kJ的能量储存在ATP中,1709kJ以热能形式散失。利用率为40.45%
前者计算方法是每个NADH经电子传递链、氧化磷酸化后产生了3个ATP,FADH2产生了2个ATP:
2(糖酵解净得ATP)+2(三羧酸循环净得ATP)+30(每个NADH经电子传递链、氧化磷酸化后产生了3个ATP,共10个NADH)+4(每个FADH2经电子传递链、氧化磷酸化后产生了2个ATP,共2个FADH2)+2(琥珀酰辅酶A →琥珀酸:底物磷酸化)=38
后者的计算方法是根据最新测定计算,每个NADH经电子传递链、氧化磷酸产生了2.5个ATP,FADH2产生了1.5个ATP:
2(糖酵解净得ATP)+2(三羧酸循环净得ATP)+25(每个NADH经电子传递链、氧化磷酸化后产生了2.5个ATP,共10个NADH)+3(每个FADH2经电子传递链、氧化磷酸化后产生了1.5个ATP,共2个FADH2)+2(琥珀酰辅酶A →琥珀酸:底物磷酸化)=32
需要说明的是,不论是36或38个ATP还是30或32个ATP,这其中2个ATP差异产生的原因是有些细胞如心脏、肝、肾等细胞中经糖酵解产生的NADH在进入线粒体时是通过苹果酸-天冬氨酸环路来实现的,无需消耗ATP,而有些细胞是通过磷酸甘油环路需要消耗1分子ATP,方能使1分子NADH间接进入线粒体完成氧化磷酸化过程,所以就有了2个ATP的差别。
细胞呼吸过程中,1分子葡萄糖完全氧化产生多少个分子ATP?这是高中生物学教学中常常需要讨论的问题。其实这个问题尚未完全解决。长期以来,教科书中的答案是36或38。但是20世纪90年代中期以后,许多生物化学教科书中答案已改为最可能是30或32。原因在于P/O比的测定值(注:P/O比值是指代谢物氧化时每消耗1摩尔氧原子所消耗的无机磷原子的摩尔数,即合成ATP的摩尔数)。P/O比是被磷酸化的ADP分子数和消耗的O原子数之比。以前认为NADH氧化的P/O比是3,FADH2被氧化的P/O比是2。90年代以后的测定值分别是2.5和1.5。不过真实的数据还因具体的代谢条件而异,可能比这两个数据为低。教学中如果一定要说出具体数字,不要咬定38或36,可以说许多个或30多个。(吴相钰《一分子葡萄糖完全氧化产生多少个ATP》《生物学通报2004年第39卷第10期》)
附两大穿梭机制:
一、苹果酸-天冬氨酸穿梭机制
在哺乳动物的肝脏和其它的某些组织,存在着活跃的苹果酸-天冬氨酸穿梭机制(下图)。这一穿梭机制涉及胞液和基质中的苹果酸脱氢酶和天冬氨酸转氨酶,以及线粒体内膜中的转运体。
首先,在苹果酸脱氢酶的催化下,胞液NADH将草酰乙酸还原为苹果酸。
其次,苹果酸经二羧酸转位酶进入线粒体基质。
在基质中,线粒体苹果酸脱氢酶催化苹果酸重新氧化为草酰乙酸,使线粒体内的NAD+还原为NADH,经呼吸链氧化。
草酰乙酸在线粒体天冬氨酸转氨酶的催化下,与谷氨酸反应生成a-酮戊二酸和天冬氨酸。
a-酮戊二酸经二羧酸转位酶运出线粒体。
天冬氨酸经谷氨酸-天冬氨酸转位酶与谷氨酸交换运出线粒体。
在胞液中,天冬氨酸和a-酮戊二酸在天冬氨酸转氨酶的作用下生成谷氨酸和草酰乙酸,谷氨酸在与天冬氨酸的交换中重新进入线粒体,而草酰乙酸与胞液中的另一分子NADH反应,重复上述循环。
胞液中的NADH经苹果酸-天冬氨酸穿梭途径可以转换为线粒体中的NADH,再经电子传递和氧化磷酸化过程,所以胞液中的一分子NADH也可以生成3分子ATP。
二、甘油磷酸穿梭机制:甘油磷酸穿梭机制及两个酶,胞液中依赖于NAD+的甘油-3-磷酸脱氢酶和跨膜的甘油-3-磷酸脱氢酶复合物。
首先,在胞液甘油-3-磷酸脱氢酶催化下,NADH使磷酸二羟丙酮还原生成甘油-3-磷酸
然后,甘油-3-磷酸被跨膜的甘油-3-磷酸脱氢酶复合物转换回二羟丙酮磷酸。
在转换过程中,两个电子被转移到跨膜酶的FAD辅基上生成FADH2。FADH2将两个电子转给可移动的电子载体Q,然后再转给泛醌-细胞色素c氧化还原酶(复合物III)。酶-FAD+甘油-3-磷酸酶-FADH2+二羟丙酮磷酸
(下图)胞液中的NADH通过这一途径转换成QH2后氧化所产生的能量(2个ATP)比线粒体内NADH氧化的能量(3个ATP)少。